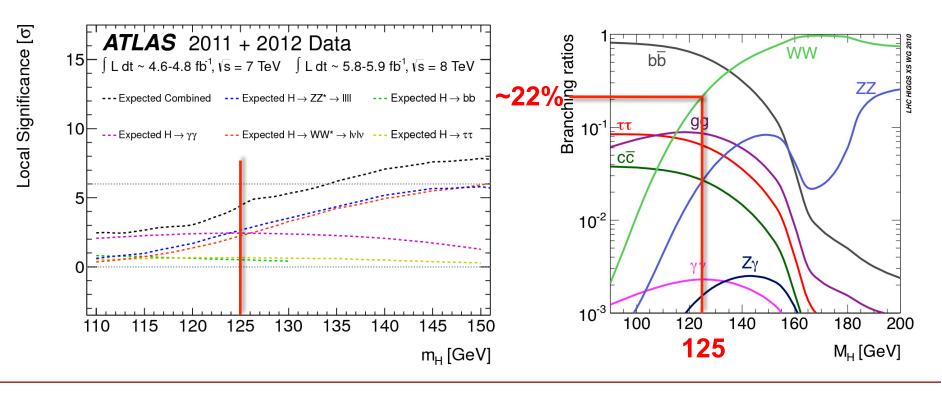
$H \rightarrow WW \rightarrow |v|v$ at ATLAS

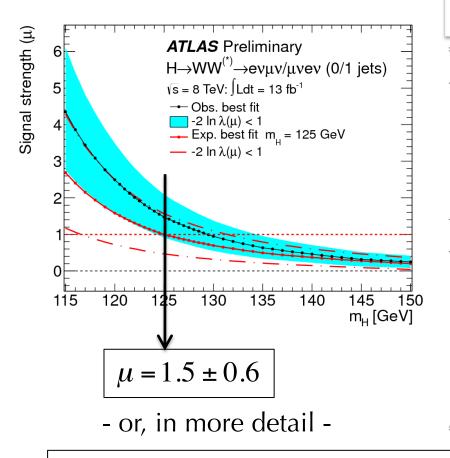

corrinne mills

Harvard University

(Chicago 2012 Workshop on LHC Physics in the Higgs Era) 14 November 2012

$WW \rightarrow |v|v$ in context

- The payoff: better signal/background than $\gamma\gamma$ and more signal yield than $ZZ \to 41~$ for $m_H \sim 125~GeV$
 - → Important channel for rate ($\mu = \sigma / \sigma_{SM}$) measurement
- The price: one W off mass shell (no mass resolution), still large backgrounds



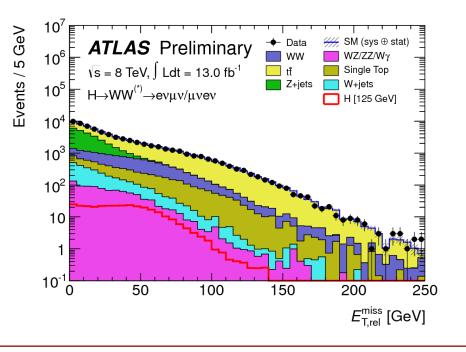
<u>Overview</u>

- We have updated the 2012 H \rightarrow WW \rightarrow evµv analysis with 13 fb⁻¹ of sqrt(s) = 8 TeV data
- Followed strategy used for July analysis
 - \rightarrow Still using eµ only
 - → VBF (2-jet analysis) re-optimization and 2011 combination still in progress
- Rather than going linearly through selection, backgrounds, systematics, and results, skip around a bit to highlight the connections

The Punchline

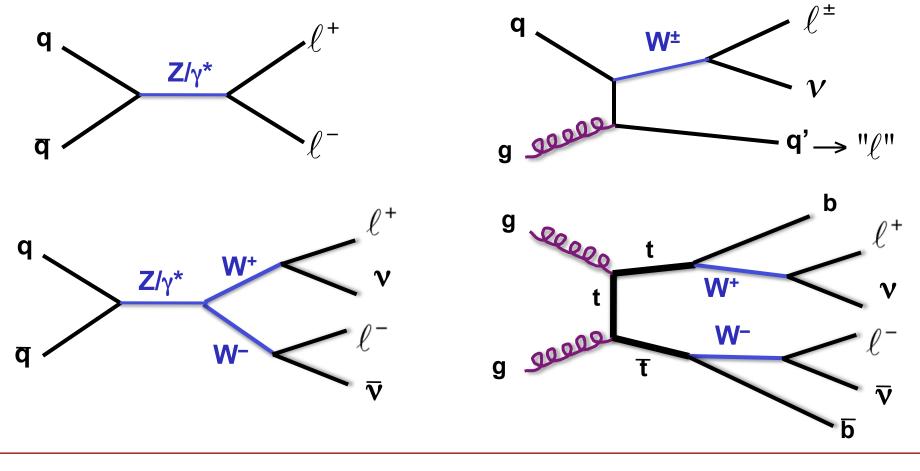
13 fb⁻¹ Results

uncertainty on signal and background yields by source:

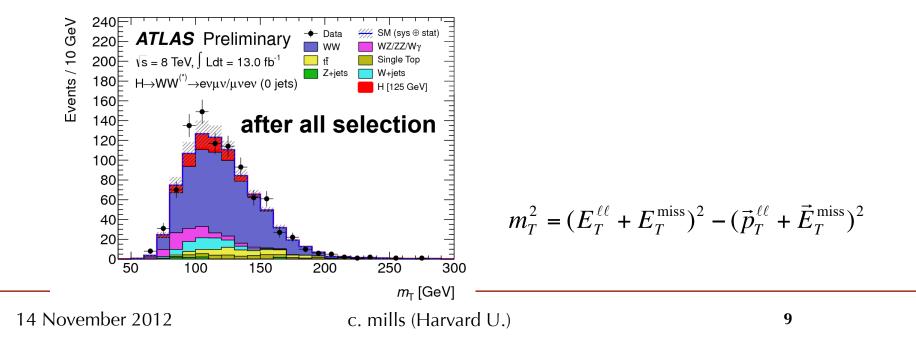

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	13	-
1-jet incl. ggF signal ren./fact. scale	10	-
PDF model (signal only)	8	-
QCD scale (acceptance)	4	-
Jet energy scale and resolution	4	2
W+jets fake factor	-	5
WW theoretical model	-	5
Source (1-jet)	Signal (%)	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	26	-
2-jet incl. ggF signal ren./fact. scale	15	-
Parton shower/ U.E. model (signal only)	10	-
b-tagging efficiency	-	11
PDF model (signal only)	7	-
QCD scale (acceptance)	4	2
Jet energy scale and resolution	1	3
W+jets fake factor	-	5
WW theoretical model	-	3

 $\mu = 1.48^{+0.35}_{-0.33} \text{ (stat)}^{+0.41}_{-0.36} \text{ (sys theor)}^{+0.28}_{-0.27} \text{ (sys exp)} \pm 0.05 \text{ (lumi)}$

The Basics

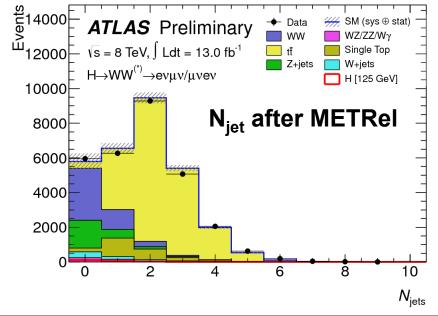

Basics 1/3: Dilepton + E_T^{miss}

- 2 oppositely charged leptons (e or µ)
 - → Electrons selected using tightest ID: calo shower shape, track match, conversion rejection
 - \rightarrow Muons selected as combined ID and MS track (incl. d₀ signif.)
 - → *isolated* (track and calo for both, cone of 0.3)
 - $\rightarrow p_T(lead) > 25 \text{ GeV}, p_T(sublead) > 15 \text{ GeV}$
 - \rightarrow m(ll) > 10 GeV
- $E_{T}^{(miss,rel)} > 25 \text{ GeV}$
- Jets: anti- k_T 0.4 (analysis binned in N_{jet})
 - $\Rightarrow p_T > 25 \text{ GeV} (p_T > 30 \text{ GeV for} |$ $\eta| > 2.5)$

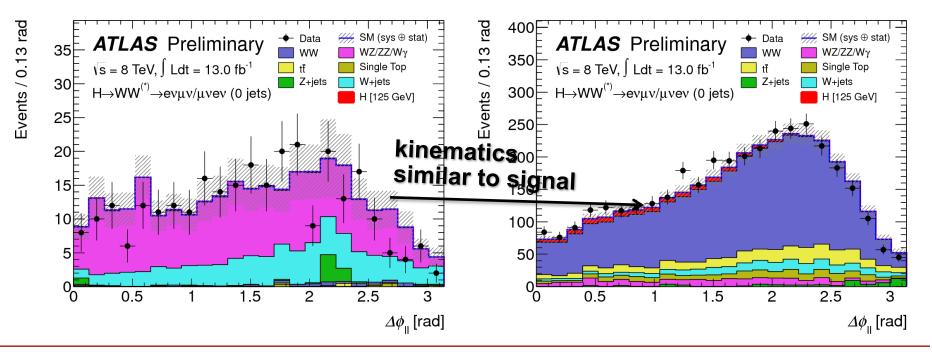

Basics 2/3: Backgrounds

What do you get when you select dilepton events with E_T^{miss} ?

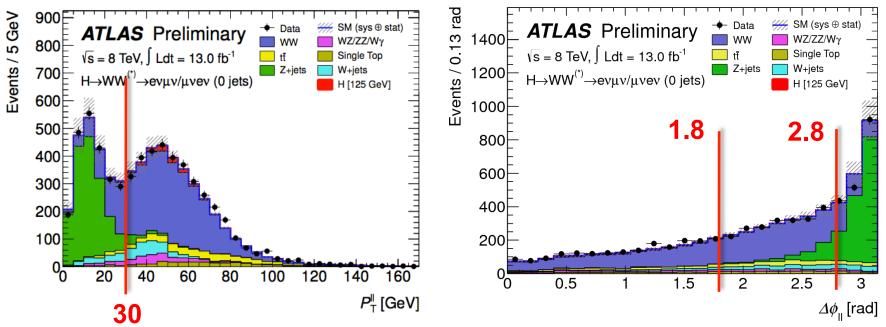
Basics 3/3: Statistical Interpretation


- Profile log likelihood $\mathcal{L}(\mu, \theta)$ for statistical interpretation
 - → Fit for free parameter **signal strength** μ = ratio of observed signal yield to SM Higgs prediction
 - \rightarrow Systematic uncertainties represented by **nuisance parameters** θ
- Not true cut-and-count: fit dilepton m_T distribution
- Evaluate p_0 using test statistic $q_{\mu} = -2 \ln \left(\mathcal{L}(\mu, \hat{\theta}_{\mu}) / \mathcal{L}(\hat{\mu}, \hat{\theta}) \right)$

The Details


Jet binning

- ggF signal mostly has zero jets
- Reject dominant top BG, for a price (systematics)
 - → experimental: jet energy scale and resolution (4% on 0-jet signal yield)
 - → theoretical: **QCD scale uncert. of 17% and 30%** on 0-jet and 1-jet total signal yield (partially anti-correlated; evaluated using Stewart-Tackmann prescription)
- Jets: anti- $k_T 0.4$
 - $\rightarrow p_T > 25 \text{ GeV} (p_T > 30 \text{ GeV}$ for $|\eta| > 2.5)$
 - \rightarrow $|\eta| < 4.5$
 - → associate to primary vertex using tracks


W + X

- **W+jets: "fake factor"** (ratio of identified to anti-identified leptons in a QCDenriched sample) multiplied by W+denominator distribution
 - → 50% err. on fake factor (sample dependence, EWK subtraction, pileup, trigger bias)
 - → 5% uncertainty on total BG yield 0, 1 jet bin: compare 8%, 16% total!
 - → Motivation for rather extreme isolation cuts
- Wγ, Wγ* not insignificant, estimate from Monte Carlo (MadGraph)
- Validate in same-charge events (below: after METRel, jet veto, p_T(II))

$p_T(II)$ and $Z \rightarrow \tau \tau$

distributions after jet veto

- Most Z/ γ^* background in eµ is from $\tau\tau$
 - → 0 jet: reject by requiring $p_T(II) > 30 \text{ GeV}$
 - → 1 jet: reject by veto on $M(\tau\tau)$, reconstructed using collinear approx.
- Normalize remaining BG using data with m(II) < 80, $\Delta \varphi(II) > 2.8$

1-jet analysis: top and the b-veto

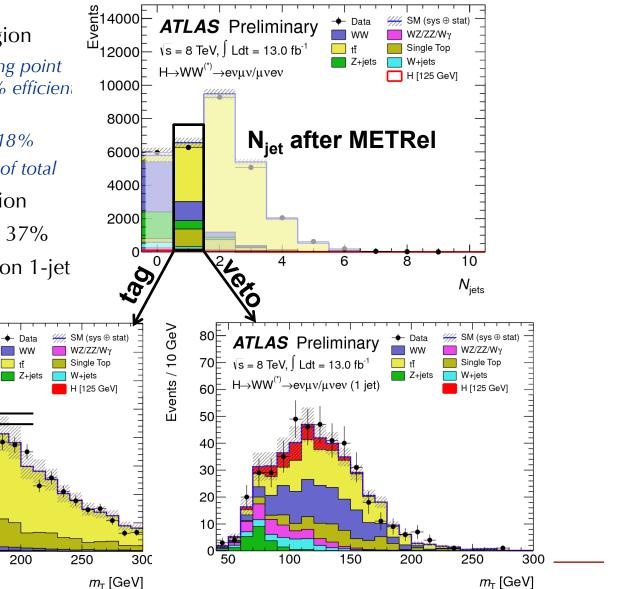
Veto b-tagged jets for signal region

- \rightarrow 85% b-jet efficiency operating point \Rightarrow aggressive veto, only 85% efficient for signal
- Uncertainty on efficiency 5-18%
- Largest BG in 1-jet SR, 44% of total

Tagged events form control region Total uncertainty on 1-jet top = 37%*b*-tagging is leading systematic on 1-jet

background yield, at 11%

ATLAS Preliminary


📃 tī

 $\sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} = 13.0 \text{ fb}^{-1}$

100

150

 $H \rightarrow WW^{(*)} \rightarrow ev\mu \nu/\mu vev$ (1 jet)

14 Nov

scale by ~ 1.03

normalize

CR data.

background

prediction to

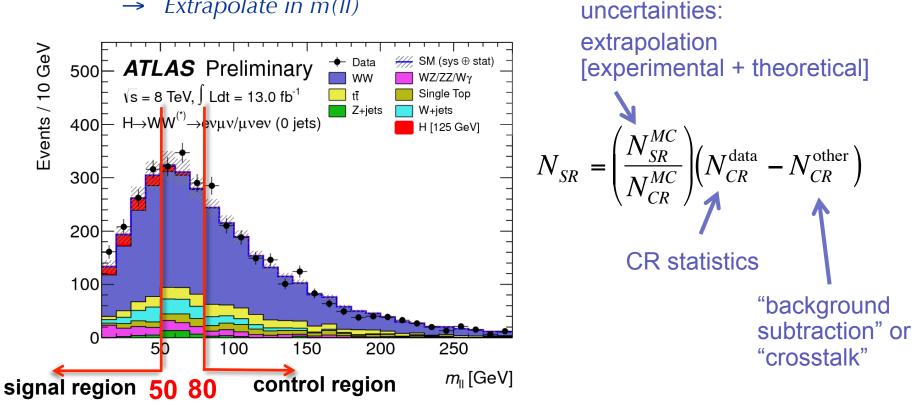
ents / 10 GeV

350

300E

200F

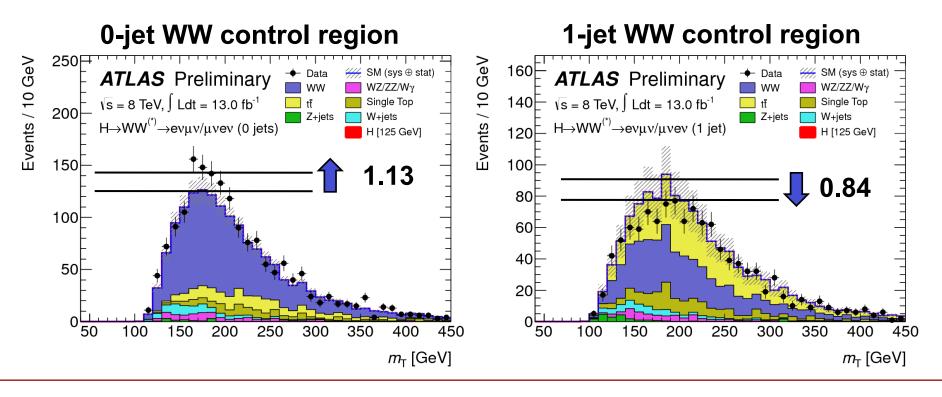
150E


100**⊢**

50F

50

m(II) and WW: control regions


- WW dominant background
- Reduce uncertainties by normalizing WW+{0,1} jet backgrounds to data in signal-depleted "control regions" CR

 \rightarrow Extrapolate in m(ll)

m(II) and WW

- POWHEG+PYTHIA8 model for WW
 - → better model of lepton kinematics than MC@NLO (ICHEP model)
- Worse model of jet multiplicity, but correct for this by design

Systematics on WW + top

ATLAS Preliminary

 $\sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} = 13.0 \text{ fb}^{-1}$

 $H \rightarrow WW^{(*)} \rightarrow ev\mu v/\mu vev$ (1 jet)

150

200

tī 🚺

250

Z+jets

300

Single Top

H [125 GeV]

W+jets

140[⊨]

120

100F

80

60ł

40

20

0

50

100

Theoretical uncertainties:

- QCD scale and PDFs, usual prescription •
- Parton shower and underlying event: • Pythia8 / Pythia6 / Herwig
- Events / 10 GeV Modelling and shape: MC@NLO vs. MCFM ۲
- shape syst. applied in fit ۲

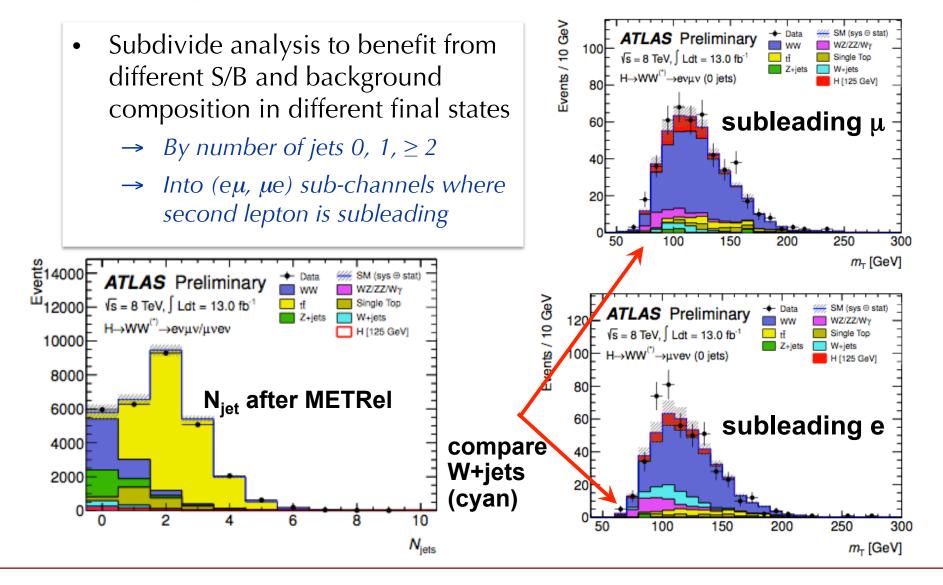
WW b	WW background extrapolation uncertainties					
	Scale	PDFs	PS/UE	Modelling		
α_{WW}^{0j}	2.5%	3.7%	4.5%	3.5%		
α_{WW}^{1j}	4%	2.9%	4.5%	3.5%		
1	-					

summary of uncertainties:

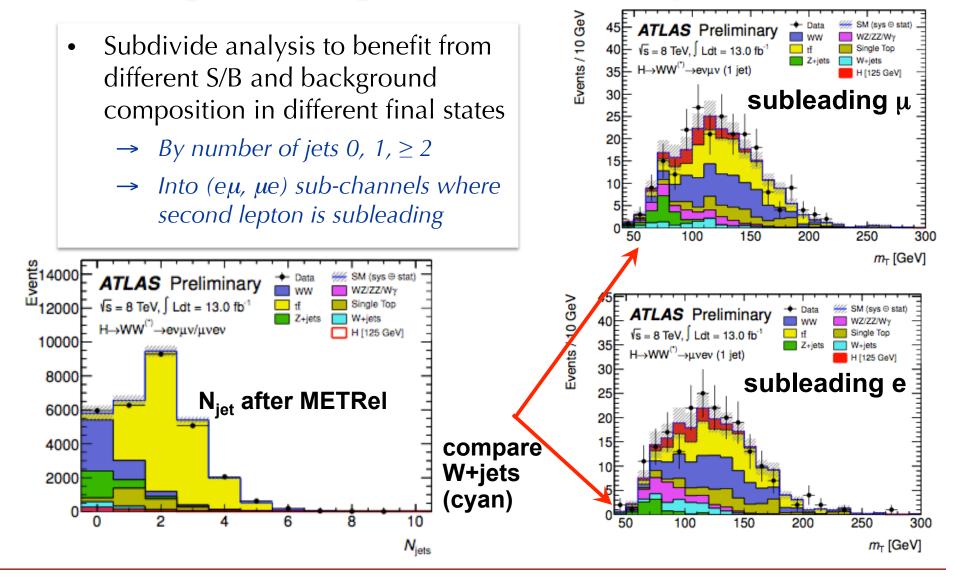
Background	Stat. (%)	Theory (%)	Expt. (%)	Crosstalk (%)	Total (%)
WW, $H+0$ -jet	3.3	7.2	1.5	6.2	13
WW, $H+1$ -jet	9	8	12	34	54
top, $H+1$ -jet	2	8	29	1	37

corelations correctly treated in fit: total 1-jet BG uncertainty is 16%

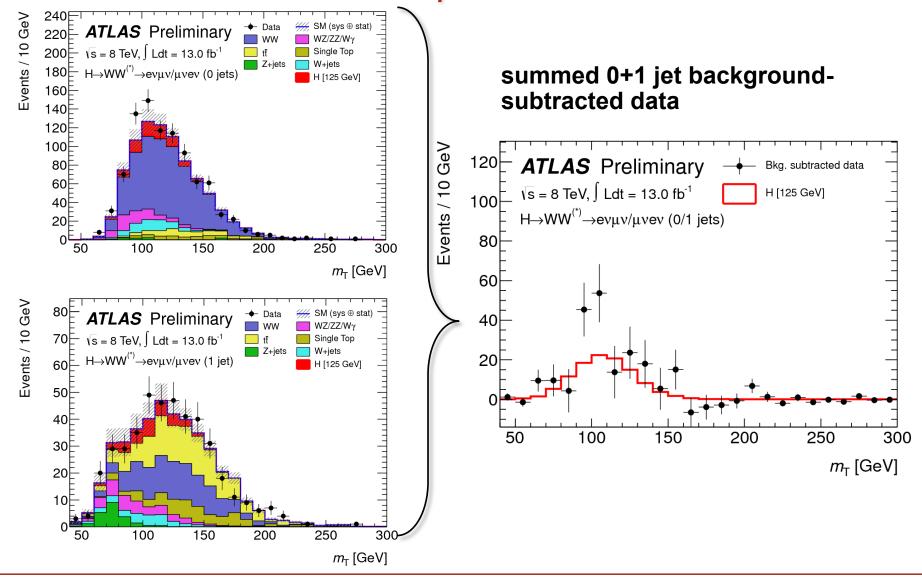
350


400

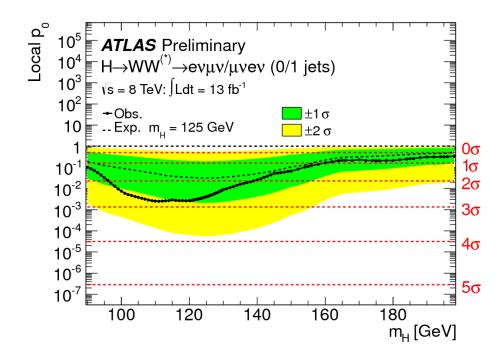
m_⊤ [GeV]


450

The Results


Signal region, in four parts

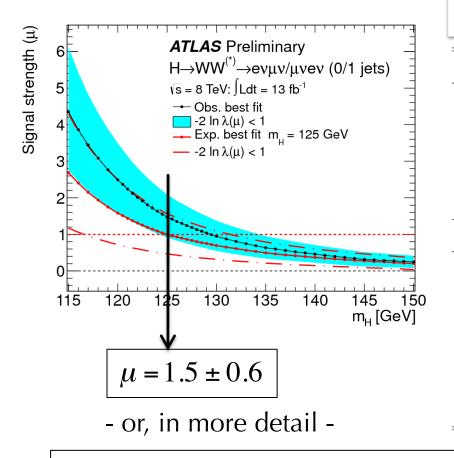
Signal region, in four parts



Observed m_T Distribution

The Bottom Line: p_{θ}

	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
H+ 0-jet	45 ± 9	242 ± 32	26 ± 4	16 ± 2	11 ± 2	4 ± 3	34 ± 17	334 ± 28	423
H+ 1-jet	18 ± 6	40 ± 22	10 ± 2	37 ± 13	13 ± 7	2 ± 1	11 ± 6	114 ± 18	141



for $m_H = 125$ GeV:

- observed $p_0 = 4 \times 10^{-3} (2.6\sigma)$
- expected $p_0 = 3 \times 10^{-2} (1.9\sigma)$

(ICHEP values, 2012 only): 3.1σ observed, 1.6σ expected

Signal Strength and Systematics

uncertainty on signal and background yields by source:

Source (0-jet)	Signal (%)	Bkg. (%)
Inclusive ggF signal ren./fact. scale	13	-
1-jet incl. ggF signal ren./fact. scale	10	-
PDF model (signal only)	8	-
QCD scale (acceptance)	4	-
Jet energy scale and resolution	4	2
W+jets fake factor	-	5
WW theoretical model	-	5
Source (1-jet)	Signal (%)	Bkg. (%)
1-jet incl. ggF signal ren./fact. scale	26	-
2-jet incl. ggF signal ren./fact. scale	15	-
Parton shower/ U.E. model (signal only)	10	-
b-tagging efficiency	-	11
PDF model (signal only)	7	-
QCD scale (acceptance)	4	2
Jet energy scale and resolution	1	3
W+jets fake factor	-	5
WW theoretical model	-	3

 $\mu = 1.48^{+0.35}_{-0.33} \text{ (stat)}^{+0.41}_{-0.36} \text{ (sys theor)}^{+0.28}_{-0.27} \text{ (sys exp)} \pm 0.05 \text{ (lumi)}$

Summary

• Update of July 2012 analysis consolidates evidence for a new Higgs-like particle in the WW \rightarrow lvlv channel

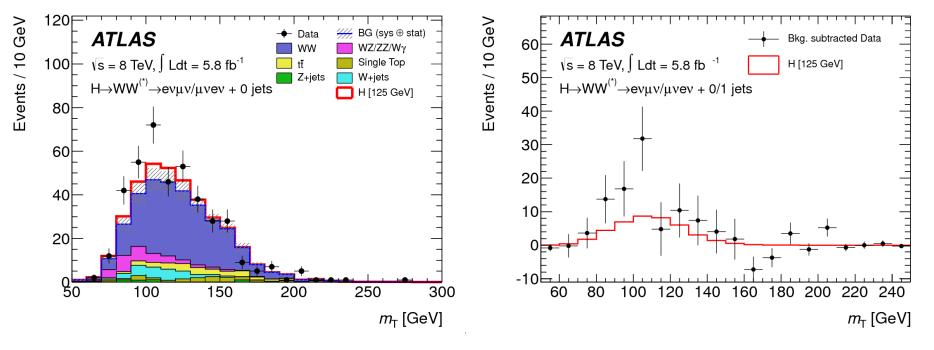
 \rightarrow 2012 observed min. $p_0 = 3 \times 10^{-3}$ or 2.8 σ

- → Broad minimum in p_0 centered at $m_H = 125$
- → Signal strength in agreement with Standard Model

 $\mu = 1.48^{+0.35}_{-0.33} \text{ (stat)}^{+0.41}_{-0.36} \text{ (sys theor)}^{+0.28}_{-0.27} \text{ (sys exp)} \pm 0.05 \text{ (lumi)}$

- What's next:
 - \rightarrow Re-optimized VBF result and combination with 2011
 - \rightarrow Updated high-mass and semileptonic ("lvqq") searches
 - → ggF analysis: improve background model and reduce systematics

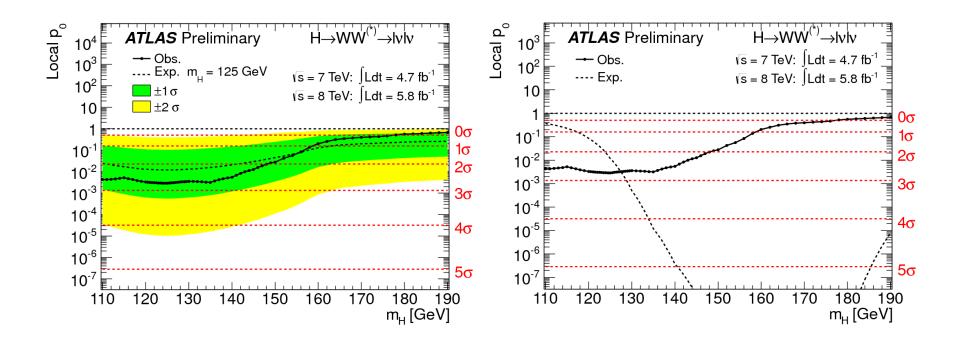
July 2012 Results


Signal Strength μ for 2011 + 2012 combined **ATLAS** 2011 - 2012 $m_{\rm H} = 126.0 \; GeV$ W,Z H \rightarrow bb \rightarrow comparable to other channels, √s = 7 TeV: ∫Ldt = 4.7 fb⁻¹ $H \rightarrow \tau \tau$ \rightarrow best individual measurement of μ ! $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.6-4.7 \text{ fb}^{-1}$ $H \longrightarrow WW^{(*)} \longrightarrow IVV$ $\sqrt{s} = 7 \text{ TeV: } \int Ldt = 4.7 \text{ fb}^{-1}$ $v_{s} = 8 \text{ TeV}: \int Ldt = 5.8 \text{ fb}^{-1}$ Signal strength (μ) $H \rightarrow WW^{(*)} \rightarrow |v|v$ ATLAS $H \rightarrow \gamma \gamma$ 6 - Best fit $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.8 \text{ fb}^{-1}$ $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.7 \text{ fb}^{-1}$ $\sqrt{s} = 8 \text{ TeV}: \int Ldt = 5.9 \text{ fb}^{-1}$ $-2 \ln \lambda(\mu) < 1$ $H \rightarrow ZZ^{(*)} \rightarrow 4$ → Exp. m_µ = 126 GeV $\sqrt{s} = 8 \text{ TeV}: \int Ldt = 5.8 \text{ fb}^{-1}$ $\sqrt{s} = 7 \text{ TeV}: \int Ldt = 4.8 \text{ fb}^{-1}$ – -2 ln λ(μ) < 1 $\sqrt{s} = 8 \text{ TeV}: \int Ldt = 5.8 \text{ fb}^{-1}$ 4 Combined 1.3 ± 0.5 @ m_н = 126 **√**s = 7 TeV: ∫Ldt = 4.6 - 4.8 fb⁻¹ $\mu = 1.4 \pm 0.3$ √s = 8 TeV: ∫Ldt = 5.8 - 5.9 fb⁻¹ 3 -1 0 Signal strength (μ) Expected curve for $m_H = 126$: 0 behavior consistent with 120 125 130 150 115 135 145 140 expectation m_H [GeV]

July 2012 Results

Signal and BG with systematics for different jet bins

 m_T cut applied to be "indicative of analysis sensitivity" Note different treatment of WW, top systematics compared to Nov. note


	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
H+0-jet	20 ± 4	101 ± 13	12 ± 3	8 ± 2	3.4 ± 1.5	1.9 ± 1.3	15 ± 7	142 ± 16	185
H+1-jet	5±2	12 ± 5	1.9 ± 1.1	6 ± 2	3.7 ± 1.6	0.1 ± 0.1	2 ± 1	26 ± 6	38
H+2-jet	0.34 ± 0.07	0.10 ± 0.14	0.10 ± 0.10	0.15 ± 0.10	-	-	-	0.35 ± 0.18	0

c. mills (Harvard U.)

July 2012 results

Combined 2011+2012 p₀: 3 x 10⁻³ (2.8σ) observed, 1 x 10⁻² (2.3σ) expected

Event Selection Summary

0 jet analysis

- $\rightarrow \Delta \varphi(II,MET) > \pi/2 \text{ to clean}$ up events with fake MET (rejects few events)
- $\rightarrow p_T(ll) > 30 \text{ GeV}$

1 jet analysis

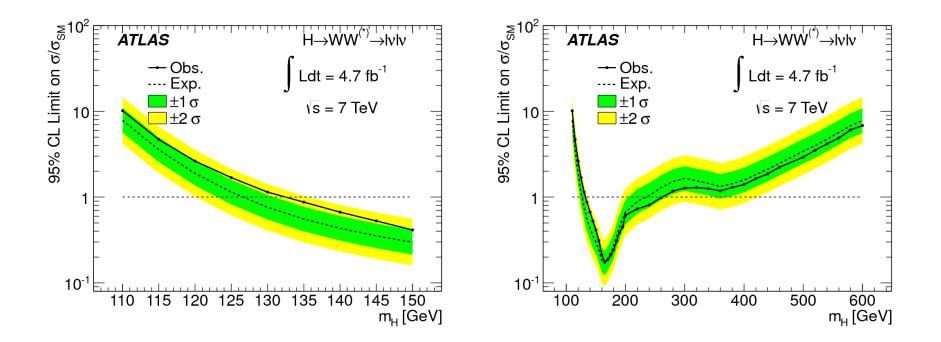
- → b-jet veto
- $\rightarrow Z \rightarrow \tau \tau \text{ veto } (|m_{\tau\tau} m_Z| > 25 \text{GeV})$
- $\rightarrow p_T(tot)$ cut removed

Common "topological" selection

- $\rightarrow m(ll) < 50 \text{ GeV}$
- $\rightarrow \Delta \varphi(ll) < 1.8$

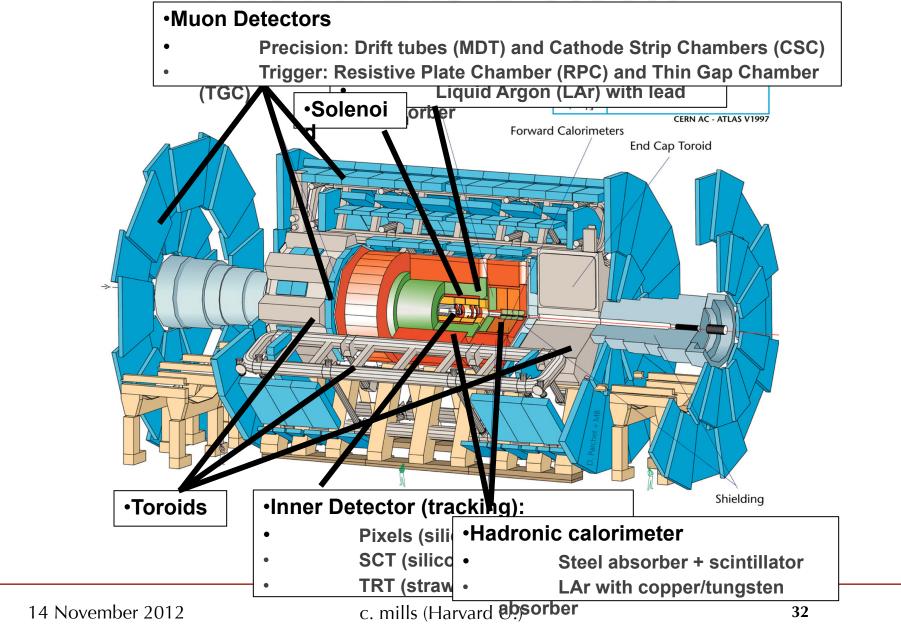
Candidate event **blinding** to remove phase space with significant $m_H \sim 125$ GeV signal

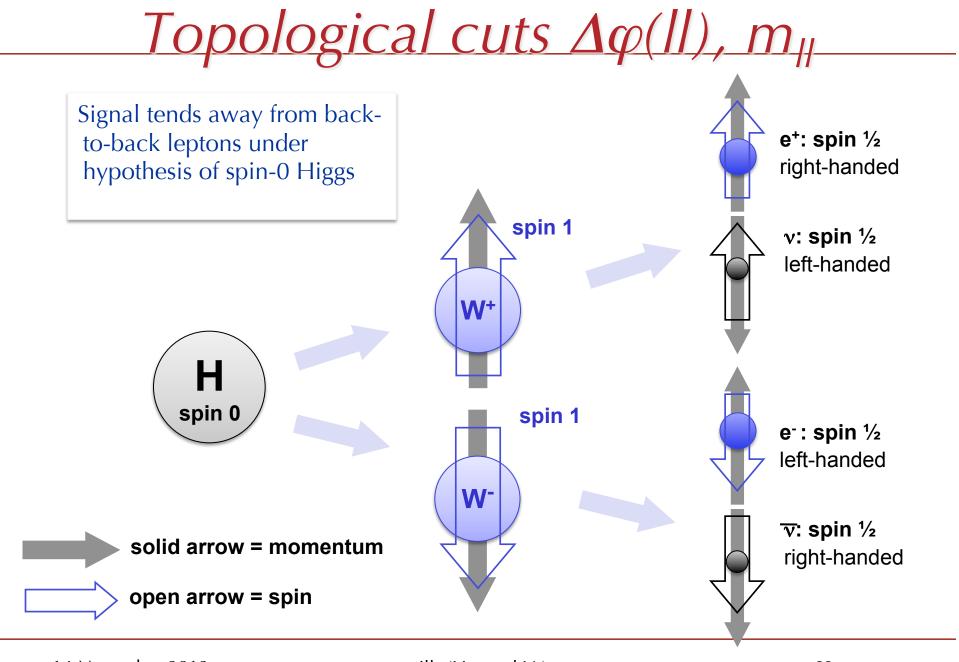
- → pass preselection
- → zero jets or no b-tagged jet
- $\rightarrow m(II) < 50 \text{ GeV}$
- $\rightarrow \Delta \varphi(ll) < 1.8$
- \rightarrow 82.5 < m_T < 140 GeV


Full 13 fb⁻¹ Cutflow

		Cutflow	v evolution i	in the diff	erent sign	al regions			
H+0-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
Jet veto	110±1	3004 ± 12	242 ± 8	387 ± 8	215 ± 8	1575 ± 20	340 ± 5	5762 ± 28	5960
$\Delta \phi_{\ell\ell,E_{T}^{\mathrm{miss}}} > \pi/2$	108 ± 1	2941 ± 12	232 ± 8	361 ± 8	206 ± 8	1201 ± 21	305 ± 5	5246 ± 28	5230
$p_{\mathrm{T},\ell\ell} > 30 \mathrm{GeV}$	99 ± 1	2442 ± 11	188 ± 7	330 ± 7	193 ± 8	57 ± 8	222 ± 3	3433 ± 19	3630
$m_{\ell\ell} < 50 \mathrm{GeV}$	78.6 ± 0.8	579 ± 5	69 ± 4	55 ± 3	34 ± 3	11 ± 4	65 ± 2	814 ± 9	947
$\Delta \phi_{\ell\ell} < 1.8$	75.6 ± 0.8	555 ± 5	68 ± 4	54 ± 3	34 ± 3	8 ± 4	56 ± 2	774 ± 9	917
H+ 1-jet	Signal	WW	$WZ/ZZ/W\gamma$	tī	tW/tb/tqb	Z/γ^* + jets	W + jets	Total Bkg.	Obs.
One jet	59.5 ± 0.8	850 ± 5	158 ± 7	3451 ± 24	1037 ± 17	505 ± 9	155 ± 5	6155 ± 33	6264
b-jet veto	50.4 ± 0.7	728 ± 5	128 ± 5	862 ± 13	283 ± 10	429 ± 8	126 ± 4	2555 ± 20	2655
$Z \rightarrow \tau \tau$ veto	50.1 ± 0.7	708 ± 5	122 ± 5	823 ± 12	268 ± 9	368 ± 8	122 ± 4	2411 ± 19	2511
$m_{\ell\ell} < 50 \text{ GeV}$	37.7 ± 0.6	130 ± 2	39 ± 2	142 ± 5	55 ± 4	99 ± 3	30 ± 2	495 ± 8	548
$\Delta \phi_{\ell\ell} < 1.8$	34.9 ± 0.6	118 ± 2	35 ± 2	134 ± 5	52 ± 4	22 ± 2	24 ± 1	386 ± 8	433

above: stat. uncertainties only below: add m_T cut and systematics


2011 Analysis


- Possible signal at $m_H \sim 125$ in $\gamma\gamma$, ZZ $\rightarrow 41$ channels
- Ambiguous results from WW \rightarrow lvlv

14 November 2012

The ATLAS Detector

Blinding the Analysis

- Design requirements:
 - \rightarrow S/B < 2% at all times
 - → Leave control regions intact
- Not possible to blind WW analysis for all m_H
 - → Judgement call: what we really care about is the low m_H signal region
- How to define the signal region?
 - $\rightarrow \Delta \varphi(II)$ and m(II) cuts
 - → Transverse mass bound corresponding to lower bound for 110 and upper bound for 140 → veto $(0.75)(110) < m_T < (1.0)(140)$

2 how we blinded the analysis

Blinded Region
82.5 < M _T < 140
and
∆φ(II) < 1.8
and
m _{II} < 50
and
0 jets or 0 b-tags