CT NNLO PDFs, PDF benchmarking, understanding the gluon PDF

Pavel Nadolsky

Southern Methodist University Dallas, TX, U.S.A.

in collaboration with M. Guzzi, J. Gao, J. Huston, H.-L. Lai, Z. Li, Z. Liang, J. Pumplin, D. Soper, D. Stump, C.-P. Yuan

November 14, 2012

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

《曰》 《圖》 《臣》 《臣》

1. CT NNLO error PDFs

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

11/14/2012 2

イロン イロン イヨン イヨン

Two sets of CT NNLO error PDFs

1. CT10 NNLO eigenvector set Available at http://hep.pa.msu.edu/cteq/public/ct10_2012.html and in LHAPDF 5.8.6; arXiv:1206.3321, long paper on the way

Complements the CT10/CT10W NLO PDF sets (Lai et al., PRD82, 074024 (2010))

- Based on the NNLO implementation of NC DIS with massive quarks published in Guzzi et al., arXiv:1108.5112
- Includes only "pre-LHC" CT10 data. Can be used to predict LHC cross sections based on pre-LHC experimental inputs
- Same input parameters, functional forms for input PDFs as in the CT10 NLO PDFs
 - $\alpha_s(M_Z) = 0.118 \pm 0.002$, $m_c^{pole} = 1.3 \text{ GeV}$, $m_b^{pole} = 4.75 \text{ GeV}$
 - Simpler assumptions about the PDF flavor composition at $\mu_0 = m_c^{pole} = 1.3 \text{ GeV}$, e.g., $\bar{u}(x)/\bar{d}(x) \rightarrow 1 \text{ as } x \rightarrow 0$

Updated $N_f = 3$ and 4 NLO sets.

・ロン ・四マ・モリ・ モリー

Two sets of CT NNLO error PDFs

2. CT12 NLO and NNLO eigenvector sets

Is under development

- Include LHC W and Z rapidity data, ATLAS and CMS jet data, HERA'2011 F_L data
- Updated α_s, m_c, m_b values
- Flexible \bar{d}/\bar{u} ratio at $x \to 1$, updated $(s+\bar{s})/(\bar{u}+\bar{d})$ at $x \lesssim 10^{-2}$
 - Constrained by the LHC W/Z rapidity distributions

イロト イ団ト イヨト イヨトー

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

11/14/2012 5

CT10 PDF sets: the naming conventions

Two NLO PDF sets, without/with Tevatron Run-2 data on W charge asymmetry A_{ℓ} c

CT10 NLO does not include CT10W NLO includes 4 $p_{T\ell}$ bins of D0 Run-2 A_ℓ data

 \Rightarrow CT10 and CT10W sets differ mainly in the behavior of d(x,Q)/u(x,Q) at x>0.1

- **One NNLO PDF set:** only 2 inclusive $p_{T\ell}$ bins of D0 Run-2 A_{ℓ} data are included that have smallest theory uncertainties
- The NNLO set is a counterpart of both CT10 NLO and CT10W NLO. It uses only a part of the A_{ℓ} data sample that distinguishes between CT10 NLO and CT10W NLO.

Pavel Nadolsky (SMU)

CT10 NNLO central PDFs, as ratios to NLO, Q=2 GeV

1. At $x < 10^{-2}$, $\mathcal{O}(\alpha_s^2)$ evolution suppresses g(x,Q), increases q(x,Q)2. c(x,Q) and b(x,Q) change as a result of the $\mathcal{O}(\alpha_s^2)$ GM VFN scheme 3. At x > 0.1, g(x,Q) and d(x,Q) are reduced by revised EW couplings, alternative treatment of correlated systematic errors, scale choices

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

CT10 NNLO central PDFs, as ratios to NLO, Q=85 GeV

イロト イポト イヨト イヨト

CT12 NLO predictions for LHC jet production ATLAS single-inclusive jet production (arXiv:1112.6297); FastNLO 2; R=0.6; $\chi^2/N_{d.o.f} = 0.72 (0.98)$ for CT12 NLO (CT10 NLO)

CT10 NNLO and CT12 PDFs (black lines) predict smaller jet cross sections at large p_T , as a result of reduced g(x,Q) at x > 0.1

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

CT10 NNLO PDFs compared to MSTW NNLO

2. The CT10 strange PDF is larger at $x \sim 10^{-3}$

Predictions for production of electroweak bosons

NNLO cross sections

Pavel Nadolsky (SMU)

11/14/2012 11

トロアトロアト モアメモト ヨー のへの

2. 2012 benchmark comparisons of NNLO PDFs

J. Rojo, S. Carrazza, J. Gao, R. Ball, L. Del Debbio, S. Forte, N. Hartland, J. Huston, P. Nadolsky, D. Stump, R. Thorne, C.-P. Yuan

arXiv:1211.xxxx – submitted today

イロト イポト イヨト イヨト

PDF benchmarks: gg luminosities

Thorne, Watt, arXiv:1106.5789 (hep-ph)

PDF benchmarks: SM Higgs and $t\bar{t}$ cross sections

J. Rojo et al., arXiv:1211.xxxx – submitted today

<ロ> (日) (日) (日) (日) (日)

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

PDF benchmarks, PDF+ α_s uncertainty

2010 NLO

2012 NLO

 $\sigma_H^{NLO}(2010) =$ 13.98 ± 0.85 pb (6.1%) $\sigma_H^{NLO}(2012) =$ 14.05 ± 0.86 pb (6.1%)

The PDF+ α_s errors are computed by the "envelope" method No significant change in NLO cross sections

▲□ > ▲圖 > ▲目 > ▲目 > ■ の < @

PDF benchmarks, PDF+ α_s uncertainty

 $\sigma_H^{NLO}(2010) = 18.75 \pm 1.24 \text{ pb } (6.6\%)$

 $\sigma_H^{NLO}(2012) =$ 14.05 ± 0.86 pb (6.1%)

The PDF+ α_s errors are computed by the "envelope" method **both** for NLO and NNLO

The NLO and NNLO **relative** PDF errors are about the same

3. The puzzle of the gluon PDF

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

11/14/2012 17

-

(日)

What drives remaining differences in gluon PDFs/luminosities?

2010 NLO

(N)NNLO corrections are not the main source of uncertainty in the PDFs. Other sources were identified or eliminated in the past year

Differences between gluon PDFs from various groups

Origins of some differences are well-known; other differences (in bold) are still under investigation

Source	Example
Selection of fitted data	Are the Tevatron Run-1 jet
	data included in the fit?
Heavy-quark schemes	Fixed-flavor number (ABM);
	General-mass VFN (all other groups)
(NLO) EW contributions in DIS	
(In)compatible NLO	EKS (CT10 NLO); NLOJet++
programs for jet production	and interfaces (other groups)
Scale choices	Which QCD scales are
	used in incl. jet production?
Treatment of correlated	How are correlated errors
systematic effects	included in χ^2 ?

Correlation index $\langle |\cos \varphi| \rangle_W$ measures sensitivity of experiments to g(x,Q)

101	BCDMS F ₂ ^p
102	BCDMS F_2^d
103	NMC F ^p ₂
104	NMC F_2^d/F_2^p
108	CDHSW F ^p ₂
109	CDHSW F ^p ₃
110	CCFR F ₂ ^p
111	$CCFR xF_3^p$
124	NuTeV neutrino dimuon SIDIS
125	NuTeV antineutrino dimuon SIDIS
126	CCFR neutrino dimuon SIDIS
127	CCFR antineutrino dimuon SIDIS
140	H1 F_2^c
143	H1 σ_r^c for $c\bar{c}$
156	ZEUS F ₂ (67)
157	ZEUS $F_2^c(80)$
157	ZEUS F ₂ ^c (80) Combined HERA1 NC and CC DIS
157 159 201	ZEUS $F_2^c(80)$ Combined HERA1 NC and CC DIS E605 Drell-Yan process, $\sigma(pA)$
157 159 201 203	ZEUS $F_2^c(80)$ Combined HERA1 NC and CC DIS E605 Drell-Yan process, $\sigma(pA)$ E866 Drell-Yan process, $\sigma(pd)/(2\sigma(pp))$
157 159 201 203 204	$ \begin{array}{c} \textbf{ZEUS} F_2^*(80) \\ \hline \textbf{Combined HERA1 NC and CC DIS} \\ \hline E605 Drell-Yan process, \sigma(pA) \\ \hline E866 Drell-Yan process, \sigma(pp) / (2\sigma(pp)) \\ \hline E866 Drell-Yan process, \sigma(pp) \end{array} $
157 159 201 203 204 225	ZEUS F ² ₂ (80) Combined HERA1 NC and CC DIS E605 Drell-Yan process, σ(pA) E866 Drell-Yan process, σ(pp) E866 Drell-Yan process, σ(pp) CDF Run-1 W charge asymmetry
157 159 201 203 204 225 227	ZEUS F ₂ (80) Combined HERA1 NC and CC DIS E605 Drell-Yan process, σ(p,t) E866 Drell-Yan process, σ(pt)/(2σ(pp)) E866 Drell-Yan process, σ(pt) CDF Run-1 W charge asymmetry CDF Run-2 W charge asymmetry
157 159 201 203 204 225 227 231-234	ZEUS F ₂ (80) Combined HERA1 NC and CC DIS E605 Drell-Yan process, $\sigma(pA)$ E866 Drell-Yan process, $\sigma(pA)(2\sigma(pP))$ E866 Drell-Yan process, $\sigma(pp)$ CDF Run-1 W charge asymmetry CDF Run-2 W charge asymmetry DD Run-2 W charge asymmetry
157 159 201 203 204 225 227 231-234 260	ZEUS F;(80) Combined HER1 NC and CC DIS E605 Drell-Yan process, a(p.A) E864 Drell-Yan process, a(p.a) E864 Drell-Yan process, a(p.p) CDF Run-1 W charge asymmetry CDF Run-2 W charge asymmetry D0 Run-2 W charge asymmetry D0 Run-2 C rapidity distribution
157 159 201 203 204 225 227 231-234 260 261	ZEUS F;(80) Combined HER1 NC and CC DIS E605 Drell-Yan process, $\sigma(pA)$ E860 Drell-Yan process, $\sigma(pA)$ E860 Drell-Yan process, $\sigma(pp)$ CDF Run-1 W charge asymmetry CDF Run-2 W charge asymmetry D0 Run-2 Z rapidity distribution CDF Run-2 Trapidity distribution
157 159 201 203 204 225 227 231-234 260 261 268	ZEUS F2(80) Combined HER1 NC and CC DIS E605 Dreil-Yan process, a(p,A) E864 Dreil-Yan process, a(p,A) E864 Dreil-Yan process, a(p,y) CDF Run-1W charge asymmetry CDF Run-2W charge asymmetry D0 Run-2 V charge asymmetry D0 Run-2 Z rapidity distribution CDF Run-2 Z rapidity distribution ATLAS combined WZ data
157 159 201 203 204 225 227 231-234 260 261 268 504	ZEUS F;(80) Combined HER1 NC and CC DIS E605 Drell-Yan process, a(p,A) E866 Drell-Yan process, a(p,A) E866 Drell-Yan process, a(pp) CDF Run-2 W charge asymmetry D0 Run-2 W charge asymmetry D0 Run-2 V charge asymmetry D0 Run-2 Z rapidity distribution CDF Run-2 Z rapidity distribution ALLAS combined W Z data CDF Run-2 Inclusive jet production
157 159 201 203 204 225 227 231-234 260 268 504 514	ZEUS F2(80) Combined HER1 NC and CC DIS E605 Dreil-Yan process, ra(nA) E606 Dreil-Yan process, ra(ny) E660 Dreil-Yan process, ra(ny) CDF Run-1 W charge asymmetry CDF Run-2 W charge asymmetry D0 Run-2 V charge asymmetry D0 Run-2 I rapidity distribution CDF Run-2 I rapidity distribution ATLAS combined W 2 data CDF Run-2 Inclusive jet production D0 Run-2 Inclusive jet production
157 159 201 203 204 225 227 231-234 260 261 268 504 514 534	ZEUS F;(80) Combined HER1 NC and CC DIS E605 Drell-Yan process, a(p,A) E866 Drell-Yan process, a(p,A) E866 Drell-Yan process, a(p,p) CDF Run-2 W charge asymmetry D0 Run-2 W charge asymmetry D0 Run-2 Z rapidity distribution CDF Run-2 Z rapidity distribution ATLAS combined W Z data CDF Run-2 Inclusive jef production D0 Run-2 Inclusive jef production ATLAS inclusive jef Production ATLAS inclusive jef Production

Weighted correlation index of q(x,Q=2 GeV), CT10 NNLO

101

J. Gao, in preparation A dark color indicates sensitivity to q(x,Q)at x values on the horizontal axis

<ロ> (日) (日) (日) (日) (日)

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

æ 11/14/2012 20 Measured single-inclusive jet and dijet cross sections are unfolded and corrected to be compared to PQCD theory directly at the parton level.

NLO theoretical predictions: EKS

(PRL69, 1496), NLOJET++ (PRL88, 122003), FASTNLO (hep-ph/0609285), APPLgrid (EPJC66, 503), POWHEG (JHEP04081), Z.Bern et. al. (1112.3940);...

Resummed results: N. Kidonakis (PRD63, 054019), POWHEG

NNLO predictions are anticipated soon and will make the difference

(日) (四) (日) (日) (日)

MEKS: an advanced NLO calculation for inclusive iet cross sections

J. Gao, Z. Liang, D. E. Soper, H.-L. Lai, P.N., and C.-P. Yuan, arXiv:1207.0513

Global PDF fits use different programs to compute NLO jet cross sections: EKS (CT10 NLO), FastNLO (CT10 NNLO and MSTW'08), APPLgrid (NNPDF2.3).

- Non-negligible differences between these codes were identified in the past year.
- We developed a modernized EKS program (MEKS) that provides an alternative to the NLOJET++ program in precision calculations for the Tevatron/LHC.
 - The old EKS required tuning for each jet observable, was not parallelizable and difficult to use
- By comparing MEKS and FastNLO, we brought them into agreement to a percent-level accuracy э

Main features of MEKS

- Can be downloaded from HEPFORGE
- Double differential output for single-inclusive jet and dijet production at NLO.
- Fortran 77; linked to CUBA (Monte-Carlo integration) and LHAPDF (PDF parametrizations)
- Monte-Carlo integration is optimized for steeply falling jet cross sections
- Parallelization: Events from independent parallel computations can be easily combined during offline analysis.
- A Monte-Carlo integration error of ~ 1% in each typical experimental bin is achieved within about 1 day on 10 CPU's at NLO.

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

Comparison of MEKS and FastNLO 1.0 Dijet production: excellent agreement at both the Tevatron and LHC

Single-inclusive jet production: discrepancies of 3-10% exist at large p_T , possibly due to different definitions of the "jet p_T " used as the QCD scale.

Benchmark comparison of NLO programs

- "QCD scale: p_T of jet"
- FASTNLOv1: average p_T of each bin
- FASTNLOv2: individual jet p_T
- APPLGRID: hardest jet *p*_T in each rapidity bin
- MEKS1: individual jet p_T
- MEKS2: hardest jet p_T

Experim. syst. errors are not included

< 🗇 🕨

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

11/14/2012 25

Scale variations (left) vs. PDF uncertainty (right)

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

11/14/2012 20

Observations from benchmark comparisons of NLO jet cross sections

- The NLO scale uncertainty of jet cross sections is appreciable. No optimal scale exists that would assuredly suppress NNLO corrections at all p_T and y.
- It is possible to estimate the impact of this NLO uncertainty on the current "NNLO fits" (cf. the next slide).
- The benchmarking of NLO codes prepares the stage for the NNLO calculation for jet production that is very desirable.

Effects of scale uncertainties on the CT12 PDF set

We included scale uncertainty of jet cross sections into the PDF uncertainty of a candidate CT12 set. The scale uncertainty is included with the same method as the experimental correlated uncertainty.

Gluon PDF uncertainties at 90% C.L. for the fits with and without theoretical errors. Scale dependence of jet cross sections increases the net gluon PDF uncertainty at x > 0.1 by about 20%

PRELIMINARY

Effects of scale uncertainties on the CT12 PDF set

The gluon PDFs in the moderate x region is also affected by the scale dependence errors, as a result of the momentum sum rule

<ロ> (日) (日) (日) (日) (日)

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

E ► E • ○ <</p>
11/14/2012 29

A basic estimate of missing higher-order corrections

See also Olness, Soper, arXiv:0907.5052; Cacciari, Houdeau, arXiv:1105.5152

For arbitrary $\mu_{R,F}$, the NLO cross sections in the experimental bins i can be written as

$$\sigma_{bin}^{NLO}(\mu_F, \,\mu_R, \,i) = \sigma_{bin}^{NLO}(\mu_F^{(0)}, \,\mu_R^{(0)}, \,i) \Big\{ 1 + \sum_{j=1}^3 e_j(\mu_F^{(0)}, \mu_R^{(0)}, i) x_j + \mathcal{O}(\alpha_s^3(\mu_R^{(0)})) \Big\}$$

with

$$\begin{aligned} x_1 &= \ln(\frac{\mu_F}{\mu_F^{(0)}}), \qquad x_2 &= \ln(\frac{\mu_R}{\mu_R^{(0)}}), \qquad x_3 &= \ln^2(\frac{\mu_F}{\mu_F^{(0)}}), \\ x_4 &= \ln^2(\frac{\mu_R}{\mu_R^{(0)}}), \qquad x_5 &= \ln(\frac{\mu_F}{\mu_F^{(0)}})\ln(\frac{\mu_R}{\mu_R^{(0)}}), \end{aligned}$$

where $\mu_F^{(0)}$ and $\mu_R^{(0)}$ are the reference scales.

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

イロト イポト イヨト イヨト

= 900

A basic estimate of missing higher-order corrections

See also Olness, Soper, arXiv:0907.5052; Cacciari, Houdeau, arXiv:1105.5152

For arbitrary $\mu_{R,F}$, the NLO cross sections in the experimental bins i can be written as

$$\sigma_{bin}^{NLO}(\mu_F, \mu_R, i) = \sigma_{bin}^{NLO}(\mu_F^{(0)}, \mu_R^{(0)}, i) \Big\{ 1 + \sum_{j=1}^{3} e_j(\mu_F^{(0)}, \mu_R^{(0)}, i) x_j + \mathcal{O}(\alpha_s^3(\mu_R^{(0)})) \Big\}$$

Treat x_i as independent corr. sources with quasi-Gaussian distributions (plausible, but not necessarily true). Assign your favorite confidence level (68% c.l.) to the range $1/2 < \mu_{F,R}/\mu_{F,R}^{(0)} < 2$. Evaluate the variation of $\sigma_{bin}^{NLO}(\mu_F, \mu_R, i)$ in this scale range. Find $e_j(i)$ numerically and use them to construct the correlation matrix. Reduce the number of principal components to eliminate x_i combinations that have vanishing effect on theory cross sections.

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

Conclusions and prospects

– The CT10 NNLO PDF analysis (using pre-LHC data only) is released. It is based on a new NNLO implementation (S-ACOT- χ) of heavy-quark DIS contributions (*Guzzi et al., arXiv:1108.5112*).

– The CT12 (N)NLO analysis (in progress) will include latest LHC data on W, Z, and jet production. Possible impact on SU(3) properties of quark sea at $x < 10^{-3}$.

– The 2012 benchmarking study will update the recommendation for computing the NNLO PDF+ α_s uncertainty for LHC measurements

- A code MEKS for full NLO inclusive (di)jet production was developed. MEKS is independent from NLOJET++, it is fast, and parallelizable. Its comparison against APPLgrid/FastNLO reveals significant impact of scale dependence in NLO jet cross sections on the NNLO PDFs.

- Near-future publications will discuss other issues affecting the gluon and other PDFs, such as the treatment of correlated syst. errors in jet production.

Backup slides

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

≣। 11/14/2012 32

(日) (四) (日) (日) (日)

Neutral-current DIS in a general-mass scheme at NNLO

M. Guzzi, P.N., H.-L. Lai, C.-P. Yuan, arXiv:1108.5112 (hep-ph)

Objectives

■ The CT10 fit computes *c*, *b* quark contributions to NC DIS in the S-ACOT-χ general-mass factorization scheme (Aivasis, Collins, Olness, Tung, 1994; Collins, 1998; Kramer, Olness, Soper; Tung, Kretzer, Schmidt)

We have realized this scheme at NNLO. We have also demonstrated how to derive this scheme (including kinematic rescaling of heavy-quark scattering terms at the mass threshold) from the QCD factorization theorem by Collins

NNLO scattering contributions

-

Massive quark contributions to neutral-current DIS...

...affect predictions for the LHC W and Z cross sections $_{(Tung \ et \ al., hep-ph/0611254)}$

The NNLO realization of the S-ACOT- χ factorization scheme combines benefits of several approaches

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

Main features of the S-ACOT- χ scheme

It is proved to all orders by the QCD factorization theorem for DIS (Collins, 1998)

Universal PDFs

- It is relatively simple
 - One value of N_f (and one PDF set) in each Q range
 - sets $m_h = 0$ in ME with incoming h = c or b
 - matching to FFN is implemented at the level of the QCD factorization theorem
- \blacksquare It reduces to the ZM \overline{MS} scheme at $Q^2 \gg m_Q^2$, without additional renormalization
- It reduces to the FFN scheme at $Q^2 \approx m_Q^2$
 - has reduced dependence on tunable parameters at NNLO

Components of inclusive $F_{2,L}(x,Q)$

S-ACOT- χ NNLO expressions are reminiscent of the ZM scheme (e.g., in Moch, Vermaseren, Vogt, 2005), with all components available from literature

Components of inclusive $F_{2,L}(x,Q^2)$ are classified according to the quark couplings to the photon

$$F = \sum_{l=1}^{N_l} F_l + F_h \tag{1}$$

$$F_{l} = e_{l}^{2} \sum_{a} \left[C_{l,a} \otimes f_{a/p} \right] (x, Q), \quad F_{h} = e_{h}^{2} \sum_{a} \left[C_{h,a} \otimes f_{a/p} \right] (x, Q). \quad (2)$$

$$\downarrow^{\gamma^{*}} \qquad \downarrow^{q^{*}} \qquad \downarrow^$$

Rescaling to all orders of α_s and the factorization theorem

We show that a minor modification of the QCD factorization theorem (*Collins, 1998*)...

■ enables suppression of charm production at $Q^2 \rightarrow m_{c,b}^2$ in all channels and at each α_s order without extra smoothness conditions or damping factors

preserves universality of heavy-quark PDFs

4. Computation of correlated systematic errors

$$\chi^2 = \sum_{\{\text{exp.}\}} \left[\sum_{k=1}^{N_{pts}} \frac{1}{s_k^2} \left(D_k - T_k(\{a\}) - \sum_{\alpha=1}^{N_\lambda} \lambda_\alpha \beta_{k\alpha} \right)^2 + \sum_{\alpha=1}^{K_e} \lambda_\alpha^2 \right]$$

The experimental correlated systematic errors $\beta_{k\alpha}$ are often published as percentages. It can be taken to be a percentage of the theoretical prediction T_k ("truth") or the experimental datum D_k .

- **1. Percentage of** T_k : results in smooth $\beta_{k\alpha}$:-); may depend on the theoretical model :-(
- 2. Percentage of D_k : $\beta_{k\alpha}$ is deduced from the measured data :-), but may not be smooth due to statistical fluctuations :-(

The methods are equivalent if T_k is close to D_k . In the actual CTXX fits to the Tevatron Run-2 jet data, **method 1** (used in pre-2012 CTEQ fits) results in a harder gluon at x > 0.1 than **in method 2**. We use **method 2** in the latest NNLO fits.

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

4.2. Impact on the best fit NLO PDFs

pc317I: CT12 NLO candidate obtained with method 1

pc317n: CT12 NLO candidate obtained with method 2 Notice changes in u(x,Q), d(x,Q),q(x,Q)

コン くぼと くほとし

Pavel Nadolsky (SMU)

Strangeness in CT12 PDFs and LHC W/Z cross sections

In 2008, our CTEQ6.6 PDF correlation analysis pointed out the sensitivity of ratios σ_W/σ_Z at the LHC to the strangeness PDF, with implications to EW precision measurements (*RN., Lai, Cao, Huston, Pumplin, Tung, Yuan, PRD, 78 (2008) 013004*).

The ATLAS analysis (arXiv:1203.4051) of W and Z production suggests that $\bar{s}(x,Q)/\bar{d}(x,Q) = 1.00^{+0.25}_{-0.28}$ at x = 0.023 and $Q^2 = 1.9 \text{ GeV}^2$

What is the impact of the new LHC W and Z data on the CT12 PDFs that will include them?

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop

Small-x limits of $\bar{d}(x,Q)/\bar{u}(x,Q)$ and $\bar{s}(x,Q)/\bar{u}(x,Q)$ in the CT12 analysis (PRELIMINARY)

The CT12 analysis explores the possibility of $\lim_{x\to 0} \bar{d}/\bar{u} \neq 1$. Some "unbiased" CT12 candidate fits have $\bar{s}(x, Q)/\bar{u}(x, Q) > 1$ at $x < 10^{-3}$.

We would like to better understand the flavor decomposition at small x before releasing the CT12 PDFs.

Pavel Nadolsky (SMU)

Univ. of Chicago Workshop