Hadron particle detection (with the CMS detector)

Stefan Piperov (INRNE/BAS)

Sep.19, 2012, CERN

- Small introduction
- Hadron Calorimetry: Measuring the energy of a hadron
- CMS detector and its calorimetric systems
- TestBeam Measurements
- MonteCarlo Simulation and comparison to TestBeam

Before we start...

What do we know about matter?

This is what we know about the particles that constitute our Universe. The only thing still missing WAS the Higgs-boson that gives mass to all the particles. Plus everything that we still don't know about...

Bulgarian Teachers @CFRN (2012)

LHC, CERN, Geneva

Bulgarian Teachers @CFRN (2012)

Start the protons out here

The CMS experiment

Bulgarian Teachers @CERN (2012)

Width:

Bulgarian Teachers @CFRN (2012)

Atmospheric Showers

Something similar happens to the hardons in the atmosphere above us:

Bulgarian Teachers @CFRN (2012)

Function of Calorimeters:

- Measure the energy of a hadron (in most cases jets of hadrons)
- Provide hermeticity, so that missing energy can be measured

Depending on their function and application, calorimeters can be of various kinds:

- Homogeneous vs. Sampling (structure)
- Solid vs. Liquid (medium)
- Scintillating vs. Cherenkov (signal)
- Compensating vs. Non-compensating (performance)

Bulgarian Teachers @CERN (2012)

HCAL = Hadronic Calorimeter ECAL = Electromagnetic Calorimeter HB = HCAL Barrel HE = HCAL EndCap HO = HCAL Outer

Calorimetric systems present on the Testbeam 2004 table.

Pivot point corresponds to interaction point in CMS. ECAL is a matrix of 7x7 prototype crystals.

HCAL Barrel modules are production wedges readout with real front-end electronics.

Beam from SPS.

Moving table allows beam to be sent into arbitrary eta/phi tower of HCAL. ECAL crystals always stay in the beam.

Example of beam clean-up possible in the Test-Beam Run#29665: 5GeV pi+

All simulations done with Geant4 toolkit

G4.6.2_p2 MC with noise G4.6.2_p2 MC w/o noise TestBeam data HB1ECAL (MC) ECAL.vs.HB2 / 9 GeV pim LHEP/ e_h HB1:ECAL 9GeV pi beam (MC) ECAL.vs.HB2 / 9 GeV pim LHEP/ Entries 56317 ECALint: MIP v1 cut: v1ECAL Xtal: 7x7 Entries 100000 ECALint: ANY v1 cut: v1NONE Xtal: 7x7 45 ∑920 Mean x 2.147 sim/dig: sim noise: nTB04 cuts: cutsTB04 Mean x 45 (Val) 14 HCAL (GeV) 15 2.4 sim/dig: sim noise: nNONE cuts: cutsNONE Mean y 4.382 Mean y 4.235 10^{3} ശ RMS x 2.249 40 e h RMS x 2.135 40 HB1 RMS y 3.789 100000 RMS v 3.878 2.411 loan 0 370 35 0 35 4.158 Mean 1 99611 1 15 2.119 RMS x 0 17 0 12 3.639 30 RMS y 30 10 ntegral 9.961e+04 0 950 0 10² 10 0 99049 1 25 25 0 0 0 10 ntegral 9.905e+04 20 20 15 15 10 10 10 5 n -2 10 6 8 10 2 10 6 8 n 4 6 8 Ecal [GeV] ECAL (GeV) ECAL (GeV)

HCAL signal vs. ECAL signal - the "banana" plot

- electron contamination in pion beam
- interactions in beamline
- muons from pion decay

Bulgarian Teachers @CFRN (2012)

20

Calorimeter-based cuts are necessary to clean up the beam-interacted particles. These introduce systematic errors, but are the only way to enable comparison with the TB data.

Bulgarian Teachers @CFRN (2012)

Comparison of Test-Beam data and Geant4 Linearity of Response

Bulgarian Teachers @CFRN (2012)

22

Bulgarian Teachers @CFRN (2012)

- Calorimeters play a crucial role in detecting hadrons
- They can be of various kinds, depending on their application
- Their MonteCarlo simulation is very expensive in terms of CPU power
- CMS calorimeters have been studied in TestBeams in great detail before installing them in the experiment