

SUSY SEARCHES WITH LEPTONS IN ATLAS

Outline

Motivations

Natural SUSY

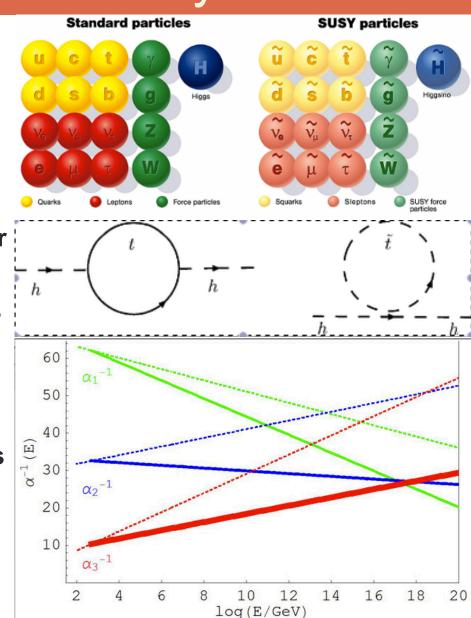
3rd Generation

- Direct stop production limits, 7 TeV, 4.7/fb
- Gluino mediated stop production, 2 same-sign leptons, 8 TeV, 5.8/fb
- Gluino mediated stop, direct sbottom production, 3 leptons, 8 TeV, 13.0/fb

Electroweak production

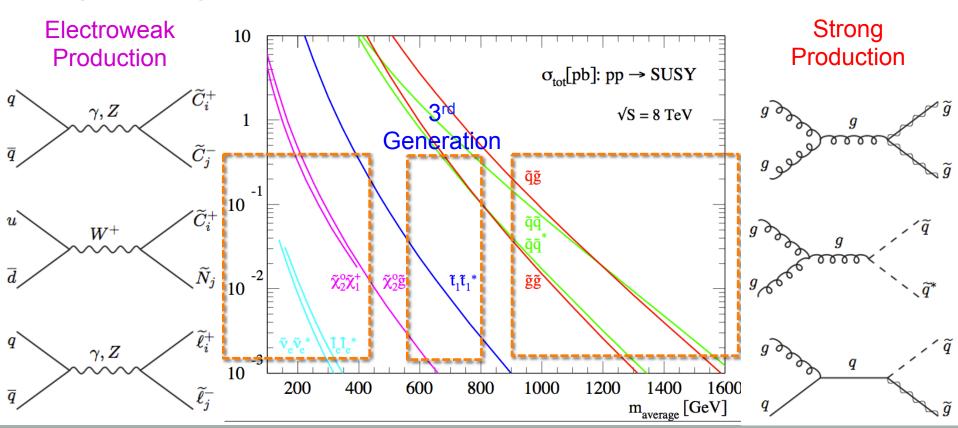
- Slepton and chargino pair-production, 2 leptons, 7 TeV, 4.7/fb
- Chargino-neutralino production, 3 leptons, 8 TeV, 13.0/fb

R-parity Violation

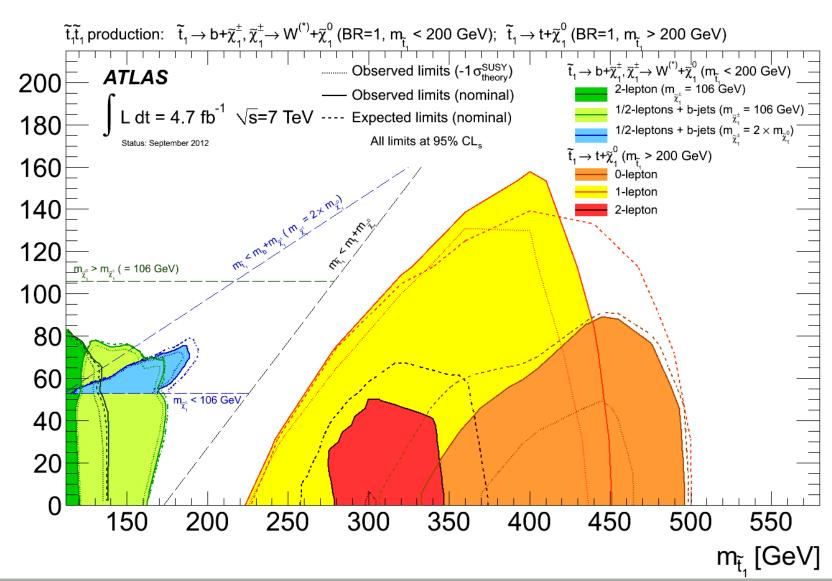

NLSP pair-production, 4 leptons, 8 TeV, 13.0/fb

Summary

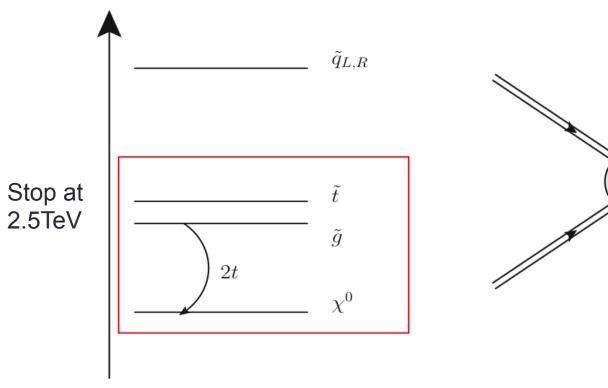
SUperSYmmetry

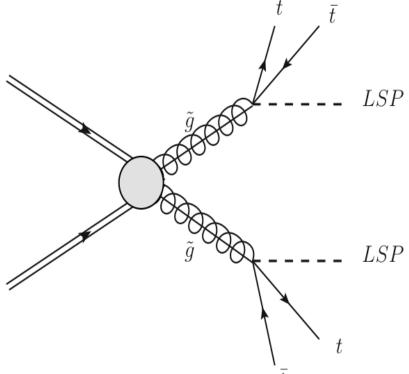

- Most popular theory beyond the Standard Model
- Introduces SUSY partners to each SM particle with spin different by 1/2
- Regularizes electroweak scale
 - Stop must be similar to top in mass
- Gauginos coupling to the Higgs sector should be light
- Unification of gauge couplings at GUT scale
 - Mass unification at GUT in parallel Implies M1:M2:M3 ~ 1:2:7 at EW
- Higher GUT scale (~1e17 GeV) prevents GUT-mediated proton decays
- R-parity conserving models can provide dark matter candidate
 - large missing momentum collider signature

Production of SUSY Particles


- Strong production is dominant unless squark and gluino masses are large
- Stop has to be light to solve hierarchy problem
- Gaugino masses expected to be light as they couple to the Higgs sector
- Stop and weak production could be the dominant production at this stage
- Large MET signature could be lost due to RPV

Direct Stop Limits, 7 TeV


 $m_{\widetilde{\chi}_1^0} [\text{GeV}]$



Gluino Mediated Stop Searches

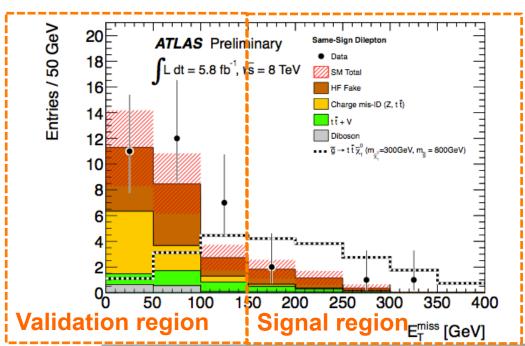
- Targeting RPC models where gluino and N1 are the lightest SUSY particles
- Pair-produced gluinos decay to tt + N1 final states via off- shell stops
- Two topologies are used for the search:
 - 2 same-sign (SS) leptons + jets + MET (8 TeV, 5.8/fb)
 - 3 leptons + jets + MET (8TeV, 13/fb)

2 SS Leptons + Jets Search

Signal region

2 leptons, $p_T > 20$ GeV, same sign

≥4 jets, E_T > 50 GeV


MET > 150 GeV

- Background classified into 3 classes:
- Real SS lepton pair from VV and ttV
 - Estimated from MC
- Fake leptons from semi-leptonic tt
 - Matrix method using fake rates measured in SS control samples
- Charge mis-identification from electrons undergoing bremsstrahlung with subsequent photon conversion
 - Charge mis-ID probability measured in data using OS and SS events forming a Z candidate and applied to MC

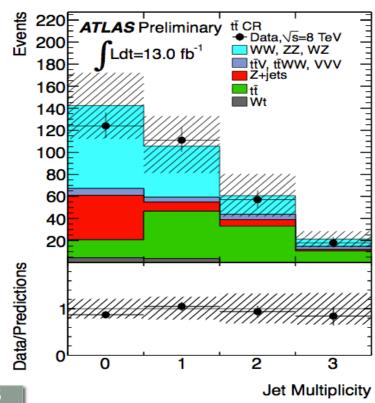
ATLAS-CONF-2012-105

2 LS Leptons + Jets Results

ATLAS-CONF-2012-105

 $\sigma_{\text{vis}} = \sigma \times \text{acceptance}$ × efficiency < 1.08 fb

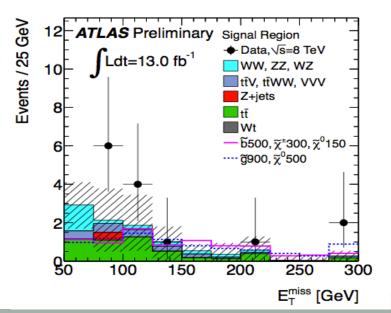
Category	ee	еµ	μμ	ℓℓ
HF fake	0.74 ± 0.53	1.16 ± 0.70	$0.25^{+0.30}_{-0.25}$	2.14 ± 1.08
$t\bar{t} + V$	0.17 ± 0.08	0.44 ± 0.18	0.23 ± 0.10	0.84 ± 0.34
Charge mis-ID (Z,tt)	0.13 ± 0.06	0.14 ± 0.06	-	0.27 ± 0.10
Diboson	0.04 ± 0.04	0.10 ± 0.05	0.03 ± 0.03	0.18 ± 0.07
Total background	1.1 ± 0.5	1.8 ± 0.7	0.5 ± 0.3	3.4 ± 1.1
Observed in data	1	2	1	4

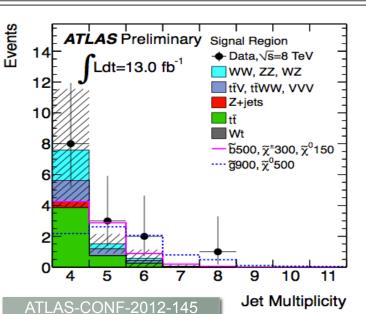


3 Leptons + Jets Search

Counting Experiment			
≥3 leptons, p _T > 15 GeV	$ \Sigma q = \pm 1$		
≥4 jets, E _T > 30 GeV	Third electron with q=Σq		
MET > 50 GeV	Z-veto		

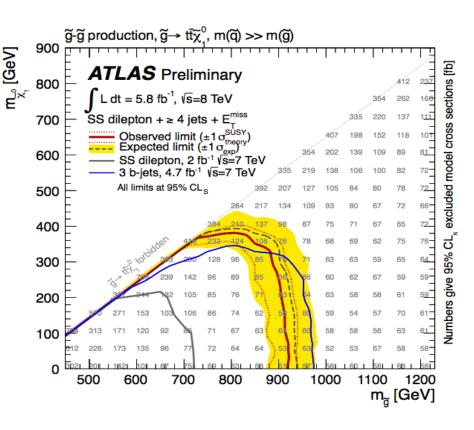
- Irreducible background (ttV, VVV) is estimated from MC
- Reducible background is estimated from MC with correction factors from data
 - Scale factors for electrons/muons and heavy/ light flavor
 - Scale factors obtained with likelihood function:
 - four fake-rate scale factors
 - 16 binned distributions in 3 dedicate control regions each with different flavor/charge combinations

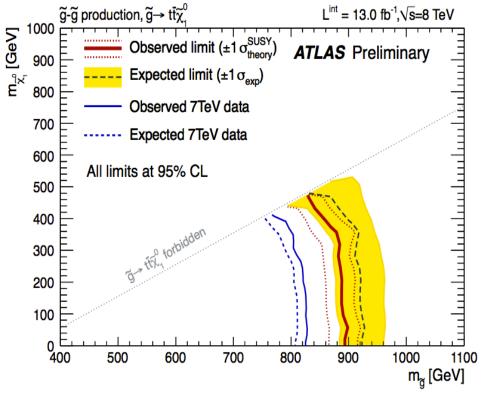



ATLAS-CONF-2012-145

3 Leptons + Jets Results

3ℓ	3 <i>e</i>	2OSe1μ	$2SSe1\mu$	1e2OSμ	1e2SSμ	3μ	
-0.4	$0.4^{+0.4}_{-0.4}$	-	-	-	-	-	Z+jets and Z+ $b\bar{b}$ +jets
10 +2.6	0.2 ± 0.4	$1.0^{+0.9}_{-0.8}$	$0.9^{+1.0}_{-0.9}$	$1.5^{+0.9}_{-0.8}$	0.5 ± 0.5	0.7±0.8	$t\bar{t}$ and Wt
	0.6±0.6	$0.3^{+0.3}_{-0.2}$	-	$0.8^{+0.3}_{-0.5}$	-	$0.7^{+0.4}_{-0.3}$	WW, WZ , and ZZ
2.0±1.0	0.2±0.1	0.4 ± 0.3	0.3 ± 0.2	0.6 ± 0.5	0.2 ± 0.2	0.3±0.2	$t\bar{t}+W$ and $t\bar{t}+Z$, and VVV
9.7 +3.8	$1.4^{+0.9}_{-0.8}$	$1.7^{+1.1}_{-1.0}$	$1.2^{+1.2}_{-1.0}$	2.9±1.2	0.8±0.5	1.8±1.0	Total SM
		$2.2^{+0.6}_{-0.8}$		$2.2^{+0.6}_{-0.7}$	$1.2^{+0.3}_{-0.4}$	$1.3^{+0.4}_{-0.5}$	Signal1
8.3 +1.9	$0.8^{+0.3}_{-0.3}$	2.0 ± 0.6	$1.4^{+0.4}_{-0.5}$	$2.0^{+0.5}_{-0.6}$	$1.2^{+0.3}_{-0.4}$	0.9±0.3	Signal2
14	3	4	1	3	2	1	Data
	$\begin{array}{c} 1.4 \substack{+0.9 \\ -0.8} \\ 0.7 \substack{+0.2 \\ -0.3} \\ 0.8 \substack{+0.3 \\ -0.3} \end{array}$	$1.7^{+1.1}_{-1.0}\ 2.2^{+0.6}_{-0.8}$	$1.2^{+1.2}_{-1.0}$	2.9±1.2 2.2 ^{+0.6} -0.7 2.0 ^{+0.5} -0.6	0.8±0.5 1.2 ^{+0.3} _{-0.4} 1.2 ^{+0.3} _{-0.4}	1.8±1.0 1.3 ^{+0.4} _{-0.5}	Total SM Signal1 Signal2


11/12/12

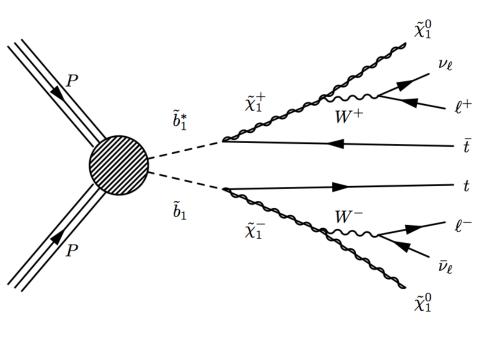


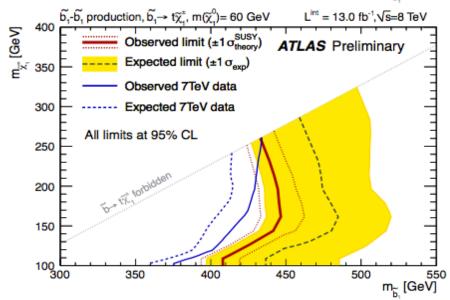
Gluino Mediated Stop Limits

2 SS L + jets + MET

3L + jets + MET

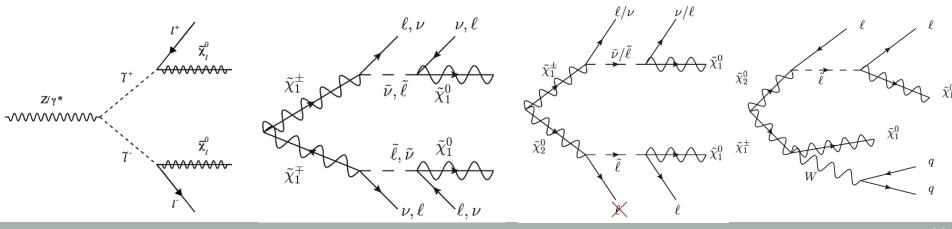
ATLAS-CONF-2012-105


ATLAS-CONF-2012-145


Direct Sbottom Search

In the 3L + jets final state

- Sbottom → top + C1
 - C1 into W + N1
 - With $m_{C1} = 2 \times m_{N1}$
 - With $m_{N1} = 60 \text{ GeV}$

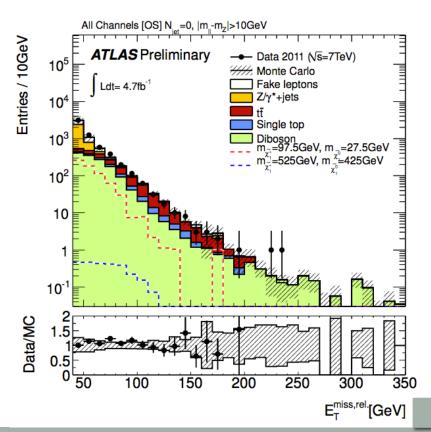


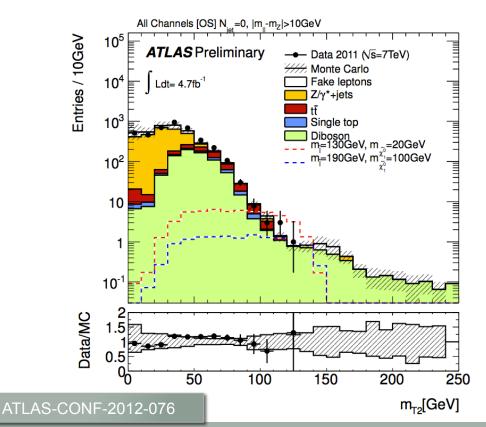
EW 2 Leptons Search

- Four SR optimized for direct slepton production and different Chargino/ Neutralino decay modes.
- 7 TeV, 4.7/fb

ATLAS-CONF-2012-076

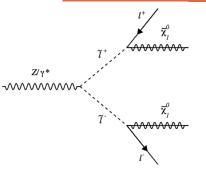
SR-	m_{T2}	OSjveto	SSjveto	2jets
charge	OS	OS	SS	OS
flavour	any	an	ıy	SF
m_{ll}	Z-veto	Z-veto	-	Z-veto
signal jets	= 0	=	0	≥ 2
signal b-jets	-	-		= 0
$E_{ m T}^{ m miss,rel.}$	> 40	> 1	.00	> 50
other	$m_{\rm T2} > 90$	-		<i>m</i> _{CT} -veto

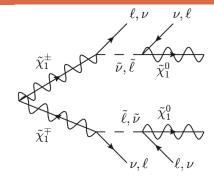


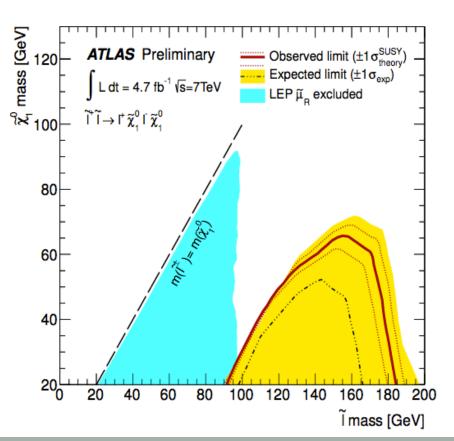


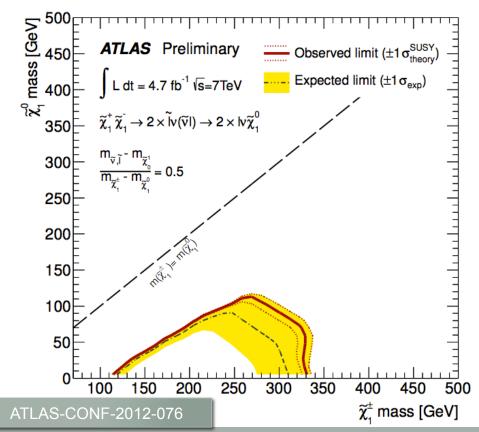
Background Estimation

mT2 signal region

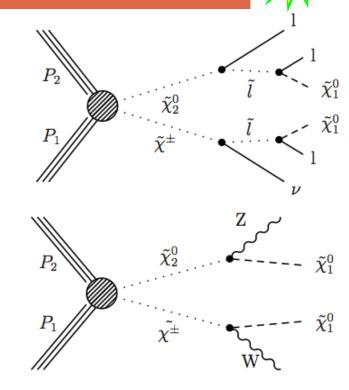

- tt, Z+j normalized to data in control regions
- WW from MC simulation
- reducible background (W+j, and QCD) from loose lepton sample using the loose to tight efficiency





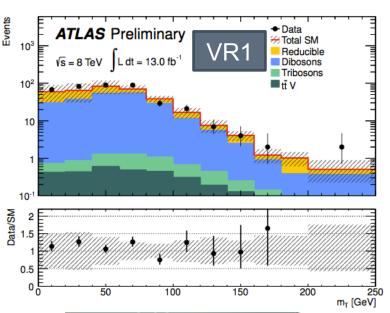

Direct Slepton and Chargino Limits

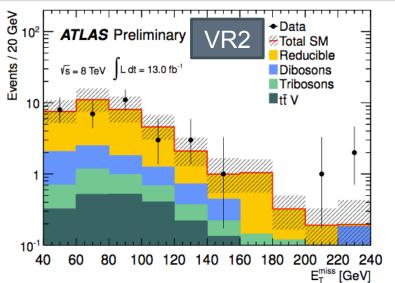
- mT2 SF signal region
- Direct sleptons within the pMSSM model
- Direct Charginos with Simplified Models, Chargino1 and Neutralino1 masses, light sleptons



EW 3 Leptons Search

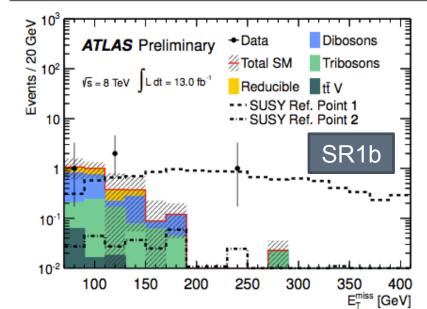
- Targeting C1-N2 direct production
- Both decays via intermediate sleptons or gauge bosons
 - Z-enriched and Z-depleted
- Targeting models with either small or large mass splitting
 - moderate or large MET & mT cuts
- Lepton pT > 10GeV
- 8 TeV, 13.0/fb, dilepton triggers


Selection	SR1a	SR1b	SR2
Targeted $\tilde{\chi}_2^0$ decay	$ ilde{l}^{(*)}$	or Z^*	on-shell Z
$ m_{\rm SFOS}-m_Z $	> 10)GeV	< 10 GeV
Number of b-jets		0	any
$E_{ m T}^{ m miss}$	>75	6 GeV	> 120 GeV
$m_{ m T}$	any	> 110 GeV	$> 110 \mathrm{GeV}$
$p_{\rm T}$ of leptons	$> 10 \mathrm{GeV}$	> 30 GeV	$> 10 \mathrm{GeV}$


Background Estimation

Dominant Irreducible WZ

- Normalized in dedicated region to data via simultaneous fit accounting for potential signal contamination in control region
- Remaining Irreducible from MC simulation
- Fake leptons with data-driven matrix method
 - Using loose lepton data sample plus fake rates and efficiencies to solve system of equations


Selection	VR1	VR2	VR3
$ m_{\rm SFOS}-m_Z $	> 10 GeV	SFOS veto	< 10 GeV
$E_{ m T}^{ m miss}$ min	30 GeV	50 GeV	30 GeV
$E_{\mathrm{T}}^{\mathrm{miss}}$ max	75 GeV	_	50 GeV
$t\bar{t}+V$	3.1 ± 1.2	2.5 ± 0.8	3.9 ± 1.9
triboson	4 ± 4	2.1 ± 2.1	0.7 ± 0.7
ZZ	64 ± 17	0.41 ± 0.23	49 ± 4
WZ (normalised)	161 ± 19	4.5 ± 0.7	385 ± 50
Reducible Bkg.	121 ± 50	27 ± 13	185 ± 70
Total Bkg.	353 ± 60	36 ± 14	624 ± 90
Data	391	36	692

3 Leptons Results

Selection	SR1a	SR1b	SR2
tī+V	0.62 ± 0.28	0.13 ± 0.07	0.9 ± 0.4
triboson	3.0 ± 3.0	0.7 ± 0.7	0.34 ± 0.34
ZZ	2.0 ± 0.7	0.30 ± 0.23	0.10 ± 0.10
WZ (normalised)	34 ± 4	1.2 ± 0.6	4.7 ± 0.8
Reducible Bkg.	10 ± 6	0.8 ± 0.4	$0.012^{+1.6}_{-0.012}$
Total Bkg.	50 ± 8	3.1 ± 1.0	$6.1^{+2.0}_{-1.2}$
Data	48	4	4
SUSY Ref. Point 1	13.9 ± 1.0	11.4 ± 0.9	0.5 ± 0.1
SUSY Ref. Point 2	0.9 ± 0.1	0.3 ± 0.1	8.0 ± 0.6
Visible σ (exp)	< 1.5 fb	< 0.4 fb	< 0.5 fb
Visible σ (obs)	< 1.3 fb	< 0.5 fb	< 0.4 fb

400

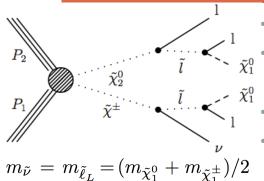
E_Tmiss [GeV]

10⁻²

150

200

ATLAS-CONF-2012-154

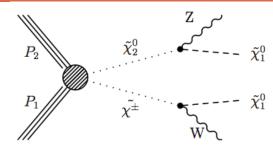

250

300

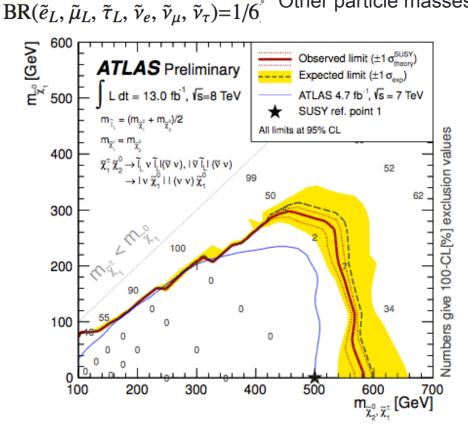
350

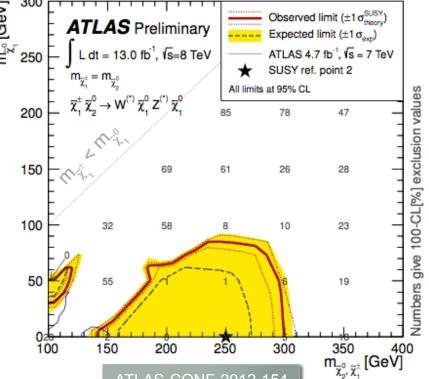
C1-N2 Simplified Models Limits

Simplified models


Mass degenerate, wino like

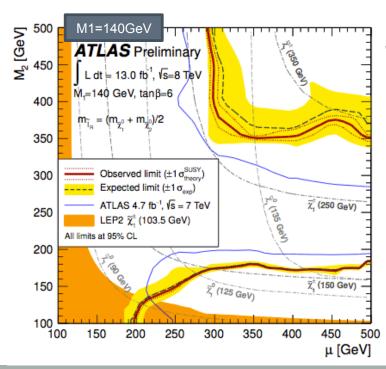
Chargino1 and Neutralino2

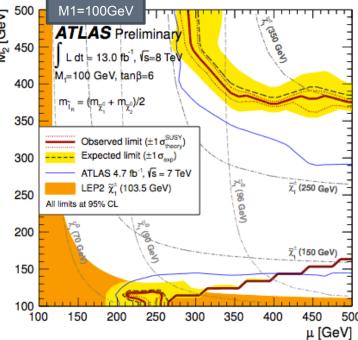

Neutralino1, bino like

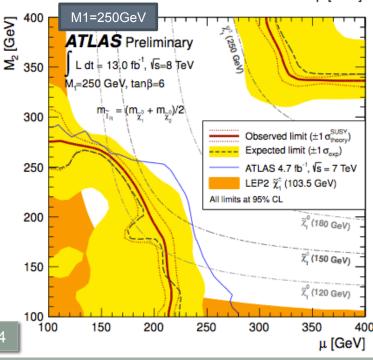

Free parameters: Chargino and neutralino masses

Other particle masses are set to high values

On-shell Z, off-shell Z No Higgs decays

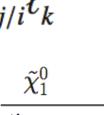


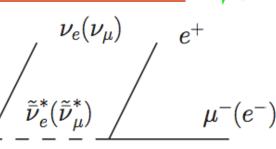



3L pMSSM Limits

- pMSSM: number of free parameters reduced to 19 (from 105) by the following assumptions
 - CP conservation, minimal flavour violation, negligible trilinear couplings for 1st and 2nd generation, degenerate 1st and 2nd generation sfermion masses
- Heavy squarks, gluinos and left-handed sleptons, $tan\beta$ =6, $m_{\rm A}$ =500GeV $m_{\tilde{\ell}_R}=(m_{\tilde{\chi}_2^0}+m_{\tilde{\chi}_1^0})/2$
- Right-handed slepton masses
- Free parameters remain: M1, M2, μ

Blue lines 2L+3L ATLAS 7TeV




RPV 4 Leptons Search

$$W_{\text{RPV}} = \lambda_{ijk} L_i L_j \bar{E}_k$$
 $\tilde{\chi}_1^0 \rightarrow \nu_{i/j} \ell_{j/i}^{\pm} \ell_k^{\mp}$
 $\lambda_{121} \text{ or } \lambda_{122}$

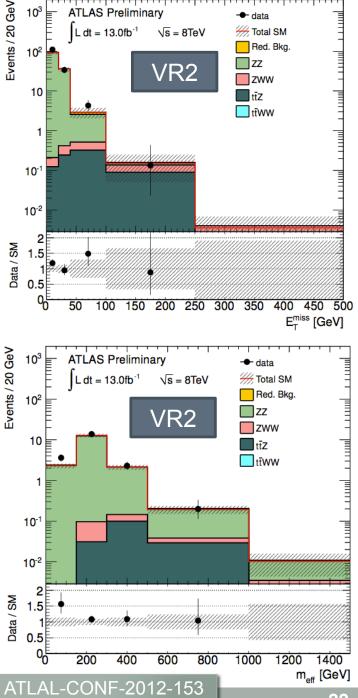
$$\tilde{\chi}_1^0 \to \nu_{i/j} \ell_{j/i}^{\pm} \ell_k^{\mp}$$

Sparticles pair-produced via gauge interactions

- Decay to LSPs via gauge interactions
- LSPs decay promptly to 2 leptons and neutrino via RPV
- 4 Lepton (electron, muon) final state
- Moderate MET and high Meff signature
- $m_{\text{eff}} = E_{\text{T}}^{\text{miss}} + \sum_{i} p_{\text{T}}^{\mu} + \sum_{i} E_{\text{T}}^{e} + \sum_{i} E_{\text{T}}^{j}$

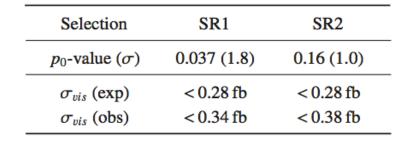
- 8 TeV, 13.0/fb
- Lepton pT > 10GeV
- Dilepton triggers

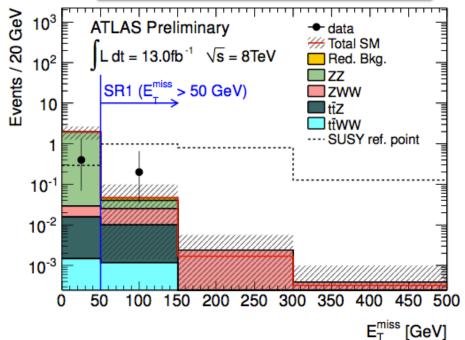
Selection	SR1	SR2
Number of leptons	≥4	≥4
SFOS pair	_	_
Z-candidate	Z-veto	Z-veto
$E_{\mathrm{T}}^{\mathrm{miss}}/\mathrm{GeV}$	>50	_
$m_{\rm eff}/{ m GeV}$	_	> 300

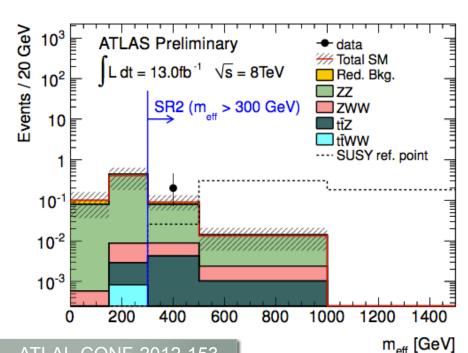

ATLAL-CONF-2012-153

Background Estimation

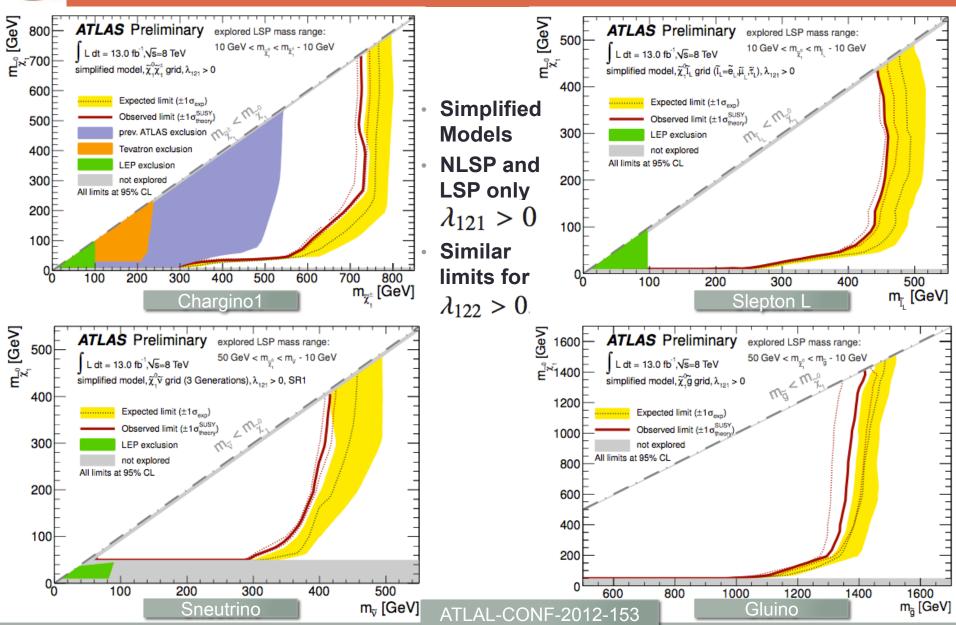
- MC simulation for irreducible 4 real leptons
- Data-driven for processes with 1-2 fake leptons
 - · Weight non-isolated events with Fake Ratio

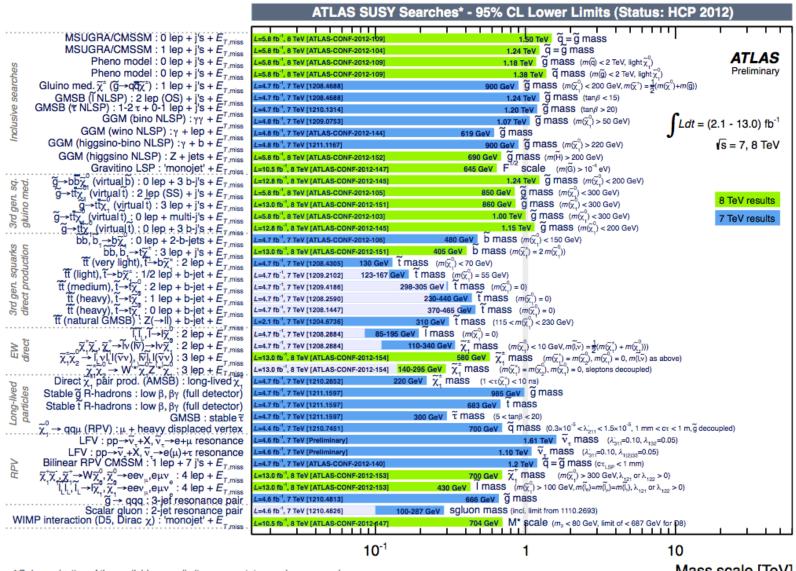

Selection	VR1	VR2	VR3
Number of leptons	3	≥4	≥4
SFOS pair	SFOS-veto	SFOS requiremen	nt –
Z-candidate	Z-veto	Z requirement	Z-veto
$E_{\mathrm{T}}^{\mathrm{miss}}/\mathrm{GeV}$	> 50	_	< 50
$m_{ m eff}/{ m GeV}$	_	-	< 300
ZZ	$0.43^{+0.32}_{-0.32}$	135^{+13}_{-13}	3.9 ^{+1.7}
ZWW	$0.29^{+0.29}_{-0.29}$	$1.2^{+1.2}_{-1.2}$	$0.018^{+0.018}_{-0.018}$
$t\bar{t}Z$	$0.44^{+0.23}_{-0.23}$	$2.0^{+1.0}_{-1.0}$	$0.011^{+0.011}_{-0.011}$
$t \overline{t} W W$	$0.057^{+0.031}_{-0.031}$	$(2.5^{+2.3}_{-2.3}) \times 10^{-3}$	$(4^{+1}_{-4}) \times 10^{-3}$
$WZ(\dagger)$	$4.4^{+0.9}_{-0.8}$	_	_
$t\bar{t}W$ (†)	$2.1^{+0.7}_{-0.7}$	_	_
<i>WWW</i> (†)	$1.9^{+1.9}_{-1.9}$	_	_
Irreducible Bkg.	10^{+4}_{-4}	138^{+15}_{-15}	$3.9^{+1.7}_{-1.7}$
Reducible Bkg.	19^{+46}_{-6}	$1.2^{+1.5}_{-1.2}$	$0.0^{+0.40}_{-0.0}$
Total Bkg.	29^{+46}_{-7}	139+14	$3.9^{+1.5}_{-1.5}$
Data	35	159	0


4 Leptons Results


Selection	SR1	SR2
ZZ	$0.07^{+0.22}_{-0.07}$	$1.0^{+0.4}_{-0.4}$
ZWW	$0.10^{+0.10}_{-0.10}$	$0.09^{+0.09}_{-0.09}$
$tar{t}Z$	$0.045^{+0.028}_{-0.028}$	$0.06^{+0.04}_{-0.04}$
$t\bar{t}WW$	$(6^{+6}_{-5}) \times 10^{-3}$	$(3.3^{+4.8}_{-3.3}) \times 10^{-3}$
Irreducible Bkg.	$0.22^{+0.27}_{-0.21}$	$1.1^{+0.5}_{-0.4}$
Reducible Bkg.	$0.028^{+0.107}_{-0.028}$	$0.10^{+0.14}_{-0.10}$
Total Bkg.	$0.25^{+0.29}_{-0.25}$	$1.2^{+0.5}_{-0.4}$
Data	1	2

No significant excess found, set limits


$\sigma_{vis} = \sigma \times acceptance \times efficiency$

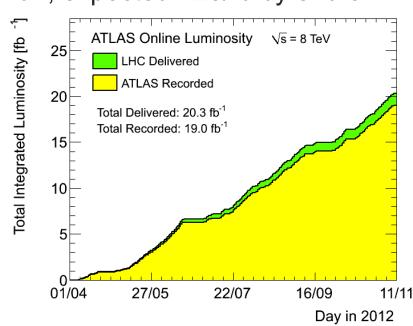


RPV NLSP-N1 Simplified Models

ATLAS SUSY Grand Summary

^{*}Only a selection of the available mass limits on new states or phenomena shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

Mass scale [TeV]


Summary and Outlook

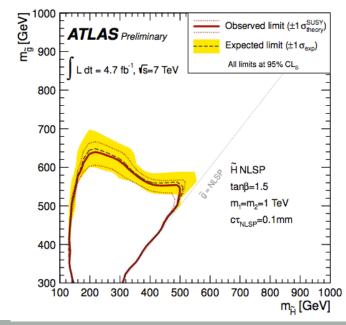
- Excellent performance of LHC and ATLAS in 2012
- Broad spectrum of SUSY leptonic searches, focusing on Natural SUSY
- Setting stringent limits in the SUSY parameter space
 - C1N2: w sleptons ~580GeV, wo sleptons 150-300GeV
 - RPV: Winos ~710GeV, sleptonsL~450GeV, sneutrinos~410GeV, gluinos~1300GeV

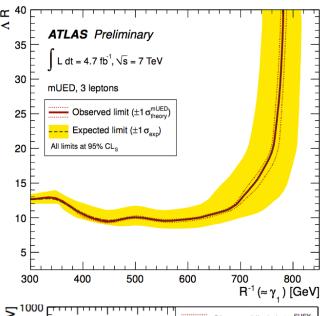
More data already available from the 8 TeV run, expected ~25/fb by end of

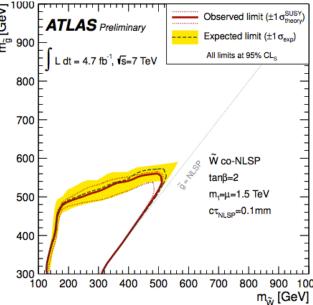
the year

- Optimize search strategy
 - Extend to higher masses
 - Focus on processes preferred by naturalness
 - Explore further final states

Additional Interpretations, 3L 7 TeV


mUED


- 1 extra dimension, S¹/Z₂ orbifold of size R
- A cut-off scale of the effective theory
- KK-photon is the lightest stable KK-particle


GGM

- Strong production through gluinos
- LSP ~massless Gravitino
- NLPS Higgsino (left),
- Wino-like Chargino1, Neutralino1 (right)

$$\begin{split} \tilde{H} &\to \gamma \tilde{G} \\ \tilde{H} &\to Z \tilde{G} \\ \tilde{\chi}_{1}^{0} &\to \gamma \tilde{G} \\ \tilde{\chi}_{1}^{0} &\to Z \tilde{G} \\ \tilde{\chi}_{1}^{\pm} &\to W^{\pm} \tilde{G} \end{split}$$

ATLAS-CONF-2012-077