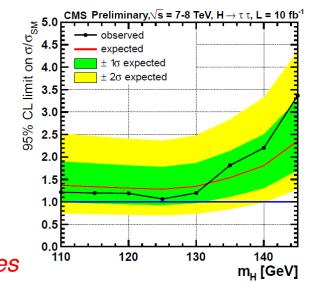
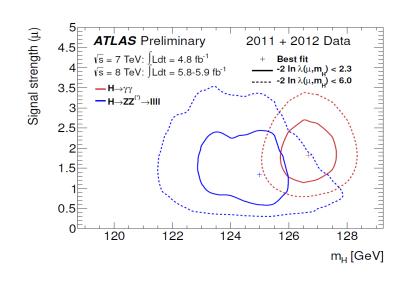

# Multilepton Searches: Implications for Recent Anomalies

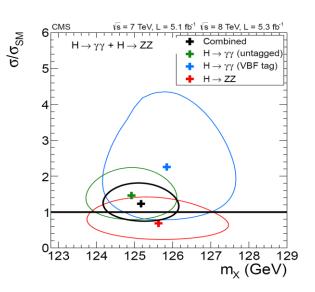
- Higgs couplings
- Dark matter (if time..)

## Kfir Blum

Chicago 2012 Workshop on LHC Physics 11/12/2012


## Higgs couplings





#### Anomalous couplings come from

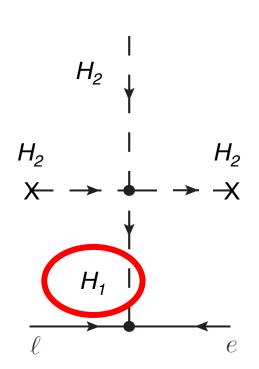
- Higgs mixing
- Fermion mixing
- Loops

All of the above require new light particles, EW charges EW decay chains → multileptons!



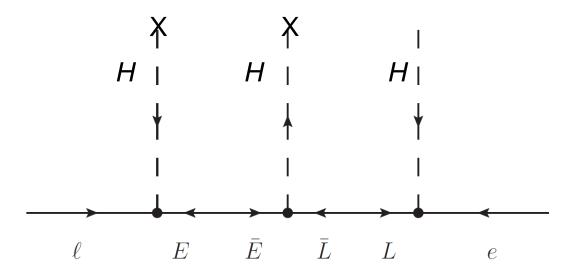





#### Anomalous couplings come from

- Higgs mixing (Nathaniel Craig's talk)
- Fermion mixing
- Loops

$$\frac{Y_l}{\Lambda^2} \left( \Box H^{\dagger} \right) l l^c$$


$$\frac{Y_l}{\Lambda^2} \left( H^{\dagger} H \right) H^{\dagger} l l^c$$

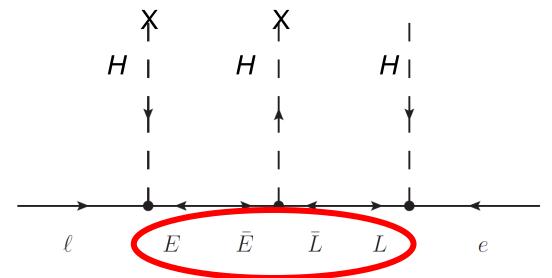
$$H_2 \approx H = \frac{v + h}{\sqrt{2}}$$



#### Anomalous couplings come from

- Higgs mixing
- Fermion mixing
- Loops




e.g. Kearney, Pierce, Weiner; 1207.7062

$$\frac{Y_l}{\Lambda^2} \left( \Box H^{\dagger} \right) l l^c$$

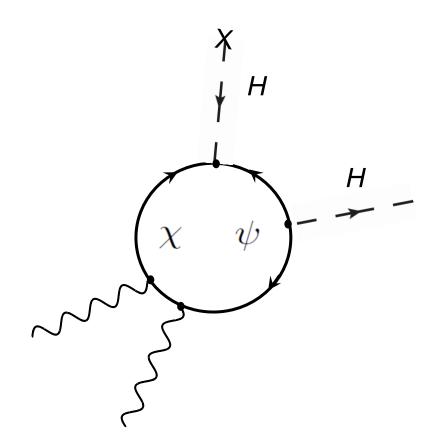
$$\frac{Y_l}{\Lambda^2} \left( H^{\dagger} H \right) H^{\dagger} l l^c$$

#### Anomalous couplings come from

- Higgs mixing
- Fermion mixing
- Loops



e.g. Kearney, Pierce, Weiner; 1207.7062

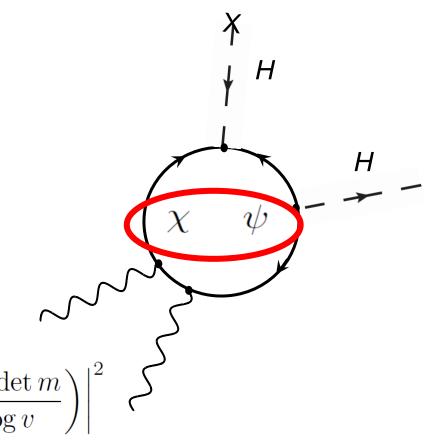

$$rac{Y_l}{\Lambda^2} \left( \Box H^\dagger \right) l l^c$$
  $rac{Y_l}{\Lambda^2} \left( H^\dagger H \right) H^\dagger l l^c$ 

#### Anomalous couplings come from

- Higgs mixing
- Fermion mixing
- Loops

e.g. Carena, Low, Wagner; JHEP 1208 (2012) 060

$$\frac{\alpha}{\Lambda^2}H^{\dagger}HF_{\mu\nu}F^{\mu\nu}$$




#### Anomalous couplings come from

- Higgs mixing
- Fermion mixing
- Loops

e.g. Carena, Low, Wagner; JHEP 1208 (2012) 060

$$\frac{\Gamma(h \to \gamma \gamma)}{\Gamma(h \to \gamma \gamma)_{SM}} \approx \left| 1 + \frac{bQ^2}{\mathcal{A}_{SM}^{\gamma}} \left( \frac{\partial \log \det m}{\partial \log v} \right) \right|^2$$



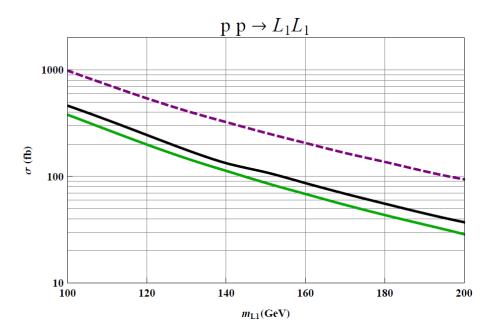
## **Diphoton enhancement?**Implications for models w/ fermions

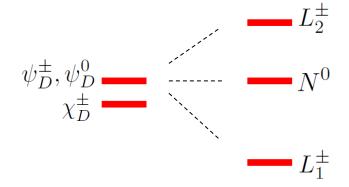
Minimal building block for enhanced diphoton rate

$$-\mathcal{L} = m_{\psi}\psi\psi^{c} + m_{\chi}\chi\chi^{c} + yH\psi\chi + y^{c}H^{\dagger}\psi^{c}\chi^{c} + cc$$

At least one set of fermions w/ SU(2) spin ≥ ½ → produced off Z, gamma

## **Diphoton enhancement?**


## Implications for models w/ fermions

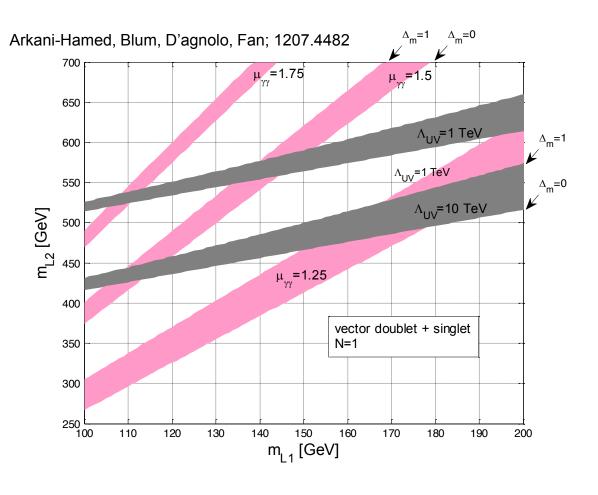

Minimal building block for enhanced diphoton rate

$$-\mathcal{L} = m_{\psi}\psi\psi^{c} + m_{\chi}\chi\chi^{c} + yH\psi\chi + y^{c}H^{\dagger}\psi^{c}\chi^{c} + cc$$

At least one set of fermions w/ SU(2) spin  $\geq \frac{1}{2}$  produced off Z, gamma

Example:  $\psi, \psi^c \sim (1, 2)_{\pm \frac{1}{2}} \quad \chi, \chi^c \sim (1, 1)_{\mp 1}$ 



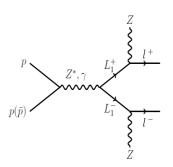



EWSB drives L1 diphoton rate



## **Diphoton enhancement?**Implications for models w/ fermions

pheno depends on decay mode(s)



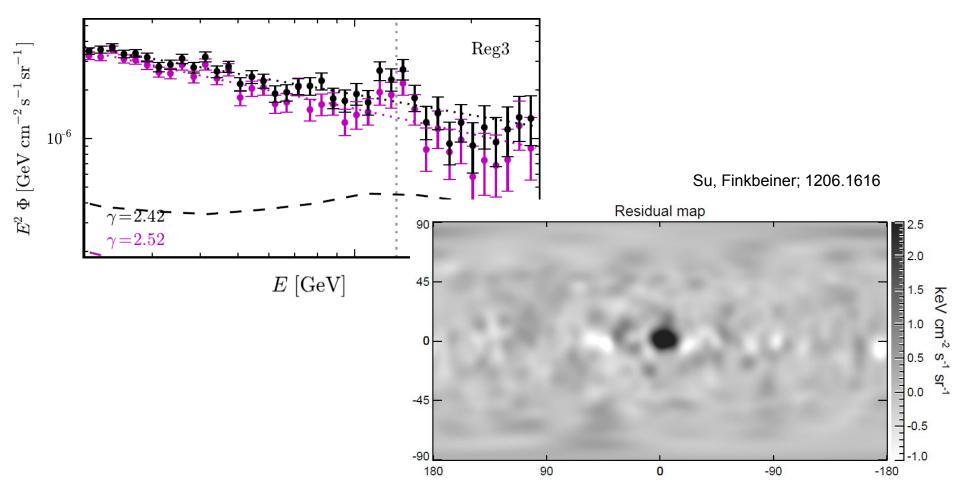

## **Diphoton enhancement?**Implications for models w/ fermions

pheno depends on decay mode(s)



(small) mass mixing w/ e,µ:



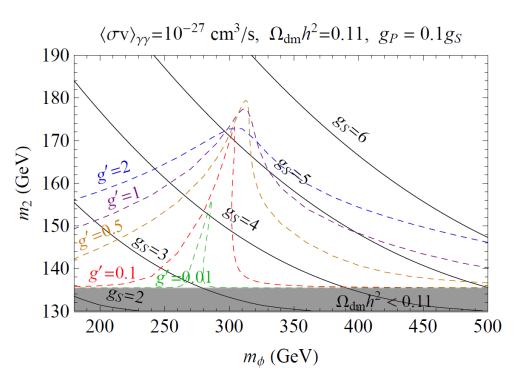

Search for anomalous production of multilepton events in pp collisions at  $\sqrt{s}=7\,\mathrm{TeV}$ 



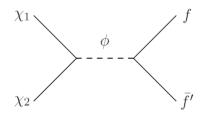
| Selection                                    | obs | background  |
|----------------------------------------------|-----|-------------|
| $4l,\mathrm{MET}<50$ GeV, $H_T<200$ GeV, $Z$ | 33  | $37 \pm 15$ |

#### ... A gamma ray line?

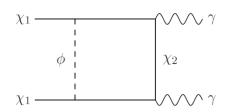
Weniger; JCAP 1208 (2012) 007




#### A gamma ray line?


#### Need to suppress continuum @ E<<100 GeV

Example: (Tulin, Yu, Zurek; 1208.0009)

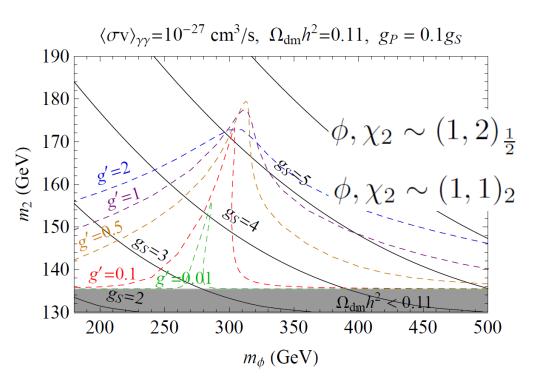

$$\mathcal{L}_{int} = \bar{\chi}_2(g_S + g_P \gamma_5) \chi_1 \phi + \bar{f}(g_S' + g_P' \gamma_5) f' \phi + h.c.$$



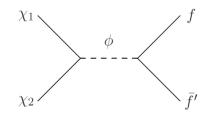
#### Relic density



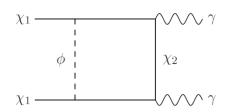
#### Gamma ray line



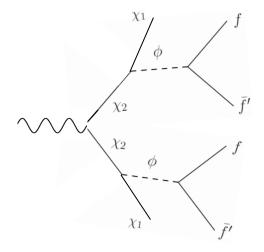

#### A gamma ray line?


#### Need to suppress continuum @ E<<100 GeV

Example: (Tulin, Yu, Zurek; 1208.0009)


$$\mathcal{L}_{int} = \bar{\chi}_2(g_S + g_P \gamma_5) \chi_1 \phi + \bar{f}(g_S' + g_P' \gamma_5) f' \phi + h.c.$$

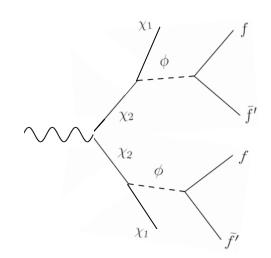



#### Relic density



#### Gamma ray line




#### 4I+MET

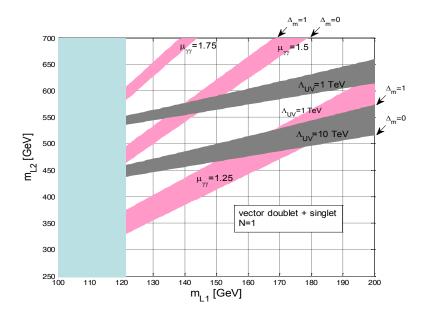


#### A gamma ray line?

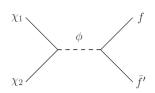
#### Need to suppress continuum @ E<<100 GeV

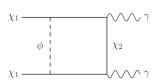
Example: (Tulin, Yu, Zurek; 1208.0009)

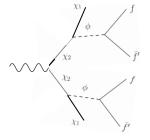



### → Some models massively excluded by 7TeV multilepton results (10fb) x (5/fb) x 0.7<sup>4</sup> ~ 12 (!)

| Selection                                                                    | $N(\tau_h)=0$ |                   | $N(\tau_h)=1$ |                 | $N(\tau_h)=2$ |                 |
|------------------------------------------------------------------------------|---------------|-------------------|---------------|-----------------|---------------|-----------------|
|                                                                              | obs           | expected          | obs           | expected        | obs           | expected        |
| 4 Lepton results                                                             |               |                   |               |                 |               |                 |
| $4\ell \; E_{\rm T}^{\rm miss} > 50,  H_{\rm T} > 200,  {\rm no}   {\rm Z}$  | 0             | $0.018 \pm 0.005$ | 0             | $0.09 \pm 0.06$ | 0             | $0.7 \pm 0.7$   |
| $4	extstyle E_{ m T}^{ m miss}$ >50, $H_{ m T}$ > 200, $Z_{ m c}$            | 0             | $0.22 \pm 0.05$   | 0             | $0.27 \pm 0.11$ | 0             | $0.8 \pm 1.2$   |
| $4\ell \; E_{\rm T}^{\rm miss} > 50,  H_{\rm T} < 200,  {\rm no} \; {\rm Z}$ | 1             | $0.20 \pm 0.07$   | 3             | $0.59 \pm 0.17$ | 1             | $1.5 \pm 0.6$   |
| $4\ell E_{\mathrm{T}}^{\mathrm{miss}} > 50$ , $H_{\mathrm{T}} < 200$ , $L$   | 1             | $0.79 \pm 0.21$   | 4             | $2.3 \pm 0.7$   | 0             | $1.1 \pm 0.7$   |
| $4\ell \; E_{\rm T}^{\rm miss} < 50,  H_{\rm T} > 200,  {\rm no}   {\rm Z}$  | 0             | $0.006 \pm 0.001$ | 0             | $0.14 \pm 0.08$ | 0             | $0.25 \pm 0.07$ |
| $4\ell E_{\rm T}^{\rm miss} < 50, H_{\rm T} > 200, Z$                        | 1             | $0.83 \pm 0.33$   | 0             | $0.55 \pm 0.21$ | 0             | $1.14 \pm 0.42$ |
| $4\ell \; E_{\rm T}^{\rm miss} < 50,  H_{\rm T} < 200,  {\rm no} \; {\rm Z}$ | 1             | $2.6 \pm 1.1$     | 5             | $3.9 \pm 1.2$   | 17            | $10.6 \pm 3.2$  |
| $4\ell E_{\rm T}^{\rm miss} < 50, H_{\rm T} < 200, Z$                        | 33            | $37 \pm 15$       | 20            | $17.0 \pm 5.2$  | 62            | $43 \pm 16$     |


## **Summary**


- Multilepton searches putting pressure on new EW states
- Important consistency checks on (if) anomalous Higgs couplings

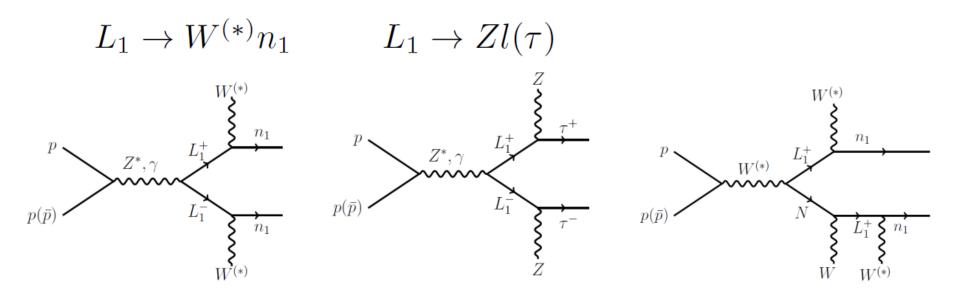

models with only NP fermions
generically inconsistent w/ large
diphoton enhancement.
Remaining (tuned) solutions
under LHC pressure, e.g. multileptons
(or discovery in morning session...)



- Generic WIMP models → VV, leptons + MET, motivation for multilepton analyses
- Gamma ray line? some models massively dead





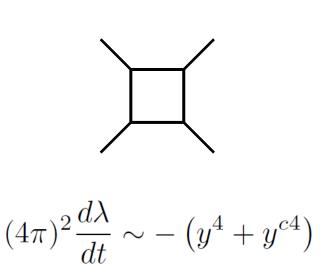


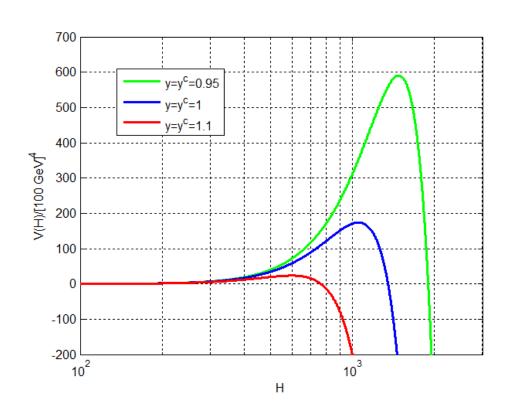



## Implications of a diphoton enhancement: un-natural models

#### Implications:

- 1. Fermion models with cut-off >10 TeV give ~50% enhancement at most, and that is with some tuning of dials
- 2. Cut-off above 10 Tev → charged, uncolored state(s) @100-150 GeV

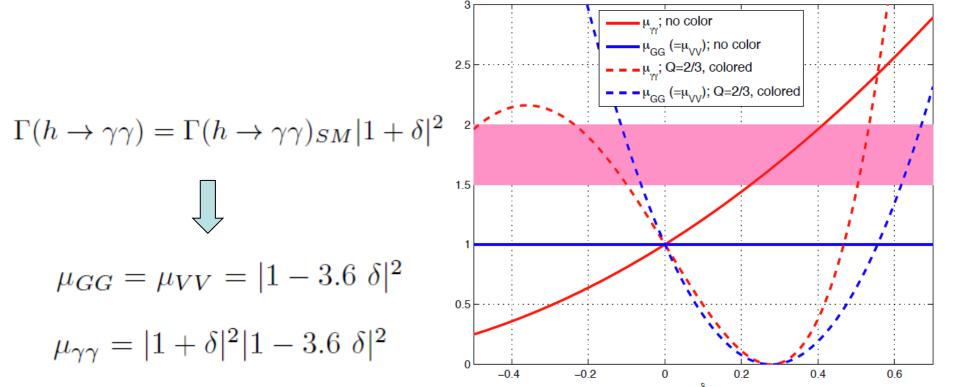




## Diphoton enhancement?

#### Implications for fermion models

$$-\mathcal{L} = m_{\psi}\psi\psi^{c} + m_{\chi}\chi\chi^{c} + yH\psi\chi + y^{c}H^{\dagger}\psi^{c}\chi^{c} + cc$$

Large diphoton effect → RGE drives Higgs quartic negative






## Diphoton enhancement?

If hVV is SM-like, then looks like charged, uncolored, light new particle in loop

uncolored: o/w would mess up hGG (and, well, haven't seen it directly produced yet!)



## Is electroweak symmetry breaking Natural?

