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Higgs Couplings
The hunt for non-SM Higgs couplings is on.
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A remarkable new opportunity to find NP!

Many BSM frameworks can lead 
to modified Higgs couplings (e.g. Kfir’s talk).



Unexpected Higgs Signals
What else can we do?                                          

Search for the Higgs in decay channels 
that we do not expect in the SM.

may be a striking signal of  NP !!!
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Flavor Violating
Higgs Couplings

times larger than in the SM can arise in many models of flavor (for instance in models with

continuous and/or discrete flavor symmetries [24], or in Randall-Sundrum models [25]) as

long as there is new physics at the electroweak scale and not just the SM. The lepton flavor

violating decay h ! ⌧µ has been studied in [11], and it was found that the branching ratio

for this decay can be up to 10% in certain Two Higgs Doublet Models (2HDMs).

In fact, there may already be experimental hints that the Higgs couplings to fermions

may not be SM-like. For instance, the BaBar collaboration recently announced a 3.4�

indication of flavor universality violation in b ! c⌧⌫ transitions [26], which can be explained

for instance by an extended Higgs sector with nontrivial flavor structure [27].

The paper is organized as follows. In Sec. II we introduce the theoretical framework we

will use to parameterize the flavor violating decays of the Higgs. In Sec. III we derive bounds

on flavor violating Higgs couplings to leptons and translate these bounds into limits on the

Higgs decay branching fractions to the various flavor violating final states. In Sec. IV we

do the same for flavor violating couplings to quarks. We shall see that decays of the Higgs

to ⌧µ and to ⌧e with sizeable branching fractions are allowed, and that also flavor violating

couplings of the Higgs to top quarks are only weakly constrained. Motivated by this we

turn to the LHC in Section V and estimate the current bounds on Higgs decays to ⌧µ and

⌧e using data from an existing h ! ⌧⌧ search. We also discuss a strategy for a dedicated

h ! ⌧µ search and comment on di↵erences with the SM h ! ⌧⌧ searches. We will see

that the LHC can make significant further progress in probing the Higgs’ flavor violating

parameters space with existing data. We conclude in Section VI. In the appendices, we give

more details on the calculation of constraints from low-energy observables.

II. THE FRAMEWORK

After electroweak symmetry breaking (EWSB) the fermionic mass terms and the cou-

plings of the Higgs boson to fermion pairs in the mass basis are in general

LY = �mif̄
i
Lf

i
R � Yij(f̄

i
Lf

j
R)h+ h.c.+ · · · , (1)

where ellipses denote nonrenormalizable couplings involving more than one Higgs field oper-

ator. In our notation, fL = qL, `L are SU(2)L doublets, fR = uR, dR, ⌫R, `R the weak singlets,

and indices run over generations and fermion flavors (quarks and leptons) with summation

3

In the mass basis:

(does not happen in the standard model...)



Flavor Violating Higgs 
UV Recipe for FV Higgs:

Rip a page from a paper 
that modifies Higgs 
couplings. 

Add flavor indices all 
over the place.

Re-diagonalize mass 
matrix.
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Flavor Violating Higgs 
Writing it a bit more neatly, we get: 

implicitly understood. In the SM the Higgs couplings are diagonal, Yij = (mi/v)�ij, but

in general NP models the structure of the Yij can be very di↵erent. Note that we use the

normalization v = 246 GeV here. The goal of the paper is to set bounds on Yij and identify

interesting channels for Higgs decays at the LHC. Throughout we will assume that the Higgs

is the only additional degree of freedom with mass O(100 GeV) and that the Yij’s are the

only source of flavor violation. These assumptions are not necessarily valid in general, but

will be a good approximation in many important classes of new physics frameworks. Let

us now show how Yij 6= (mi/v)�ij can arise in two qualitatively di↵erent categories of NP

models.

a. A single Higgs theory. Let us first explore the possibility that the Higgs is the only

field that causes EWSB. For simplicity let us also assume that at energies below ⇠ 200 GeV

the spectrum consists solely of the SM particles: three generations of quarks and leptons,

the SM gauge bosons and the Higgs at 125 GeV. Additional heavy fields (e.g. scalar or

fermionic partners which address the hierarchy problem) can be integrated out, so that we

can work in e↵ective field theory (EFT)—the e↵ective Standard Model. In addition to the

SM Lagrangian

LSM = f̄ j
Li /Df j

L + f̄ j
Ri /Df j

R �
⇥

�ij(f̄
i
Lf

j
R)H + h.c.

⇤

+DµH
†DµH � �H

⇣

H†H � v2

2

⌘

2

, (2)

there are then also higher dimensional terms due to the heavy degrees of freedom that were

integrated out:

�LY = ��0
ij

⇤2

(f̄ i
Lf

j
R)H(H†H) + h.c.+ · · · , (3)

Here we have written out explicitly only the terms that modify the Yukawa interactions.

We can truncate the expansion after the terms of dimension 6, since these already su�ce to

completely decouple the values of the fermion masses from the values of fermion couplings

to the Higgs boson (see also [15]). Additional dimension 6 operators involving derivatives

include

�LD =
�ij
L

⇤2

(f̄ i
L�

µf j
L)(H

†i
 !
DµH) +

�ij
R

⇤2

(f̄ i
R�

µf j
R)(H

†i
 !
DµH) + · · · , (4)

where (H†i
 !
DµH) ⌘ H†iDµH � (iDµH†)H. The couplings �0

ij are complex in general,

while the �ij
L,R are real. The derivative couplings do not give rise to fermion-fermion-Higgs

couplings after EWSB and are irrelevant for our analysis. In Eq. (4) there are in principle
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also terms of the form (f̄ i
L,Ri /Df j

L.R)H
†H, which, however, can be shown to be equivalent to

(3) by using equations of motion.

After electroweak symmetry breaking (EWSB) and diagonalization of the mass matrices,

one obtains the Yukawa Lagrangian in Eq. (1), with

p
2m = VL



�+
v2

2⇤2

�0
�

V †
R v ,

p
2Y = VL



�+ 3
v2

2⇤2

�0
�

V †
R , (5)

where the unitary matrices VL, VR are those which diagonalize the mass matrix, and v =

246 GeV. In the mass basis we can write

Yij =
mi

v
�ij +

v2p
2⇤2

�̂ij , (6)

where �̂ = VL�0VR. In the limit ⇤ ! 1 one obtains the SM, where the Yukawa matrix Y is

diagonal, Y v = m. For ⇤ of the order of the electroweak scale, on the other hand, the mass

matrix and the couplings of the Higgs to fermions can be very di↵erent as �̂ is in principle

an arbitrary non-diagonal matrix.

Taking the o↵ diagonal Yukawa couplings nonzero can come with a theoretical price.

Consider, for instance, a two flavor mass matrix involving ⌧ and µ. If the o↵-diagonal entries

are very large the mass spectrum is generically not hierarchical. A hierarchical spectrum

would require a delicate cancellation among the various terms in Eq. (5). Tuning is avoided

if [28]

|Y⌧µYµ⌧ | . mµm⌧

v2
, (7)

with similar conditions for the other o↵ diagonal elements. Even though we will keep this

condition in the back of our minds, we will not restrict the parameter space to fulfill it.

b. Models with several sources of EWSB: Let us now discuss the case where the Higgs

at 125 GeV is not the only scalar that breaks electroweak symmetry. The modification of

the above discussion is straightforward. The additional sources of EWSB are assumed to

be heavy and can thus still be integrated out. Their EWSB e↵ects can be described by a

spurion � that formally transforms under electroweak global symmetry and then obtains

a vacuum expectation value (vev), which breaks the electroweak symmetry. If � has the

quantum numbers (2, 1/2) under SU(2)L ⇥ U(1)Y it can contribute to quark and lepton

masses.2 This allows the Yukawa interactions Y of the 125 GeV Higgs to be misaligned with

2 A spurion which transforms as a triplet can also contribute to Majorana masses for neutrinos.
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the above discussion is straightforward. The additional sources of EWSB are assumed to

be heavy and can thus still be integrated out. Their EWSB e↵ects can be described by a

spurion � that formally transforms under electroweak global symmetry and then obtains

a vacuum expectation value (vev), which breaks the electroweak symmetry. If � has the

quantum numbers (2, 1/2) under SU(2)L ⇥ U(1)Y it can contribute to quark and lepton
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2 A spurion which transforms as a triplet can also contribute to Majorana masses for neutrinos.
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(same for any pair of fermions)

In an era of data, considerations of fine 
tuning are not of huge importance...

But we’ll keep it in the back of our mind.



Leptonic Flavor Violation

respect to the fermion mass matrix m in Eq. (1).

The simplest example for a full theory of this class is a type III two Higgs doublet model

(2HDM) where both Higgses obtain a vev and couple to fermions. In the full theory both

of the scalars then have a Lagrangian of the form (1)

LY = �mif̄
i
Lf

i
R � Y a

ij(f̄
i
Lf

j
R)h

a + h.c.+ · · · , (8)

where the index a runs over all the scalars (with Y a
ij imaginary for pseudoscalars), and mi

receives contributions from both vevs. In addition there is also a scalar potential which

mixes the two Higgses. Diagonalizing the Higgs mass matrix then also changes Y a
ij , but

removes the Higgs mixing. For our purposes it is simplest to work in the Higgs mass basis.

All the results for a single Higgs are then trivially modified, replacing our final expressions

below by a sum over several Higgses. For a large mass gap, where only one Higgs is light, the

contributions from the heavier Higgs are power suppressed, unless its flavor violating Yukawa

couplings are parametrically larger than those of the light Higgs. The contributions from

the heavy Higgs correspond to the higher dimensional operators discussed in the previous

paragraph. This example can be trivially generalized to models with many Higgs doublets.

We next derive constraints on flavor violating Higgs couplings and work out the allowed

branching fractions for flavor violation Higgs decays. In placing the bounds we will neglect

the FV contributions of the remaining states in the full theory. Our bounds thus apply

barring cancellations with these other terms.

III. LEPTONIC FLAVOR VIOLATING HIGGS DECAYS

The FV decays h ! eµ, e⌧, µ⌧ arise at tree level from the assumed flavor violating Yukawa

interactions, Eq. (1), where the relevant terms are explicitly

LY �� YeµēLµRh� Yµeµ̄LeRh� Ye⌧ ēL⌧Rh� Y⌧e⌧̄LeRh� Yµ⌧ µ̄L⌧Rh� Y⌧µ⌧̄LµRh+ h.c. .

(9)

The bounds on the FV Yukawa couplings are collected in Table I, where for simplicity of

presentation the flavor diagonal muon and tau Yukawa couplings,

LY � �Yµµµ̄LµRh� Y⌧⌧ ⌧̄L⌧Rh+ h.c. , (10)

6
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Figure 3: Diagram leading to muonium–antimuonium oscillations.
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Figure 4: A diagram contributing to the anomalous magnetic moment g � 2 of the muon through

FV couplings of the Higgs to ⌧µ.

where "X and #X are the spin orientations of particle X. We can work in the non-

relativistic limit here. For a contact interaction, the spatial wave function of muonium,

�
1

s = exp(�r/aM)/[⇡a3M ]1/2 only needs to be evaluated at the origin. (Here r is the

electron–antimuon distance and aM = (me +mµ)/(memµ↵) is the muonium Bohr radius.)

The resulting mass splitting between the two mass eigenstates of
the mixed M–M̄ system

is [34],

�M = 2 |M ¯MM | =
|Yµe + Y ⇤

eµ|2
2⇡a3m

2

h

,
(19)

and the time-integrated conversion probability is

P (M ! M̄) =

Z 1

0

dt�µ sin2(�M t) e�
�µt =

2

�2

µ/(�M)2 + 4
. (20)

The bound from the MACS experiment [33] then translates into |Yµe + Y ⇤
eµ| < 0.079.

D. Constraints from magnetic dipole moments

The CP conserving and CP violating parts of the diagram in Fig. 4 generate magnetic

and electric dipole moments of the muon, respectively.
Since the experimental value of the

11

muon g-2 :
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Figure 1: Diagrams contributing to the flavor violating decay ⌧ ! µ�, mediated by a Higgs boson

with flavor violating Yukawa couplings.
where the dim-5 electromagnetic penguin operators are

QL�,R� = e
8⇡2

m⌧

�

µ̄ �↵�PL,R⌧
�

F↵� ,
(12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop

diagrams, see Fig. 12 in Appendix A. The complete one loop and two loop expressions are

given in Appendix A.
In the approximation Yµµ ⌧ Y⌧⌧ , only the first of the one-loop diagrams in Fig. 1 is

relevant (in addition to the 2-loop diagrams). Using also mµ ⌧ m⌧ ⌧ mh and assuming

Yµµ, Y⌧⌧ to be real, the expressions for the one-loop Wilson coe�cients cL and cR simplify

to

c1loopL ' 1
12m2

h

Y⌧⌧Y ⇤
⌧µ

✓

� 4 + 3 log
m2

h

m2

⌧

◆

, c1loopR ' 1
12m2

h

Yµ⌧Y⌧⌧

✓

� 4 + 3 log
m2

h

m2

⌧

◆

. (13)

The 2-loop contributions are numerically

c2loopL = Y ⇤
⌧µ(�0.082Ytt + 0.11) 1

(125GeV)2
= 0.055Y ⇤

⌧µ
1

(125GeV)2
, (14)

where in the last step we used for the top Yukawa coupling Ytt = (Ytt)SM = m̄t/v = 0.67,

and we have normalized the results to mh for easier comparison. (By m̄t, we denote the top

quark mass parameter in the MS renormalization scheme, m̄t ' 164 GeV.) The analytical

form of the Wilson coe�cient can be found in Appendix A. The same result applies to

c2loopR with the replacement Y ⇤
⌧µ ! Yµ⌧ . The 2-loop contribution with the top quark in the

loop cancels to a good approximation with the W contribution. The end result is thus very

sensitive to the precise value of Ytt. For Ytt ' m̄t/v the 2-loop contribution is about four8

tau to mu gamma (1-loop):
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Figure 12: The two loop diagrams contributing to ⌧ ! µ�.
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the arguments are zth = m2

t/m
2

H, zWh = m2

W/m2

H, while the prefactor is

 =
↵

16⇡

g2

m2

W

v

m⌧

=
↵

2
p
2⇡

GF

v

m⌧

.
(A9)

The contributions from the 2-loop diagrams with an internal Z are smaller as they are

suppressed by 1� 4s2W ' 0.08. They are

�ctZL = �6Qt

(1� 4s2W )(1� 4Qts
2

W )

16s2Wc2W

v

mt

Y ⇤
⌧µ⇥

⇥
⇥

Re(Ytt)f̃(zth, ztZ)� iIm(Ytt)g̃(zth, ztZ)
⇤

,

(A10)

�cWZ
L

= 
1� 4s2W
4s2W

Y ⇤
⌧µ

n

1

2

(5� t2W )f̃(zth, zWZ) +
1

2

(7� 3t2W )g̃(zth, zWZ)

+ 3

4

g(zth) +
3

4

h(zth) +
1

4

zth
(1� t2W )

⇥

f̃(zth, zWZ)� g̃(zth, zWZ)
⇤

o

,

(A11)

with sW ⌘ sin ✓W , cW ⌘ cos ✓W , tW ⌘ tan ✓W , ztz ⌘ m2

t/m
2

Z, zWZ ⌘ m2

W/m2

Z and the loop

32

tau to mu gamma (2-loop):
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+ µ

h

µ⌧

�

µ
Y ⇤
⌧µPL + Yµ⌧PR Y ⇤

µµPL + YµµPR

Figure 1: Diagrams contributing to the flavor violating decay ⌧ ! µ�, mediated by a Higgs boson

with flavor violating Yukawa couplings.
where the dim-5 electromagnetic penguin operators are

QL�,R� = e
8⇡2

m⌧

�

µ̄ �↵�PL,R⌧
�

F↵� ,
(12)

with ↵, � the Lorentz indices and F↵� the electromagnetic field strength tensor. The Wilson

coe�cients cL and cR receive contributions from the two 1-loop diagrams shown in Fig. 1

(with the first one dominant), and a comparable contribution from Barr-Zee type 2-loop

diagrams, see Fig. 12 in Appendix A. The complete one loop and two loop expressions are

given in Appendix A.
In the approximation Yµµ ⌧ Y⌧⌧ , only the first of the one-loop diagrams in Fig. 1 is

relevant (in addition to the 2-loop diagrams). Using also mµ ⌧ m⌧ ⌧ mh and assuming

Yµµ, Y⌧⌧ to be real, the expressions for the one-loop Wilson coe�cients cL and cR simplify

to

c1loopL ' 1
12m2

h

Y⌧⌧Y ⇤
⌧µ

✓

� 4 + 3 log
m2

h

m2

⌧

◆

, c1loopR ' 1
12m2

h

Yµ⌧Y⌧⌧

✓

� 4 + 3 log
m2

h

m2

⌧

◆

. (13)

The 2-loop contributions are numerically

c2loopL = Y ⇤
⌧µ(�0.082Ytt + 0.11) 1

(125GeV)2
= 0.055Y ⇤

⌧µ
1

(125GeV)2
, (14)

where in the last step we used for the top Yukawa coupling Ytt = (Ytt)SM = m̄t/v = 0.67,

and we have normalized the results to mh for easier comparison. (By m̄t, we denote the top

quark mass parameter in the MS renormalization scheme, m̄t ' 164 GeV.) The analytical

form of the Wilson coe�cient can be found in Appendix A. The same result applies to

c2loopR with the replacement Y ⇤
⌧µ ! Yµ⌧ . The 2-loop contribution with the top quark in the

loop cancels to a good approximation with the W contribution. The end result is thus very

sensitive to the precise value of Ytt. For Ytt ' m̄t/v the 2-loop contribution is about four8

tau to mu gamma (1-loop):

µ

h �, Z

tt

⌧

�

µ

µ

h �, Z

WW

⌧

�

µ

µ

h �, Z

W W

⌧

�

µ

µ

h

µ

Z

µ

⌧

�

µ

Figure 12: The two loop diagrams contributing to ⌧ ! µ�.

g(z) =
1

2
z

Z

1

0

dx
1

x(1� x)� z
log

x(1� x)

z
,

(A7)

h(z) = z2
@

@z

⇣g(z)

z

⌘

=
z

2

Z

1

0

dx

z � x(1� x)

h

1 +
z

z � x(1� x)
log

x(1� x)

z

i

, (A8)

the arguments are zth = m2

t/m
2

H, zWh = m2

W/m2

H, while the prefactor is

 =
↵

16⇡

g2

m2

W

v

m⌧

=
↵

2
p
2⇡

GF

v

m⌧

.
(A9)

The contributions from the 2-loop diagrams with an internal Z are smaller as they are

suppressed by 1� 4s2W ' 0.08. They are

�ctZL = �6Qt

(1� 4s2W )(1� 4Qts
2

W )

16s2Wc2W

v

mt

Y ⇤
⌧µ⇥

⇥
⇥

Re(Ytt)f̃(zth, ztZ)� iIm(Ytt)g̃(zth, ztZ)
⇤

,

(A10)

�cWZ
L

= 
1� 4s2W
4s2W

Y ⇤
⌧µ

n

1

2

(5� t2W )f̃(zth, zWZ) +
1

2

(7� 3t2W )g̃(zth, zWZ)

+ 3

4

g(zth) +
3

4

h(zth) +
1

4

zth
(1� t2W )

⇥

f̃(zth, zWZ)� g̃(zth, zWZ)
⇤

o

,

(A11)

with sW ⌘ sin ✓W , cW ⌘ cos ✓W , tW ⌘ tan ✓W , ztz ⌘ m2

t/m
2

Z, zWZ ⌘ m2

W/m2

Z and the loop
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tau to mu gamma (2-loop):

h

N

µ

N

e

Y ⇤
µePL + YeµPR

+

µ

h

µ

�

N

µ

N

eY ⇤
µµPL + YµµPR Y ⇤

µePL + YeµPR

+

e

h

e

�

N

µ

N

eY ⇤
µePL + YeµPR Y ⇤

eePL + YeePR

Figure 5: Diagrams contributing to µ ! e conversion in nuclei via the flavor violating Higgs

Yukawa couplings Yµe and Yeµ.

e↵ective Lagrangian is

L
E

D

M

= � i

2
dµ

�

µ̄�↵��5µ
�

F↵� ,

(24)

with the electric dipole moment given by (neglecting the terms suppressed by mµ/m⌧ or

m⌧/mh)

dµ ' � Im(Yµ⌧Y⌧µ)
16⇡2

em⌧

2m2

h

⇣

2 log
m2

h

m2

⌧
� 3

⌘

.
(25)

The experimental constraint �10⇥ 10�2

0 e cm < dµ < 8⇥ 10�2

0 e cm [29] translates into the

rather weak limit �0.8 . Im(Yµ⌧Y⌧µ) . 1.0.A similar diagram with electrons instead of muons on the external legs also contributes to

the electron EDM, de. The experimental constraint |de| < 0.105⇥ 10�2

6e cm [29] translates

into |Im(Ye⌧Y⌧e)| < 1.1⇥10�8 for a tau running in the loop, and into |Im(YeµYµe)| < 9.8⇥10�8

for a muon running in the loop.

F. Constraints from µ ! e conversion in nucleiVery stringent constraints on the FV Yukawa couplings Yµe and Yeµ come from experi-

mental searches for µ ! e conversion in nuclei. The relevant diagrams with one insertion of

the FV Yukawa coupling are shown in Fig. 5. An e↵ective scalar interaction arises already

at tree level from the first diagram in Fig. 5, while vector and electromagnetic dipole contri-

butions arise at one loop level. We give complete expressions for the tree level and one loop

contributions in Appendix A 3. There are also two-loop contributions, similar to the ones13

mu to e conversion:
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Figure 6: Constraints on the flavor violating Yukawa couplings |Ye⌧ |, |Y⌧e| (upper left panel), |Yeµ|,
|Yµe| (upper right panel) and |Yµ⌧ |, |Y⌧µ| (lower panel) of a 125 GeV Higgs boson. The diagonal

Yukawa couplings are approximated by their SM values. Thin blue dashed lines are contours of

constant BR for h ! ⌧e, h ! µe and h ! ⌧µ, respectively, whereas thick blue lines are the

LHC limits derived in Sec. VA. (These limits could be greatly improved with dedicated searches

on existing LHC data, see Sec. VC.) Shaded regions show the constraints discussed in Sec. III

as indicated in the plots. Note that g � 2 [EDM] searches (diagonal black dotted lines) are only

sensitive to parameter combinations of the form Re(Y↵�Y�↵) [Im(Y↵�Y�↵)]. We also show limits

from a combination of g � 2 and EDM searches with marginalization over the complex phases

of the Yukawa couplings (green shaded regions). Note that (g � 2)µ provides upper and lower

limits (as indicated by the double-sided arrows in the lower panel) if the discrepancy between the

measurement and the SM prediction [30, 35] is taken into account. The thin red dotted lines show

rough naturalness limits YijY ji . mimj/v2 (see Sec. II).
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Figure 6: Constraints on the flavor violating Yukawa couplings |Ye⌧ |, |Y⌧e| (upper left panel), |Yeµ|,
|Yµe| (upper right panel) and |Yµ⌧ |, |Y⌧µ| (lower panel) of a 125 GeV Higgs boson. The diagonal

Yukawa couplings are approximated by their SM values. Thin blue dashed lines are contours of

constant BR for h ! ⌧e, h ! µe and h ! ⌧µ, respectively, whereas thick blue lines are the

LHC limits derived in Sec. VA. (These limits could be greatly improved with dedicated searches

on existing LHC data, see Sec. VC.) Shaded regions show the constraints discussed in Sec. III

as indicated in the plots. Note that g � 2 [EDM] searches (diagonal black dotted lines) are only

sensitive to parameter combinations of the form Re(Y↵�Y�↵) [Im(Y↵�Y�↵)]. We also show limits

from a combination of g � 2 and EDM searches with marginalization over the complex phases

of the Yukawa couplings (green shaded regions). Note that (g � 2)µ provides upper and lower

limits (as indicated by the double-sided arrows in the lower panel) if the discrepancy between the

measurement and the SM prediction [30, 35] is taken into account. The thin red dotted lines show

rough naturalness limits YijY ji . mimj/v2 (see Sec. II).
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Figure 6: Constraints on the flavor violating Yukawa couplings |Ye⌧ |, |Y⌧e| (upper left panel), |Yeµ|,
|Yµe| (upper right panel) and |Yµ⌧ |, |Y⌧µ| (lower panel) of a 125 GeV Higgs boson. The diagonal

Yukawa couplings are approximated by their SM values. Thin blue dashed lines are contours of

constant BR for h ! ⌧e, h ! µe and h ! ⌧µ, respectively, whereas thick blue lines are the

LHC limits derived in Sec. VA. (These limits could be greatly improved with dedicated searches

on existing LHC data, see Sec. VC.) Shaded regions show the constraints discussed in Sec. III

as indicated in the plots. Note that g � 2 [EDM] searches (diagonal black dotted lines) are only

sensitive to parameter combinations of the form Re(Y↵�Y�↵) [Im(Y↵�Y�↵)]. We also show limits

from a combination of g � 2 and EDM searches with marginalization over the complex phases

of the Yukawa couplings (green shaded regions). Note that (g � 2)µ provides upper and lower

limits (as indicated by the double-sided arrows in the lower panel) if the discrepancy between the

measurement and the SM prediction [30, 35] is taken into account. The thin red dotted lines show

rough naturalness limits YijY ji . mimj/v2 (see Sec. II).
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Figure 6: Constraints on the flavor violating Yukawa couplings |Ye⌧ |, |Y⌧e| (upper left panel), |Yeµ|,
|Yµe| (upper right panel) and |Yµ⌧ |, |Y⌧µ| (lower panel) of a 125 GeV Higgs boson. The diagonal

Yukawa couplings are approximated by their SM values. Thin blue dashed lines are contours of

constant BR for h ! ⌧e, h ! µe and h ! ⌧µ, respectively, whereas thick blue lines are the

LHC limits derived in Sec. VA. (These limits could be greatly improved with dedicated searches

on existing LHC data, see Sec. VC.) Shaded regions show the constraints discussed in Sec. III

as indicated in the plots. Note that g � 2 [EDM] searches (diagonal black dotted lines) are only

sensitive to parameter combinations of the form Re(Y↵�Y�↵) [Im(Y↵�Y�↵)]. We also show limits

from a combination of g � 2 and EDM searches with marginalization over the complex phases

of the Yukawa couplings (green shaded regions). Note that (g � 2)µ provides upper and lower

limits (as indicated by the double-sided arrows in the lower panel) if the discrepancy between the

measurement and the SM prediction [30, 35] is taken into account. The thin red dotted lines show

rough naturalness limits YijY ji . mimj/v2 (see Sec. II).
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vs.
The decays of Higgs to        and         have the 
same final state.

        searches can place a bound on              . 

The kinematics are different:  

⌧µ ⌧⌧
⌧µ ⌧⌧µ

⌧⌧µ h ! ⌧µ

µ ⌫
⌫

⌫
⌧h

µ

⌫
⌧h

a much harder 
muon.



Mass Reconstruction
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* two possibilities:

1. A much higher mass will 

be reconstructed.

2. They’ll say: “this does not 

look like h -> tau tau” and 

throw the event away.



Mass Reconstruction
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the fully leptonic ATLAS search (7 TeV only) used 
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Mass Reconstruction
We cannot use most               searches for      . 

There is one exception:                                      
the fully leptonic ATLAS search (7 TeV only) used 
the collinear approximation:

h ! ⌧⌧ ⌧µ

µ ⌫
⌫

⌫
⌧h

Good news! 
This approximation is 
also valid for             . h ! ⌧µ

µ

⌫
⌧h

(more model independent.    
maybe we should do generic 
collinear mass bump hunts?)



ALTAS Limit
We recast the ATLAS leptonic search (VBF):
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Figure 9: Background rates and h ! ⌧µ, h ! ⌧⌧ signal rates in the ATLAS search for fully

leptonic h ! ⌧⌧ decays, optimized for Higgs production in vector boson fusion. The backgrounds

expected by ATLAS [46] are shown in yellow, with grey bands for the systematic uncertainty. Our

estimates for the ⌧µ signal at
q

Y 2

⌧µ + Y 2

µ⌧ = m⌧/v (red) and the SM h ! ⌧⌧ signal (black), which

we include for reference, are scaled by a factor 5 for illustrative purposes only.

use the current search for h ! ⌧⌧ to produce an interesting bound on BR(h ! ⌧µ).

In Fig. 9 we show the background distribution for the collinear mass along with the

expected shape of a LFV h ! ⌧µ signals (scaled by a factor five for illustrative purposes

only), and we compare to the observed data. The background expectation is taken from [46].

The backgrounds and the data in Fig. 9 includes events for all three combinations of lepton

flavor (even though our ⌧µ signal does not induce ee events) because only this information is

available from ATLAS. For validation purposes, we have also simulated SM h ! ⌧⌧ events,

and comparing the rate and shape to Ref. [46] we find agreement to within 20%.

The ⌧µ signal is predominantly concentrated in the 120–160 GeV bin, so that the expected

and observed limits on the flavor violating Yukawa couplings can be derived from a simple

single-bin analysis. If we denote the number of expected background events by B = 4.7, the

number of expected signal events for a given set of Yukawa couplings by S, and the number

of observed events by O = 2, the expected (observed) one-sided 95% C.L. frequentist limit

on S is defined by the requirement that the probability to observe  B ( O) events is

5%. The relevant probability distribution of the data here is a Poisson distribution with
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signal falls in one mass bin.



We translate these to limits on FV Yukawas:

There is plenty of room for improvement:
separate lepton flavors.

cuts one collinear approxination parameters had    
tau-tau in mind.

Even better, do a dedicated search... 

ATLAS Limits

95% C.L. limit BR(h ! ⌧µ)
q

Y 2

⌧µ + Y 2

µ⌧ BR(h ! ⌧e)
p

Y 2

⌧e + Y 2

e⌧

expected 28% 0.018 27% 0.017

observed 13% 0.011 13% 0.011

Table III: Expected and observed 95% C.L. limits on the h ! ⌧µ and h ! ⌧e branching ratios,

as well as limits on the corresponding Yukawa couplings. The limits are derived by assuming the

SM Higgs production rates and recasting the search for SM h ! ⌧⌧ ! 2`+ 2⌫ decays in the VBF

channel from [46].

mean B + S. We can also include the systematic uncertainty in the 120–160 GeV bin,

which is �
sys

' ±0.99, in a conservative way by instead using a Poisson distribution with

mean B + S ��
sys

. Assuming the Higgs is produced with the Standard Model rates, this

procedure leads to the bound on BR(h ! ⌧µ) and the analogous bound on BR(h ! ⌧e)

shown in Table III (see also Figure 6).

B. Comparison of h ! ⌧µ to h ! ⌧⌧

We now discuss the experimental di↵erences and similarities between h ! ⌧⌧ and h ! ⌧µ

decays to determine an optimized search strategy for the latter. We focus here on h !
⌧
had

⌧µ,where ⌧µ denotes a ⌧ that decays into a muon and two neutrinos and ⌧
had

denotes

a ⌧ decaying hadronically. This channel is actively searched for, both at ATLAS [46] and

at CMS [23], and is the most sensitive channel in the CMS h ! ⌧⌧ search. (In ATLAS,

fully leptonic ⌧ events provide similar sensitivity to semi-hadronic ones.) It will also be the

channel that we will devise a dedicated search for in the next subsection.

There are a few notable di↵erences between the h ! ⌧
had

⌧µ and h ! ⌧
had

µ decay channels:

• Branching Ratios. The branching fraction for h ! ⌧
had

⌧µ is 2⇥BR(h ! ⌧⌧)⇥BR(⌧ !
had)⇥ BR(⌧ ! µ), whereas for h ! ⌧

had

µ it is simply BR(h ! ⌧µ)⇥ BR(⌧ ! had).

For Y⌧µ ⇠ Y⌧⌧ the signal for h ! ⌧
had

µ is thus a factor of ⇠ 2.9 larger.

• Lepton Flavor. The flavor violating decays can lead to di↵erent rates for muons and

electrons in the final state, whereas ⌧⌧ decays lead to equal µ and e rates. Thus, if the

various lepton flavor combinations were studied separately in the h ! ⌧⌧ analyses,

24



A Dedicated Search
Notice, in       events there is only one neutrino. 

If we assume       we can reconstruct the event   
(up to a twofold ambiguity).

We can get a narrow                                                               
mass peak.

Also, some of the “standard” tau-tau cuts are not 
well-suited for tau-mu (e.g. transverse mass cut).

⌧µ

⌧µ

} tau mass
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A Dedicated Search
A CMS-like VBF analysis:     Looks promising!
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Figure 10: Signal and background rates for h ! ⌧µ events in a CMS-like search (see text) as

a function of the reconstructed µ–⌧ invariant mass m⌧µ for a vector boson fusion-enriched event

sample. In the left panel the transverse mass cut mT (µ,pmiss,T ) < 40 GeV is included, while in

the right panel it is omitted. The QCD multijet background and the small tt̄ background, are not

included. The value chosen for
q

Y 2

⌧µ + Y 2

µ⌧ is well within the region allowed by other searches for

flavor violation in the µ–⌧ system (see Sec. III).
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Figure 11: The muon transverse mass distribution for the backgrounds and for the ⌧
had

µ signal.
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CMS-like. CMS-like w/o mT cut.
(May be worth while, depending 

on what other BG’s do)



Conclusions
We should look for the Higgs even where we did 
not expect it!

Flavor violating decays are very constrained 
in some channels.

Present an opportunity for LHC in others. 

LHC already has the best bound on              .    
Dedicated searches can do even better.

h ! ⌧µ



Deleted scenes
magnetic dipole moment, gµ � 2, is above the SM prediction at more than 3�, also the

preferred value for the flavor violating Higgs couplings will be nonzero.

The FV contribution to (g � 2)µ due to the ⌧ -Higgs loop in Fig. 4 is (neglecting terms

suppressed by mµ/m⌧ or m⌧/mh)

aµ ⌘ gµ � 2

2
' Re(Yµ⌧Y⌧µ)

8⇡2

mµm⌧

2m2

h

⇣

2 log
m2

h

m2

⌧

� 3
⌘

. (21)

The discrepancy between the measured value of aµ and the one predicted by the Standard

Model [30, 35],

�aµ ⌘ aexpµ � aSMµ = (2.87± 0.63± 0.49)⇥ 10�9, (22)

could thus be explained if there are FV Higgs interactions of the size

Re(Yµ⌧Y⌧µ) ' (2.7± 0.75)⇥ 10�3 , (23)

(for the definition of the Yukawa couplings see Eq. (1)). This explanation of �aµ requires

Yµ⌧ ⇠ Yµ⌧ to be a factor of a few bigger than the SM value of the diagonal Yukawa, m⌧/v,

and is in tension with limits from ⌧ ! µ�3. It is in further tension with the LHC limit

extracted in Sec. V of this paper.

The measured �aµ could in principle also be explained by an enhanced flavor conserving

coupling of the muon to the Higgs if Yµµ ⇠ 0.15 ⇠ 280mµ/v. However, in this case h ! µµ

decays would be enhanced to a level that is already ruled out by the searches at the LHC:

From the search for the MSSM neutral Higgs boson one obtains a bound �(gg ! h ! µµ) .
30⇥ �(gg ! h ! µµ)

SM

or Yµµ . 5.5mµ/v [36].

E. Constraints from electric dipole moments

If the flavor violating Yukawa couplings in Fig. 4 are complex, the diagram shown there

generates also an electric dipole moment (EDM) for the muon. The relevant term in the

3 If the two loop contribution to ⌧ ! µ� is suppressed, e.g. due to a modification of the top Yukawa

coupling, which could lead to significant cancellation between the 2-loop top and W diagrams, there is

a small region of parameter space in which flavor violating Higgs couplings could explain the (g � 2)µ
discrepancy without being ruled out by the one loop ⌧ ! µ� constraint. We will, however, see below that

even this case is disfavored by the LHC limit derived in this paper (see Sec. VA).
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NP for modified 
Higgs Couplings

Flavor 
Violation

Flavor Violating 
Higgs decays+ =

Recipe:
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GeV
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July 4th

Holy Cow! We found the freakin’ Higgs! 

Open Questions:
How does the Higgs we found fit in?
Is it one of several Higgses?
Is it a composite? 
Is there SUSY?

Answers can be had:
by finding some BSM physics.

by finding deviations in Higgs couplings            (or both..).

Many BSM frameworks can lead 

to modified Higgs couplings



LFV Summary
Channel Coupling Bound

µ ! e�
p|Yµe|2 + |Yeµ|2 < 3.6⇥ 10�6

µ ! 3e
p|Yµe|2 + |Yeµ|2 < 0.31

electron g � 2 Re(YeµYµe) �0.019 . . . 0.026

electron EDM |Im(YeµYµe)| < 9.8⇥ 10�8

µ ! e conversion
p|Yµe|2 + |Yeµ|2 < 4.6⇥ 10�5

M -M̄ oscillations |Yµe + Y ⇤
eµ| < 0.079

⌧ ! e�
p|Y⌧e|2 + |Ye⌧ |2 < 0.014

⌧ ! eµµ
p|Y⌧e|2 + |Ye⌧ |2 < 0.66

electron g � 2 Re(Ye⌧Y⌧e) [�2.1 . . . 2.9]⇥ 10�3

electron EDM |Im(Ye⌧Y⌧e)| < 1.1⇥ 10�8

⌧ ! µ�
p|Y⌧µ|2 + |Yµ⌧ |2 < 1.6⇥ 10�2

⌧ ! 3µ
q

|Y 2

⌧µ + |Yµ⌧ |2 < 0.52

muon g � 2 Re(Yµ⌧Y⌧µ) (2.7± 0.75)⇥ 10�3

muon EDM Im(Yµ⌧Y⌧µ) �0.8 . . . 1.0

µ ! e�
�|Y⌧µY⌧e|2 + |Yµ⌧Ye⌧ |2

�

1/4
< 3.4⇥ 10�4

Table I: Constraints on flavor violating Higgs couplings to e, µ, ⌧ for a Higgs mass mh = 125 GeV

and assuming that the flavor diagonal Yukawa couplings equal the SM values (see text for details).

For the muon magnetic dipole moment we show the value of the couplings required to explain the

observed �aµ (if this is used only as an upper bound one has
p

Re(Yµ⌧Y⌧µ) < 0.065 at 95%CL).

were set equal to their respective SM values
�

Yµµ

�

SM

= mµ/v,
�

Y⌧⌧

�

SM

= m⌧/v. Similar

bounds on FV Higgs couplings to quarks are collected in Table II.

We first give more details on how the bounds in Tables I and II were obtained and then

move on to predictions for the allowed sizes of the FV Higgs decays.

A. Constraints from ⌧ ! µ�, ⌧ ! e� and µ ! e�

The e↵ective Lagrangian for the ⌧ ! µ� decay is given by

L
e↵

= cLQL� + cRQR� + h.c. , (11)

7

many 
processes to 
consider...



Composite Higgs (or any a threshold)

In composite Higgs models (Kaplan-Georgi, Little, Twin, RS..)   
there is a strong coupling scale,    ,  near by.

Add operators suppressed by    :

⇤

mf = (�f +
v2

⇤2
)v yf = �f +

3v2

⇤2

hHi = v
L = �fHf̄f +

(H†H)Hf̄f

⇤2

⇤
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Composite Higgs (or any a threshold)

In composite Higgs models (Kaplan-Georgi, Little, Twin, RS..)   
there is a strong coupling scale,    ,  near by.

Add operators suppressed by    :

⇤

mf = (�f +
v2

⇤2
)v yf = �f +

3v2

⇤2

hHi = v
L = �fHf̄f +

(H†H)Hf̄f

⇤2

⇤

yf 6= mf

v
Yukawa and mass are not related,           .



4th Generation
Take a generic threshold of (vector-like) fermions.

l E

L

e
H

H

H

Effectively generates the same operator.

L = �fHf̄f +
(H†H)Hf̄f

⇤2



2 Higgs Doublet Model
Take for example at 2HDM:

Fermion & W/Z masses can come from two Higges

L = �1
fH1f̄f + �2

fH2f̄f

mf = �1
fv1 + �2

fv2

yf = �1
f cos↵+ �2

f sin↵



2 Higgs Doublet Model
Take for example at 2HDM:

Fermion & W/Z masses can come from two Higges
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fH1f̄f + �2

fH2f̄f

mf = �1
fv1 + �2

fv2

yf = �1
f cos↵+ �2
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yf 6= mf

v
Yukawa and mass are not related,           .



What Else?
In addition to precisely measuring the “normal” Higgs 
couplings, we can look for Higgs in places we 
didn’t expect.

This can be striking evidence for NP.

For example: assume     mass comes purely from 
higher-dimensional operator-

mµ = (�µ +
v2

⇤2
)v yµ = �µ +

3v2

⇤2

µ

muon yukawa can be 3 time larger 
than SM expectation. 

Can probably be probed now!
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Flavor
Unexpected final states:                                    
Flavor violating decays.

In the SM the Higgs-fermion couplings define flavor.  
Yukawa coupling are obviously flavor conserving.

New physics thresholds do not need to 
respect flavor (so long as experimental constraints are respected). 

NP for modified 
Higgs Couplings

Flavor 
Violation

Flavor Violating 
Higgs decays+ =



Outline
Framework for FV Higgs couplings.

Constrains on FV Higgs couplings-
to leptons.  

to quarks.

FV violating Higgs at the LHC: Higgs to tau-mu.
current limits

a dedicated search

Top to Higgs Charm

Conclusions.



Dipole Moments
Huh? That’s not flavor violating!

But it’s chirality violating,                     .                                         
Largest for 3rd gen.     

h

µ+

e�

e+

µ�

Y ⇤
eµPL + YµePR

Y ⇤
eµPL + YµePR

Figure 3: Diagram leading to muonium–antimuonium oscillations.

⌧

h

⌧µ

�

µ
Y ⇤
µ⌧PL + Y⌧µPR Y ⇤

⌧µPL + Yµ⌧PR

Figure 4: A diagram contributing to the anomalous magnetic moment g � 2 of the muon through

FV couplings of the Higgs to ⌧µ.

where "X and #X are the spin orientations of particle X. We can work in the non-

relativistic limit here. For a contact interaction, the spatial wave function of muonium,

�
1s = exp(�r/aM)/[⇡a3M ]1/2 only needs to be evaluated at the origin. (Here r is the

electron–antimuon distance and aM = (me +mµ)/(memµ↵) is the muonium Bohr radius.)

The resulting mass splitting between the two mass eigenstates of the mixed M–M̄ system

is [34],

�M = 2 |M
¯MM | = |Yµe + Y ⇤

eµ|2
2⇡a3m2

h

, (19)

and the time-integrated conversion probability is

P (M ! M̄) =

Z 1

0

dt�µ sin2(�M t) e��µt =
2

�2

µ/(�M)2 + 4
. (20)

The bound from the MACS experiment [33] then translates into |Yµe + Y ⇤
eµ| < 0.079.

D. Constraints from magnetic dipole moments

The CP conserving and CP violating parts of the diagram in Fig. 4 generate magnetic

and electric dipole moments of the muon, respectively. Since the experimental value of the

11

µ̄L�
µ⌫µRFµ⌫

For muon g-2 it  “pays” 
to go to tau and back.

magnetic dipole moment, gµ � 2, is above the SM prediction at more than 3�, also the

preferred value for the flavor violating Higgs couplings will be nonzero.

The FV contribution to (g � 2)µ due to the ⌧ -Higgs loop in Fig. 4 is (neglecting terms

suppressed by mµ/m⌧ or m⌧/mh)

aµ ⌘ gµ � 2

2
' Re(Yµ⌧Y⌧µ)

8⇡2

mµm⌧

2m2

h

⇣

2 log
m2

h

m2

⌧

� 3
⌘

. (21)

The discrepancy between the measured value of aµ and the one predicted by the Standard

Model [30, 35],

�aµ ⌘ aexpµ � aSMµ = (2.87± 0.63± 0.49)⇥ 10�9, (22)

could thus be explained if there are FV Higgs interactions of the size

Re(Yµ⌧Y⌧µ) ' (2.7± 0.75)⇥ 10�3 , (23)

(for the definition of the Yukawa couplings see Eq. (1)). This explanation of �aµ requires

Yµ⌧ ⇠ Yµ⌧ to be a factor of a few bigger than the SM value of the diagonal Yukawa, m⌧/v,

and is in tension with limits from ⌧ ! µ�3. It is in further tension with the LHC limit

extracted in Sec. V of this paper.

The measured �aµ could in principle also be explained by an enhanced flavor conserving

coupling of the muon to the Higgs if Yµµ ⇠ 0.15 ⇠ 280mµ/v. However, in this case h ! µµ

decays would be enhanced to a level that is already ruled out by the searches at the LHC:

From the search for the MSSM neutral Higgs boson one obtains a bound �(gg ! h ! µµ) .
30⇥ �(gg ! h ! µµ)

SM

or Yµµ . 5.5mµ/v [36].

E. Constraints from electric dipole moments

If the flavor violating Yukawa couplings in Fig. 4 are complex, the diagram shown there

generates also an electric dipole moment (EDM) for the muon. The relevant term in the

3 If the two loop contribution to ⌧ ! µ� is suppressed, e.g. due to a modification of the top Yukawa

coupling, which could lead to significant cancellation between the 2-loop top and W diagrams, there is

a small region of parameter space in which flavor violating Higgs couplings could explain the (g � 2)µ
discrepancy without being ruled out by the one loop ⌧ ! µ� constraint. We will, however, see below that

even this case is disfavored by the LHC limit derived in this paper (see Sec. VA).
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times as large as the 1-loop contribution, while for other values of Ytt (e.g., Ytt ' �mt/v)

the 2-loop contribution can be an order of magnitude larger.
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Using a Higgs mass mh = 125 GeV and assuming Y⌧⌧ = m⌧/v, Ytt = m̄t/v, we can

then translate the experimental bound BR(⌧ ! µ�) < 4.4 ⇥ 10�8 [29] into a constraint
p|Y⌧µ|2 + |Yµ⌧ |2 < 1.6 ⇥ 10�2 (see Table I). The bound is relaxed if Y⌧⌧ and/or Ytt are

smaller than their SM values.

The expressions for µ ! e� and ⌧ ! e� are obtained in an analogous way with the

obvious replacements (⌧ ! µ, µ ! e for the first and µ ! e for the second in Eqs. (12),

(13), (14), (15)). The experimental bound BR(µ ! e�) < 2.4 · 10�12 [29] then trans-

lates to
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As before, c1loopR is obtained by replacing Y ⇤
µ⌧Y

⇤
⌧e by Y⌧µYe⌧ . The 2-loop contribution is propor-

tional to Yµe and Yeµ. Setting them to zero, one obtains a bound
�|Y⌧µY⌧e|2+ |Yµ⌧Ye⌧ |2

�

1/4
<

3.4⇥ 10�4.

B. Constraints from ⌧ ! 3µ, ⌧ ! eµµ, µ ! 3e

The tree level diagram in Fig. 2, with a single insertion of the flavor violating Yukawa

coupling Y⌧µ, can generate the decay ⌧ ! 3µ. The decay width is given by

�(⌧ ! 3µ) =
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, (17)

where we neglected the terms additionally suppressed by the muon mass. The experimental

bound BR(⌧ ! 3µ) < 2.1 ⇥ 10�8 [30], translates into a constraint
q

|Y 2

⌧µ + |Yµ⌧ |2 < 0.52
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This is weaker than muon g-2! 
But..
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p|Y⌧µ|2 + |Yµ⌧ |2 < 1.6 ⇥ 10�2 (see Table I). The bound is relaxed if Y⌧⌧ and/or Ytt are
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The contributions from the 2-loop diagrams with an internal Z are smaller as they are

suppressed by 1� 4s2W ' 0.08. They are
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with sW ⌘ sin ✓W , cW ⌘ cos ✓W , tW ⌘ tan ✓W , ztz ⌘ m2

t/m
2

Z , zWZ ⌘ m2

W/m2

Z and the loop
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             Conversion
In a similar fashion we get                  constraints.

But for the        system we also consider              
conversion:  
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Figure 5: Diagrams contributing to µ ! e conversion in nuclei via the flavor violating Higgs

Yukawa couplings Yµe and Yeµ.

e↵ective Lagrangian is

L
EDM

= � i

2
dµ

�

µ̄�↵��5µ
�

F↵� , (24)

with the electric dipole moment given by (neglecting the terms suppressed by mµ/m⌧ or

m⌧/mh)

dµ ' �Im(Yµ⌧Y⌧µ)

16⇡2

em⌧

2m2

h

⇣

2 log
m2

h

m2

⌧

� 3
⌘

. (25)

The experimental constraint �10⇥ 10�20 e cm < dµ < 8⇥ 10�20 e cm [29] translates into the

rather weak limit �0.8 . Im(Yµ⌧Y⌧µ) . 1.0.

A similar diagram with electrons instead of muons on the external legs also contributes to

the electron EDM, de. The experimental constraint |de| < 0.105⇥ 10�26e cm [29] translates

into |Im(Ye⌧Y⌧e)| < 1.1⇥10�8 for a tau running in the loop, and into |Im(YeµYµe)| < 9.8⇥10�8

for a muon running in the loop.

F. Constraints from µ ! e conversion in nuclei

Very stringent constraints on the FV Yukawa couplings Yµe and Yeµ come from experi-

mental searches for µ ! e conversion in nuclei. The relevant diagrams with one insertion of

the FV Yukawa coupling are shown in Fig. 5. An e↵ective scalar interaction arises already

at tree level from the first diagram in Fig. 5, while vector and electromagnetic dipole contri-

butions arise at one loop level. We give complete expressions for the tree level and one loop

contributions in Appendix A 3. There are also two-loop contributions, similar to the ones
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Meson Mixing
Meson mixing’s powerful.
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Figure 7: Two representative diagrams through which flavor violating Higgs Yukawa couplings can

contribute to neutral meson mixing.

the reach of the LHC as we shall show in Sec. V. The allowed sizes of these two decay widths

are comparable to the sizes of decay widths into nonstandard decay channels (such as the

invisible decay width) that are allowed by global fits [38]. If there is no significant negative

contribution to Higgs production through gluon fusion, one has BR(h ! invisible) . 20%,

while allowing for arbitrarily large modifications of gluon and photon couplings to the Higgs

constrain BR(h ! invisible) . 65% [38]. These two bounds apply without change also to

BR(h ! ⌧µ), BR(h ! ⌧e) and BR(h ! eµ).

In contrast to decays involving a ⌧ lepton, the branching ratio for h ! eµ is extremely

well constrained by µ ! e� and µ ! e conversion bounds, and is required to be below

BR(h ! eµ) . 2⇥ 10�8, well beyond the reach of the LHC.

IV. HADRONIC FLAVOR VIOLATING DECAYS OF THE HIGGS

We next consider flavor violating decays of the Higgs to quarks. We first discuss two-body

decays to light quarks, h ! b̄d, b̄s, s̄d, c̄u, and then turn to FV three body decays mediated

by an o↵-shell top, h ! t̄⇤c ! Wb̄c and h ! t̄⇤u ! Wb̄u as well as FV top decays to t ! ch

and t ! uh. Our limits are summarized in Table II.
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Technique Coupling Constraint

D0 oscillations [39]
|Yuc|2, |Ycu|2 < 5.0⇥ 10�9

|YucYcu| < 7.5⇥ 10�10

B0

d oscillations [39]
|Ydb|2, |Ybd|2 < 2.3⇥ 10�8

|YdbYbd| < 3.3⇥ 10�9

B0

s oscillations [39]
|Ysb|2, |Ybs|2 < 1.8⇥ 10�6

|YsbYbs| < 2.5⇥ 10�7

K0 oscillations [39]

Re(Y 2

ds), Re(Y
2

sd) [�5.9 . . . 5.6]⇥ 10�10

Im(Y 2

ds), Im(Y 2

sd) [�2.9 . . . 1.6]⇥ 10�12

Re(Y ⇤
dsYsd) [�5.6 . . . 5.6]⇥ 10�11

Im(Y ⇤
dsYsd) [�1.4 . . . 2.8]⇥ 10�13

single-top production [40]

p

|Y 2

tc|+ |Yct|2 < 0.54
p

|Y 2

tu|+ |Yut|2 < 0.23

t ! hj [41]

p

|Y 2

tc|+ |Yct|2 < 0.34
p

|Y 2

tu|+ |Yut|2 < 0.34

D0 oscillations [39]

|YutYct|, |YtuYtc| < 7.6⇥ 10�3

|YtuYct|, |YutYtc| < 2.2⇥ 10�3

|YutYtuYctYtc|1/2 < 0.9⇥ 10�3

neutron EDM [29] Im(YutYtu) < 4.4⇥ 10�8

Table II: Constraints on flavor violating Higgs couplings to quarks. We have assumed a Higgs mass

mh = 125 GeV, and we have taken the diagonal Yukawa couplings at their SM values.

A. Flavor violating Higgs decays into light quarks

Flavor violating Higgs couplings to quarks can generate flavor changing neutral currents

(FCNCs) at tree level, see Fig. 7 (a), and are thus well constrained by the measured Bd,s �
B̄d,s, K0 � K̄0 and D0 � D̄0 mixing rates. Integrating out the Higgs generates an e↵ective

weak Hamiltonian, which for Bd � B̄d mixing is

H
e↵

= Cdb
2

(b̄RdL)
2 + C̃db

2

(b̄LdR)
2 + Cdb

4

(b̄LdR)(b̄RdL) . (28)
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Top Flavor Violation
But, top decays are interesting:
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Figure 8: Predictions for various flavor changing neutral current (FCNC) processes mediated by the

flavor violating Yukawa couplings Yct, Ytc or Yut, Ytu of a 125 GeV Higgs boson. Where appropriate,

we have approximated the diagonal Yukawa couplings by their Standard Models values. Blue

dashed contours indicate the branching ratio for h ! t⇤q, red solid contours the one for t ! hq

(where q denotes a charm or up quark). The red dotted line is a recent limit on t ! hc (or hu)

from an LHC multi lepton search [41].

Strong constraints on Yqt and Ytq are also obtained from the non-observation of anomalous

single top production. The flavor violating chromomagnetic operators

L
single top

� gs
mh

t̄�µ⌫(tqg,LPL + tqg,RPR)
�a

2
q Ga

µ⌫ , (34)

are generated trough loop diagrams similar to Fig. 1, but with leptons replaced by quarks

and the photon replaced by a gluon. Here gs is the strong coupling constant, �a are the Gell-

Mann matrices, Ga
µ⌫ is the gluon field strength tensor, and tqg,L, tqg,R are dimensionless

e↵ective coupling constants which depend on Yqt and Ytq according to

tqg,L =
1

96⇡2

mt

mh

YttY
⇤
tq

⇣

� 4 + 3 log
m2

h

m2

t

⌘

. (35)

The analogous expression for tqg,R is obtained by replacing Y ⇤
tq ! Yqt and Ytt ! Y ⇤

tt .

Limits on tqg,L, tqg,R have been derived by the CDF and DØ collaborations [40, 42]

and most recently by ATLAS [43]. In the notation of [43], we have |tgf |/⇤ ⌘
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