Measurements with b-jets and b-tagging

G. Watts (UW/Seattle)

November 12, 2012

CHICAGO Workshop on LHC Physics in the Higgs Era

THE UNIVERSITY OF CHICAGO THE ENRICO FERMI INSTITUTE

b-Tagging

The LHC program requires us to address bottom quarks as a unique object

Signals Low mass Higgs, SUSY high $\tan \beta$, etc.

Backgrounds

W+jets, Z, and $t\bar{t}$

This is not black-box object ID

The identification algorithms are getting quite complex

Their calibration are full blown analyses in their own right (and take quite a bit of time)

Anatomy of a *b*-quark

~20% of decays are semileptonic

Decays via the Weak Force

Anatomy of a *b*-quark

Semileptonic Decays

Electron

Electron embedded in jet extraordinarily difficult

Muon

MIP in calorimeter, easy to identify in muon chambers, even low p_T

G. Watts (UW/Seattle)

Used heavily in calibration Less so in analysis

Semileptonic Tagging

Muon, $p_T > 3$ GeV, $\eta < 2.5$

(Binary Decision)

Lots of material in front of muon chambers... CMS Calib uses $p_T > 7$ GeV

Calibration

Used by CMS in their high mass Higgs search $H \rightarrow ZZ \rightarrow \ell \ell \nu \nu$ Used with regular b-tagging as a veto

Anatomy of a *b*-quark

Algorithms tuned to take advantage of one or more of these features

Silicon

Pixel detectors have made this "easy" at the LHC

Tagging Algorithms

Tracks

Count the number of tracks in a jet Cuts on impact parameter Highly efficient

Vertex Reconstruction

Fit the tracks looking for a displaced vertex Efficiency has relatively low plateau Many variations

Combined

Use elements of both Recovers some of the efficiency Often use MVA techniques

Must Understand Tracking!

Counting Tracks

Long, rich, history (CSIP, JLIP, etc.)

CMS Track Counting (TC) Algorithm Many variations on a theme

Ranks tracks by IP significance

2nd highest track is
the discrimination variable

Loose, Medium Operating Points

Simple taggers, easy to understand, good for early data!

Used in 2011 CMS $H \rightarrow ZZ \rightarrow \ell \ell q q$

Secondary Vertex Finding

ATLAS: Basic Kalman Fitter CMS: Adaptive Vertex Fitter

Typical Tracks:

 $p_T > 0.5,1 \text{ GeV}$ Require inner layer hits

Reject 2 track vertices consistent with Λ^0 , K_s^0 , conversions

Purity is great!

Efficiency can be a problem!

Combined Algorithms

Attempt to combine the best of both worlds.

Combination techniques: likelihood, NN, BDT, etc.

CMS (likelihood) - CSV

- Vertex Type
- 2D L_{xy} significance
- IP Significance of all tracks
- Vertex Mass
- N_{tracks} in vertex and jet
- Ratio of energy of tracks in vertex to tracks in jet
- The η of the tracks
- 2D IP significance of first noncharm track

These are the algorithms used by most analyses

The input variables

ATLAS (NN) – MV1

- Uses only outputs of other tagging algorithms
- IP3D track based algorithm
- SV1 Secondary vertex finding algorithm
- JetFitterCOMBNN

ATLAS has really converged on this one algorithm

Charm mesons also decay by the weak force

Typical tag rates are 15-20% of bottom tag rates

Specific algorithms have been designed to identify jets

Rank tracks in a vertex by IP significance

Charm

containing only charm

CMS

One track at a time add to a vertex

First track where $m_{vertex} >$

- 1.5 GeV is likely due to a bottom quark
- Combine likelihoods to reject charm in CSV

Can be a significant background in W+jets, etc.

G. Watts (UW/Seattle)

Charm

ATLAS

NN to aggregate the final values IP3D is also added in The "JetFitterCOMB" algorithm An input to the MV1

JetFitterCOMBNNc is a variant tuned to reject charm

Performance

Performance

Calibration

There is no clean sample of jets known to be bottom quarks!

 $Z \rightarrow e^+ e^-$

The QCD background is just too great!

Two bottom quark rich samples are used instead \leftarrow Errors driven by statistics and ability to determine *b*-fraction

 $t\bar{t}$ Production \leftarrow Hard because it's... top.

The techniques matter

From the 2011 ATLAS $VH \rightarrow Vb\bar{b}$ Analysis

(used dijet calibration only)

Bin	$ZH \rightarrow \ell^+ \ell^- b\bar{b}$				$WH \rightarrow \ell \nu b \bar{b}$				$ZH \rightarrow v \bar{v} b \bar{b}$		
	$p_{\rm T}^{\rm Z}[{\rm GeV}]$				$p_{\rm T}^W$ [GeV]				$E_{\rm T}^{\rm miss}$ [GeV]		
	0-50	50-100	100-200	>200	0-50	50-100	100-200	>200	120-160	160-200	>200
Components of the Signal Systematic Uncertainties [%]											
B-tag Eff	10	11	13	16	10	11	13	15	13	16	21
JES/MET	6.5	4.6	4.0	3.7	6.7	6.8	7.8	4.7	11.0	5.4	9.9
Leptons	1.1	1.5	1.5	3.6	3.2	4.2	5.0	5.5	-	-	-
Luminosity	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9	3.9
Pile Up	0.7	1.2	2.4	3.4	1.4	3.9	3.2	3.4	0.5	0.8	2.1
Theory	5	5	5	5	13	13	13	13	13	13	13
Total Signal	13.6	13.3	14.9	18.3	18.5	19.4	21.4	21.5	21.8	21.7	26.8

We expect dijet to be most powerful at low jet p_T , and $t\bar{t}$ calibration at high jet p_T

Operating Points

Most tagging algorithms produce a continuous output

Why not use as MVA input?

(CDF has already done this in most recent SM WH results)

Performance & Calibration

Calibration Results

Scale Factor

Using *b*-tagging

Straight Forward Search

Require at least 1 (2) jets to be tagged

Relatively high efficiency with 2 tags

Many of the early searches used this technique

Search with binning by N_{tagged}

Split analysis: 0 tags, 1 tag, 2 tags Spliting by S/\sqrt{B}

Tag requirements often different

Will we do better with continuous tagging?

Using *b*-tagging

Veto

Use a high efficiency operating point & algorithm Used to suppress a background containing heavy flavor. In $H \rightarrow ZZ \rightarrow llqq$ suppresses $Z \rightarrow b\overline{b}$ background In $H \rightarrow \tau\tau$ used to suppress $t\overline{t}$ backgrounds

Using *b*-tagging

CMS $VH \rightarrow Vb\overline{b}$ uses b-tagging to improve the mass resolution Events are chosen using standard search techniques

Use a Boosted Decision Tree to improve the bottom jet energy resolution

- Properties of a found secondary vertex
- Properties of the tracks (IP, etc.)
- Jet Energy related variables

Final Discriminate

- CSV max and min value for btagged jet
- Calibration done at many points enables this

G. Watts (UW/Seattle)

15% increase in mass resolution

Conclusions: Future

- Better Combinations
 - Both experiments have some techniques that might benefit each other
- Calibration Improvements
 - High luminosity and statistics $t\bar{t}$ should shrink the b-tagging error
 - Direct calibration of charm and tau backgrounds instead of Monte Carlo ratios
- Continuous Tagging
 - Using the output of a combined b-tagging algorithm directly as input
 - Final variable fit for analysis ordered in significance
- Better Treatment of systematic errors
 - Errors are being driven further into the analysis
 - Common errors like Jet Energy Scale need to be varied in common
 - Technically challenging
- High p_T Tagging
 - Efficiency turnover occurs around 200 GeV
 - Calibration is very difficult due to statistics
- Other types of taggers?
 - ATLAS has a double-bottom quark tagger $(g \rightarrow b\overline{b})$

Conclusions

- The 2012 tt calibration should be stunning
 And its effect should be obvious in the HCP results
- b-tagging continues to evolve
 - Many possible improvements
 - We are still a good way from the point of diminishing returns
 Though we try...
- Challenge: are there ways to use b-tagging in analysis with more than a highly tuned MVA?
 - How much will we improve on this as opposed to getting read for new data (\sqrt{N})
- I didn't mention high $\tan\beta$ bottom quark searches
 - Their use of b-tagging is similar to the SM analyses
 - See Keith's talk tomorrow