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1 Introduction

The notion of path integral as integral over trajectories was first introduced by Wiener

in the 1920’s to solve problems related to the Brownian motion. Later, in 1940’s, it was

reintroduced by Feynman as an alternative to operatorial methods to compute transition

amplitudes in quantum mechanics: Feynman path integrals use a lagrangian formulation

instead of a hamiltonian one and can be seen as a quantum-mechanical generalization of

the least-action principle (see e.g. [1]).

In electromagnetism the linearity of the Maxwell equations in vacuum allows to for-

mulate the Huygens-Fresnel principle that in turn allows to write the wave scattered by a

multiple slit as a sum of waves generated by each slit, where each single wave is character-

ized by the optical length I(xi, x) between the i-th slit and the field point x, and the final

amplitude is thus given by A =
∑

i e
iI(xi,x), whose squared modulus describes patterns of

interference between single waves. In quantum mechanics, a superposition principle can

be formulated in strict analogy to electromagnetism and a linear equation of motion, the

Schrödinger equation, can be correspondingly postulated. Therefore, the analogy can be

carried on further replacing the electromagnetic wave amplitude by a transition amplitude

between an initial point x′ at time 0 and a final point x at time t, whereas the optical

length is replaced by the classical action for going from x′ and x in time t (divided by ~,

that has dimensions of action). The full transition amplitude will thus be a “sum” over all

paths connecting x′ and x in time t:

K(x, x′; t) ∼
∑
{x(τ)}

eiS[x(τ)]/~ . (1.1)

In the following we try to make sense of the previous expression. Let us now just try to

justify the presence of the action in the previous expression by recalling that the action

principle applied to the action function S(x, t) (that corresponds to S[x(τ)] with only

the initial point x′ = x(0) fixed) implies that the latter satisfy the classical Hamilton-

Jacobi equation. Hence the Schrödinger equation imposed onto the amplitude K(x, x′; t) ∼
eiS(x,t)/~ yields an equation that deviates from Hamilton-Jacobi equation by a linear term

in ~. So that ~ measures the departure from classical mechanics, that corresponds to

~ → 0, and the classical action function determines the transition amplitude to leading

order in ~. It will be often useful to parametrize an arbitrary path x(τ) between x′ and x

as x(τ) = xcl(τ)+q(τ) with xcl(τ) being the “classical path” i.e. the path that satisfies the

equations of motion with the above boundary conditions, and q(τ) is an arbitrary deviation

(see Figure 1 for graphical description.) With such parametrization we have

K(x, x′; t) ∼
∑
{q(τ)}

eiS[xcl(τ)+q(τ)]/~ . (1.2)

and xcl(τ) represents as a sort of “origin” in the space of all paths connecting x′ and x in

time t.
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Figure 1. A useful parametrization of paths

2 Path integral representation of quantum mechanical transition ampli-

tude: non relativistic bosonic particle

The quantum-mechanical transition amplitude for a time-independent hamiltonian oper-

ator is given by (here and henceforth we use natural units and thus set ~ = c = 1; see

Appendix A for a brief review on the argument) 1

K(x, x′; t) = 〈x|e−itH|x′〉 = 〈x, t|x′, 0〉 (2.1)

K(x, x′; 0) = δ(x− x′) (2.2)

and describes the evolution of the wave function from time 0 to time t

ψ(x, t) =

∫
dx′ K(x, x′; t)ψ(x′, 0) (2.3)

and satisfies the Schrödinger equation

i∂tK(x, x′; t) = HK(x, x′; t) (2.4)

with H being the hamiltonian operator in coordinate representation; for a non-relativistic

particle on a line we have H = − ~2
2m

d2

dx2
+V (x). In particular, for a free particle V = 0, it is

easy to solve the Schrödinger equation (2.4) with boundary conditions (2.2). One obtains

Kf (x, x′; t) = Nf (t) eiScl(x,x
′;t) , (2.5)

with

Nf (t) =

√
m

i2πt
(2.6)

Scl(x, x
′; t) ≡ m(x− x′)2

2t
. (2.7)

1A generalization to time-dependent hamiltonian H(t) can be obtained with the replacement e−itH →
T e−i

∫ t
0 dτH(τ) and T e being a time-ordered exponential.
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The latter as we will soon see is the action for the classical path of the free particle.

In order to introduce the path integral we “slice” the evolution operator in (2.1) by

defining ε = t/N and insert N − 1 decompositions of unity in terms of position eigenstates

1 =
∫
dx|x〉〈x|; namely

K(x, x′; t) = 〈x|e−iεHe−iεH · · · e−iεH|x′〉 (2.8)

=

∫ (N−1∏
i=1

dxi

)
〈xN |e−iεH|xN−1〉

N−1∏
j=1

〈xj |e−iεH|xj−1〉 (2.9)

with xN ≡ x and x0 ≡ x′. We now insert N spectral decomposition of unity in terms of

momentum eigenstates 1 =
∫
dx
2π |p〉〈p| and get

K(x, x′; t) =

∫ (N−1∏
i=1

dxi

)(
N∏
k=1

dpk
2π

)
〈xN |e−iεH|pN 〉〈pN |xN−1〉

×
N−1∏
j=1

〈xj |e−iεH|pj〉〈pj |xj−1〉. (2.10)

For large N , assuming H = T + V = 1
2mp2 + V (q), we can use the “Trotter formula” (see

e.g. [2]) (
e−iεH

)N
=
(
e−iεVe−iεT +O(1/N2)

)N
≈
(
e−iεVe−iεT

)N
(2.11)

that allows to replace e−iεH with e−iεVe−iεT in (2.10), so that one gets 〈xj |e−iεH|pj〉 ≈
ei(xjpj−εH(xj ,pj)), with 〈x|p〉 = eixp. Hence,

K(x, x′; t) =

∫ (N−1∏
i=1

dxi

)(
N∏
k=1

dpk
2π

)
exp

[
i
N∑
j=1

ε
(
pj
xj − xj−1

ε
−H(xj , pj)

)]
(2.12)

with

H(xj , pj) =
1

2m
p2
j + V (xj) (2.13)

the hamiltonian function. In the large N limit we can formally write the latter as

K(x, x′; t) =

∫ x(t)=x

x(0)=x′
DxDp exp

[
i

∫ t

0
dτ
(
pẋ−H(x, p)

)]
(2.14)

Dx ≡
∏

0<τ<t

dx(τ) , Dp ≡
∏

0<τ<t

dp(τ) (2.15)

that is referred to as the “phase-space path integral.” Alternatively, momenta can be inte-

grated out in (2.10) as they are (analytic continuation of) gaussian integrals. Completing

the square one gets

K(x, x′; t) =

∫ (N−1∏
i=1

dxi

)( m

2πiε

)N/2
exp

[
i
N∑
j=1

ε

(
m

2

(
xj − xj−1

ε

)2

− V (xj)

)]
(2.16)
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that can be formally written as

K(x, x′; t) =

∫ x(t)=x

x(0)=x′
Dx eiS[x(τ)] (2.17)

with

S[x(τ)] =

∫ t

0
dτ
(m

2
ẋ2 − V (x(τ))

)
. (2.18)

Expression (2.17) is referred to as “configuration space path integral” and is interpreted as

a functional integral over trajectories with boundary condition x(0) = x′ and x(t) = x.

To date no good definition of path integral measure Dx is known and one has to rely

on some regularization methods. For example one may expand paths on a suitable basis

to turn the functional integral into a infinite-dimensional Riemann integral. One thus

may regularize taking a large (though finite) number of vectors in the basis, perform the

integrals and take the limit at the very end. This regularization procedure, as we will see,

fixes the path integral up to an overall normalization constant that must be fixed using

some consistency conditions. Nevertheless, ratios of path integrals are well-defined objects

and turn out to be quite convenient tools in several areas of modern physics. Moreover

one may fix –as we do in the next section– the above constant using the simplest possible

model (the free particle) and compute other path integrals via their ratios with the free

particle path integral.

2.1 Wick rotation to euclidean time: from quantum mechanics to statistical

mechanics

As already mentioned path integrals were born in statistical physics. In fact we can easily

obtain the particle partition function from (2.17) by, (a) “Wick rotating” time to imaginary

time, namely it ≡ β = 1/kθ (where θ is the temperature) and (b) taking the trace

Z(β) = tr e−βH =

∫
dx 〈x|e−βH|x〉 =

∫
dx K(x, x, : −iβ)

=

∫
PBC

Dx e−SE [x(τ)] (2.19)

where the euclidean action

SE [x(τ)] =

∫ β

0
dτ
(m

2
ẋ2 + V (x(τ))

)
(2.20)

has been obtained by Wick rotating the worldline time iτ → τ , and PBC stands for periodic

boundary conditions and means that the path integral is taken over all closed paths.

2.2 The free particle path integral

We consider the path integral (2.17) for the special case of a free particle, i.e. V = 0. For

simplicity we consider a particle confined on a line and rescale the worldline time τ → tτ

in such a way that free action and boundary conditions turn into

Sf [x(τ)] =
m

2t

∫ 1

0
dτ ẋ2 , x(0) = x′ , x(1) = x (2.21)
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where x and x′ are points on the line. The free equation of motion is obviously ẍ = 0 so

that the aforementioned parametrization yields

x(τ) = xcl(τ) + q(τ) (2.22)

xcl(τ) = x′ + (x− x′)τ = x+ (x′ − x)(1− τ) , q(0) = q(1) = 0 (2.23)

and the above action reads

Sf [xcl + q] =
m

2t

∫ 1

0
dτ (ẋ2

cl + q̇2 + 2ẋclq̇) =
m

2t
(x− x′)2 +

m

2t

∫ 1

0
dτ q̇2 (2.24)

= Sf [xcl] + Sf [q]

and the mixed term identically vanishes due to equation of motion and boundary conditions.

The path integral can thus be written as

Kf (x, x′; t) = eiSf [xcl]

∫ q(1)=0

q(0)=0
Dq eiSf [q(τ)] = ei

m
2t

(x−x′)2
∫ q(1)=0

q(0)=0
Dq ei

m
2t

∫ 1
0 q̇

2
(2.25)

so that by comparison with (2.5,2.6,2.7) one can infer that, for the free particle,∫ q(1)=0

q(0)=0
Dq ei

m
2t

∫ 1
0 q̇

2
=

√
m

i2πt
. (2.26)

Alternatively, one can expand q(τ) on a basis of function with Dirichlet boundary condition

on the line

q(τ) =
∞∑
n=1

qn sin(nπτ) (2.27)

with qn arbitrary real coefficients. We can thus define the measure as

Dq ≡ A
∞∏
n=1

dqn

√
mn2π

4t
(2.28)

with A an unknown coefficient that we fix shortly∫ q(1)=0

q(0)=0
Dq ei

m
2t

∫ 1
0 q̇

2
= A

∫ ∞∏
n=1

dqn

√
mn2π

4it
ei
m
4t

∑
n(πnqn)2 = A (2.29)

from which A =
√

m
i2πt follows. The latter results easily generalize to d space dimensions

where A =
∫ q(1)=0
q(0)=0 Dq e

im
2t

∫ 1
0 q̇

2
=
(
m
i2πt

)d/2
.

The expression (2.28) allows to use the so-called mode regularization to compute more

generic particle path integrals where interaction terms may introduce computational am-

biguities. Namely: whenever an ambiguity appears one can always rely on the mode ex-

pansion truncated at a finite mode M and then take the large limit at the very end. Other

regularization schemes that have been adopted to such purpose are: time slicing that rely

on the well-defined expression for the path integral as multiple slices (cfr. eq. (2.16))

and dimensional regularization that regulates ambiguities by dimensionally extending the

worldline (see [3] for a review on such issues). However dimensional regularization is a

regularization that only works in the perturbative approach to the path integral, by regu-

lating single Feynman diagrams. Perturbation theory within the free particle path integral

is a subject that will be discussed below.
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2.2.1 The free particle partition function

The partition function for a free particle in d-dimensional space can be obtained as

Zf (β) =

∫
ddx K(x, x, : −iβ) =

(
m

2πβ

)d/2 ∫
ddx = V

(
m

2πβ

)d/2
(2.30)

V being the spatial volume. It is easy to recall that this is the correct result as

Zf (β) =
∑
p

e−βp
2/2m =

V
(2π)d

∫
ddp e−βp

2/2m = V
(
m

2πβ

)d/2
(2.31)

with V
(2π)d

being the “density of states”.

2.2.2 Perturbation theory about free particle solution: Feynman diagrams

In the presence of an arbitrary potential the path integral for the transition amplitude is

not exactly solvable. However if the potential is “small” compared to the kinetic term one

can rely on perturbation theory about the free particle solution. The significance of being

“small” will be clarified a posteriori.

Let us then obtain a perturbative expansion for the transition amplitude (2.17) with

action (2.18). As done above we split the arbitrary path in terms of the classical path

(with respect to the free action) and deviation q(τ) and again making use of the rescaled

time we can rewrite the amplitude as

K(x, x′; t) = Nf (t) ei
m
2t

(x−x′)2

∫ q(1)=0

q(0)=0
Dq ei

∫ 1
0 (m

2t
q̇2−tV (xcl+q))

∫ q(1)=0

q(0)=0
Dq ei

m
2t

∫ 1
0 q̇

2

. (2.32)

We then Taylor expand the potential in the exponent about the classical free solution: this

gives rise to a infinite set of interaction terms (τ dependence in xcl and q is left implied)

Sint = −t
∫ 1

0
dτ
(
V (xcl) + V ′(xcl)q +

1

2!
V (2)(xcl)q

2 +
1

3!
V (2)(xcl)q

3 + · · ·
)

...+ + + + (2.33)

Next we expand the exponent eiSint so that we only have polynomials in q to integrate

with the path integral weight; in other words we only need to compute expressions like∫ q(1)=0

q(0)=0
Dq ei

m
2t

∫ 1
0 q̇

2
q(τ1)q(τ2) · · · q(τn)∫ q(1)=0

q(0)=0
Dq ei

m
2t

∫ 1
0 q̇

2

≡
〈
q(τ1)q(τ2) · · · q(τn)

〉
(2.34)

and the full (perturbative) path integral can be compactly written as

K(x, x′; t) = Nf (t) ei
m
2t

(x−x′)2
〈
e−it

∫ 1
0 V (xcl+q)

〉
(2.35)
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and the expressions
〈
f(q)

〉
are referred to as “correlation functions”. In order to com-

pute the above correlations functions we define and compute the so-called “generating

functional”

Z[j] ≡
∫ q(1)=0

q(0)=0
Dq ei

m
2t

∫ 1
0 q̇

2+i
∫ 1
0 qj = Nf (t)

〈
ei

∫ 1
0 qj
〉

(2.36)

in terms of which〈
q(τ1)q(τ2) · · · q(τn)

〉
= (−i)n 1

Z[0]

δn

δj(τ1)δj(τ2) · · · δj(τn)
Z[j]

∣∣∣
j=0

. (2.37)

By partially integrating the kinetic term and completing the square we get

Z[j] = e
i
2

∫∫
jD−1j

∫ q(1)=0

q(0)=0
Dq ei

m
2t

∫ 1
0

˙̃q2 (2.38)

where D−1(τ, τ ′), “the propagator”, is the inverse kinetic operator, with D ≡ m
t ∂

2
τ , such

that

DD−1(τ, τ ′) = δ(τ, τ ′) (2.39)

in the basis of function with Dirichlet boundary conditions, and q̃(τ) ≡ q(τ)−
∫ 1

0 j(τ
′)D−1(τ ′, τ).

By defining D−1(τ, τ ′) = t
m∆(τ, τ ′) we get

••∆(τ, τ ′) = δ(τ, τ ′) (2.40)

⇒ ∆(τ, τ ′) = θ(τ − τ ′)(τ − 1)τ ′ + θ(τ ′ − τ)(τ ′ − 1)τ (2.41)

where “dot” on the left (right) means derivative with respect to τ (τ ′). The propagator

satisfies the following properties

∆(τ, τ ′) = ∆(τ ′, τ) (2.42)

∆(τ, 0) = ∆(τ, 1) = 0 (2.43)

from which q̃(0) = q̃(1) = 0. Therefore we can shift the integration variable in (2.38) from

q to q̃ and get

Z[j] = Nf (t) e
it
2m

∫∫
j∆j (2.44)

and finally obtain〈
q(τ1)q(τ2) · · · q(τn)

〉
= (−i)n δn

δj(τ1)δj(τ2) · · · δj(τn)
e
it
2m

∫∫
j∆j
∣∣∣
j=0

. (2.45)

In particular:

1. correlation functions of an odd number of “fields” vanish;

2. the 2-point function is nothing but the propagator〈
q(τ1)q(τ2)

〉
= −i t

m
∆(τ1, τ2) =

τ1 τ2
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3. correlation functions of an even number of fields are obtained by all possible contrac-

tions of pairs of fields. For example, for n = 4 we have 〈q1q2q3q4〉 = (−i tm)2(∆12∆34+

∆13∆24 + ∆14∆23) where an obvious shortcut notation has been used. The latter

statement is known as the “Wick theorem”. Diagrammatically

〈
q1q2q3q4

〉
= +

2

τ3

τ1 τ2

τ3

τ1 τ1 τ2

τ3

τ4

τ4 τ4

+

τ

Noting that each vertex and each propagator carry a power of t/m we can write the

perturbative expansion as a short-time expansion (or inverse-mass expansion). It is thus

not difficult to convince oneself that the expansion reorganizes as

K(x, x′; t) = Nf (t) ei
m
2t

(x−x′)2 exp
{

connected diagrams
}

= Nf (t) ei
m
2t

(x−x′)2 exp


...

+

+ + +


(2.46)

where the diagrammatic expansion in the exponent (that is ordered by increasing powers

of t/m) only involves connected diagrams, i.e. diagrams whose vertices are connected by

at least one propagator. We recall that Nf (t) =
√

m
i2πt , and we can also give yet another

representation for the transition amplitude, the so-called “heat-kernel expansion”

K(x, x′; t) =

√
m

i2πt
ei
m
2t

(x−x′)2
∞∑
n=0

an(x, x′)tn (2.47)

where the terms an(x, x′) are known as Seeley-DeWitt coefficients. We can thus express

such coefficients in terms of Feynman diagrams and get

a0(x, x′) = 1 (2.48)

a1(x, x′) = = −i
∫ 1

0
dτ V (xcl(τ)) (2.49)

a2(x, x′) = +
1__

2

2!

=
1

2!

(
−i
∫ 1

0
dτ V (xcl(τ))

)2

− 1

2!m

∫ 1

0
dτ V (2)(xcl(τ))τ(τ − 1) (2.50)

·
·

where in (2.50) we have used that 〈q(τ)q(τ)〉 = −i tm∆(τ, τ) = −i tmτ(τ − 1). Let us

now comment on the validity of the expansion: each propagator inserts a power of t/m.
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Therefore for a fixed potential V , the larger the mass, the larger the time for which the

expansion is accurate. In other words for a very massive particle it results quite costy to

move away from the classical path.

2.3 The harmonic oscillator path integral

If the particle is subject to a harmonic potential V (x) = 1
2mω

2x2 the path integral is again

exactly solvable. In the rescaled time adopted above the path integral can be formally

written as in (2.17) with action

Sh[x(τ)] =
m

2t

∫ 1

0
dτ
[
ẋ2 − (ωt)2x2

]
. (2.51)

Again we parametrize x(τ) = xcl(τ) + q(τ) with

ẍcl + (ωt)2xcl = 0

xcl(0) = x′ , xcl(1) = x

(q(0) = q(1) = 0)

 ⇒ xcl(τ) = x′ cos(ωtτ) +
x− x′ cos(ωt)

sin(ωt)
sin(ωtτ) (2.52)

and, since the action is quadratic, similarly to the free particle case there is no mixed term

between xcl(τ) and q(τ), i.e. Sh[x(τ)] = Sh[xcl(τ)] + Sh[q(τ)] and the path integral reads

Kh(x, x′; t) = Nh(t) eiSh[xcl] (2.53)

with

Sh[xcl] =
mω

2 sin(ωt)

(
(x2 + x′2) cos(ωt)− 2xx′

)
(2.54)

Nh(t) =

∫ q(1)=0

q(0)=0
Dq e

im
2t

∫ 1
0 dτ

(
q̇2−(ωt)2q2

)
. (2.55)

We now use the above mode expansion to compute the latter:

Nh(t) = Nf (t)
Nh(t)

Nf (t)
=

√
m

i2πt

∫ q(1)=0

q(0)=0
Dq ei

m
2t

∫ 1
0 (q̇2−(ωt)2q2)

∫ q(1)=0

q(0)=0
Dq ei

m
2t

∫ 1
0 q̇

2

=

√
m

i2πt

∞∏
n=1

∫
dqn e

i imt
4

∑
n(ω2

n−ω2)∫
dqn e

i imt
4

∑
n ω

2
n

=

√
m

i2πt

∞∏
n=1

(
1− ω2

ω2
n

)−1/2

=

√
m

i2πt

(
ωt

sin(ωt)

)1/2

. (2.56)

Above ωn ≡ πn
t . It is not difficult to check that, with the previous expression for Nh(t),

path integral (2.53) satisfies the Schrödinger equation with hamiltonian H = − 1
2m

d2

dx2
+
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1
2mω

2x2 and boundary condition K(x, x′; 0) = δ(x−x′). The propagator can also be easily

generalized

∆ω(τ, τ ′) =
1

ωt sin(ωt)

{
θ(τ − τ ′) sin(ωt(τ − 1)) sin(ωtτ ′)

+θ(τ ′ − τ) sin(ωt(τ ′ − 1)) sin(ωtτ)
}

(2.57)

and can be used in the perturbative approach.

In the limit t → 0 (or ω → 0), all previous expressions reduce to their free particle

counterparts.

2.3.1 The harmonic oscillator partition function

Similarly to the free particle case we can switch to statistical mechanics by Wick rotating

the time, it = β and get

K(x, x′;−iβ) = e−Sh[xcl]

∫ q(1)=0

q(0)=0
Dq e−Sh[q] (2.58)

where now

Sh[x] =
m

2β

∫ 1

0
dτ
(
ẋ2 + (ωβ)2x2

)
(2.59)

is the euclidean action and

Sh[xcl] =
mω

2 sinh(βω)

[
(x2 + x′2) cosh(βω)− 2xx′

]
(2.60)∫ q(1)=0

q(0)=0
Dq e−Sh[q] =

(
mω

2π sinh(βω)

)1/2

(2.61)

that is always regular. Taking the trace of the amplitude (heat kernel) one gets the partition

function

Zh(β) =

∫
dx Kh(x, x;−iβ) =

∫
PBC

Dx e−Sh[x] =
∑

=
1√
2

1

(cosh(βω)− 1)1/2
=

e−
βω
2

1− e−βω
(2.62)

where PBC stands for “periodic boundary conditions” x(0) = x(1) and implies that the

path integral is a “sum” over all closed trajectories. Above we used the fact that the

partition function for the free particle can be obtained either using a transition amplitude

computed with Dirichlet boundary conditions x(0) = x(1) = x and integrating the over the

initial=final point x, or with periodic boundary conditions x(0) = x(1), integrating over

the “center of mass” of the path x0 ≡
∫ 1

0 dτx(τ).
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It is easy to check that the latter matches the geometric series
∞∑
n=0

e−βω(n+ 1
2

). In

particular, taking the zero-temperature limit (β → ∞), the latter singles out the vacuum

energy Zh(β) ≈ e−β
ω
2 , so that for generic particle models, the computation of the above

path integral can be seen as a method to obtain an estimate of the vacuum energy. For

example, in the case of an anharmonic oscillator, if the deviation from harmonicity is small,

perturbation theory can be used to compute the correction to the vacuum energy.

2.3.2 Perturbation theory about the harmonic oscillator partition function

solution

Perturbation theory about the harmonic oscillator partition function solution goes essen-

tially the same way as we did for the free particle transition amplitude, except that now we

may use periodic boundary conditions for the quantum fields rather than Dirichlet bound-

ary conditions. Of course one can keep using DBC, factor out the classical solution, with

xcl(0) = xcl(1) = x and integrate over x. However for completeness let us choose the former

parametrization and let us focus on the case where the interacting action is polynomial

Sint[x] = β
∫ 1

0 dτ
∑

n>2
gn
n! x

n; we can define the generating functional

Z[j] =

∫
PBC

Dx e−Sh[x]+
∫ 1
0 jx (2.63)

that similarly to the free particle case yields

Z[j] = Zh(β) e
1
2

∫∫
jD−1

h j (2.64)

and the propagator results〈
x(τ)x(τ ′)

〉
= D−1

h (τ − τ ′) ≡ Gω(τ − τ ′)
m

β
(−∂2

τ + (ωβ)2)Gω(τ − τ ′) = δ(τ − τ ′) (2.65)

in the space of functions with periodicity τ ∼= τ +1. On the infinite line the latter equation

can be easily inverted using the Fourier transformation that yields

Glω(u) =
1

2mω
e−βω|u| , u ≡ τ − τ ′ . (2.66)

In order to get to Green’s function on the circle (i.e. with periodicity τ ∼= τ + 1) we need

to render (2.66) periodic [4]. Using Fourier analysis in (2.65) we get

Gω(u) =
β

m

∑
k∈Z

1

(βω)2 + (2πk)2
ei2πku =

β

m

∫ ∞
−∞

dλ
∑
k∈Z

δ(λ+ k)
1

(βω)2 + (2πλ)2
ei2πλu

(2.67)

where in the second passage we inserted an auxiliary integral. Now we can use the Poisson

resummation formula
∑

k f(k) =
∑

n f̂(n) where f̂(ν) is the Fourier transform of f(x),
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u=

’

|u |

τ’ 0

1

τ

|1−|u

τ−

τ

Figure 2. Shortest distance on the circle between τ and τ ′

with ν being the frequency, i.e. f̂(ν) =
∫
dxf(x)e−i2πνx. In the above case δ̂(n) = ei2πλn.

Hence the leftover integral over λ yields

Gω(u) =
∑
n∈Z

Glω(u+ n) (2.68)

that is explicitly periodic. The latter sum involves simple geometric series that can be

summed to give

Gω(u) =
1

2mω

cosh
(
ωβ
(

1
2 − |u|

))
sinh

(ωβ
2

) . (2.69)

This is the Green’s function for the harmonic oscillator with periodic boundary conditions

(on the circle). Notice that in the large β limit one gets an expression that is slightly

different from the Green’s function on the line (cfr. eq.(2.66)), namely:

G∞ω (u) =
1

2mω

{
e−βω|u| , |u| < 1

2

e−βω(1−|u|) , 1
2 < |u| < 1 .

(2.70)

Basically the Green’s function is the exponential of the shortest distance (on the circle)

between τ and τ ′, see Figure 2. The partition function for the anharmonic oscillator can

be formally written as

Zah(β) = Zh(β) e−Sint[δ/δj] e
1
2

∫∫
jGωj

∣∣∣
j=0

= Zh(β) e{connected diagrams} . (2.71)

As an example let us consider the case

Sint[x] = β

∫ 1

0
dτ
( g

3!
x3 +

λ

4!
x4
)

= β

(
+

)
(2.72)

so that, to lowest order

Zah(β) = Zh(β) exp

β
_

+9 6/2!β3 + + · · ·


 (2.73)
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and the single diagrams read

=
λ

4!

∫ 1

0
dτ
(
Gω(0)

)2 β→∞−→ =
λ

4 · 4!(mω)2
(2.74)

=
( g

3!

)2
∫ 1

0

∫ 1

0

(
Gω(0)

)2
Gω(τ − τ ′) β→∞−→ =

g2

4(3!)2βm3ω4
(2.75)

=
( g

3!

)2
∫ 1

0

∫ 1

0

(
Gω(τ − τ ′)

)3 β→∞−→ =
g2

12(3!)2βm3ω4
. (2.76)

Then in the zero-temperature limit

Zah(β) ≈ e−βE′0 (2.77)

E′0 =
ω

2

(
1 +

λ

16m2ω3
− 11g2

144m3ω5

)
(2.78)

gives the sought estimate for the vacuum energy. However, the above expression (2.73) with

diagrams (2.74,2.75,2.76) computed with the finite temperature Green’s function (2.69)

yields (the perturbative expansion for) the finite temperature partition function of the

anharmonic oscillator described by (2.72).

2.4 Problems for Section 2

(1) Show that the classical action for the free particle on the line is Sf [xcl] = m(x−x′)2
2t .

(2) Compute the 6-point correlation function.

(3) Compute the Seeley-DeWitt coefficient a3(x, x′) both diagrammatically and in terms

of vertex functions.

(4) Compute the classical action (2.54) for the harmonic oscillator on the line.

(5) Show that the transition amplitude (2.53) satisfies the Schrödinger equation for the

harmonic oscillator.

(6) Show that the propagator (2.57) satisfies the Green equation (∂2
τ + (ωt)2)∆ω(τ, τ ′) =

δ(τ, τ ′).

(7) Show that the propagator (2.66) satisfies eq. (2.65).

(8) Using Fourier transformation, derive (2.66) from (2.65).

(9) Using the geometric series obtain (2.69) from (2.68) .

(10) Check that, in the large β limit up to exponentially decreasing terms, expressions

(2.74,2.75,2.76) give the same results, both with the Green’s function (2.66) and

with (2.70).

(11) Compute the next-order correction to the vacuum energy (2.78).
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(12) Compute the finite temperature partition function for the anharmonic oscillator given

by (2.72) to leading order in perturbation theory, i.e. only consider the eight-shaped

diagram.

3 Path integral representation of quantum mechanical transition ampli-

tude: fermionic degrees of freedom

We employ the coherent state approach to generalize the path integral to transition am-

plitude of models with fermionic degrees of freedom. The simplest fermionic system is a

two-dimensional Hilbert space, representation of the anticommutators algebra

{a, a†} = 1 , a2 = (a†)2 = 0 . (3.1)

The spin basis for such algebra is given by (|−〉, |+〉) where

a|−〉 = 0 , |+〉 = a†|−〉 , |−〉 = a|+〉 (3.2)

and a spin state is thus a two-dimensional object (a spinor) in such a basis. An alternative,

overcomplete, basis for spin states is the so-called “coherent state basis” that, for the

previous simple system, is simply given by the following bra’s and ket’s

|ξ〉 = ea
†ξ|0〉 = (1 + a†ξ)|0〉 → a|ξ〉 = ξ|ξ〉

〈η̄| = 〈0|eη̄a = 〈0|(1 + η̄a) → 〈η̄|a† = 〈η̄|η̄ (3.3)

and can be generalized to an arbitrary set of pairs of fermionic generators; see Appendix B

for details. Coherent states (3.3) satisfy the following properties

〈η̄|ξ〉 = eη̄ξ (3.4)∫
dη̄dξ e−η̄ξ|ξ〉〈η̄| = 1 (3.5)∫
dξ e(λ̄−η̄)ξ = δ(λ̄− η̄) (3.6)∫
dη̄ eη̄(ρξ) = δ(ρ− ξ) (3.7)

trA =

∫
dη̄dξ e−η̄ξ〈−η̄|A|ξ〉 =

∫
dξdη̄ eη̄ξ〈η̄|A|ξ〉 . (3.8)

Let us take |φ〉 as initial state, then the evolved state will be

|φ(t)〉 = e−itH|φ〉 (3.9)

that in the coherent state representation becomes

φ(λ̄; t) ≡ 〈λ̄|φ(t)〉 = 〈λ̄|e−itH|φ〉 =

∫
dη̄dηe−η̄η〈λ̄|e−itH|η〉φ(η̄; 0) (3.10)

where in the last equality we have used property (3.5). The integrand 〈λ̄|e−itH|η〉 in (3.10)

assumes the form of a transition amplitude as in the bosonic case. It is thus possible to
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represent it with a fermionic path integral. In order to do that let us first take the trivial

case H = 0 and insert N decompositions of identity
∫
dξ̄idξi e

−ξ̄iξi |ξi〉〈ξ̄i| = 1. We thus get

〈λ̄|η〉 =

∫ N∏
i=1

dξ̄idξi exp

[
λ̄ξN −

N∑
i=1

ξ̄i(ξi − ξi−1)

]
, ξ̄N ≡ λ̄ , ξ0 ≡ η (3.11)

that in the large N limit can be written as

〈λ̄|η〉 =

∫ ξ̄(1)=λ̄

ξ(0)=η
Dξ̄Dξ eiS[ξ,ξ̄] (3.12)

with

S[ξ, ξ̄] = i

(∫ 1

0
dτ ξ̄ξ̇(τ)− ξ̄ξ(1)

)
. (3.13)

In the presence of a nontrivial hamiltonian H the latter becomes

〈λ̄|e−itH|η〉 =

∫ ξ̄(1)=λ̄

ξ(0)=η
Dξ̄Dξ eiS[ξ,ξ̄] (3.14)

S[ξ, ξ̄] =

∫ 1

0
dτ
(
iξ̄ξ̇(τ)−H(ξ, ξ̄)

)
− iξ̄ξ(1) (3.15)

that is the path integral representation of the fermionic transition amplitude. Here a few

comments are in order: (a) the fermionic path integral resembles more a bosonic phase

space path integral than a configuration space one. (b) The boundary term ξ̄ξ(1), that

naturally comes out from the previous construction, plays a role when extremizing the

action to get the equations of motion; namely, it cancels another boundary term that

comes out from partial integration. It also plays a role when computing the trace of an

operator: see below. (c) The generalization from the above naive case to (3.14) is not a

priori trivial, because of ordering problems. In fact H may involve mixing terms between

a and a†. However result (3.14) is guaranteed in that form (i.e. the quantum H(a, a†)

is replaced by H(ξ, ξ̄) without the addition of counterterms) if the hamiltonian operator

H(a, a†) is written in (anti-)symmetric form: for the present simple model it simply means

HS(a, a†) = c0 + c1a + c2a
† + c3(aa† − a†a). In general the hamiltonian will not have

such form and it is necessary to order it H = HS + “counterterms”, where “counterterms”

come from anticommunting a and a† in order to put H in symmetrized form. The present

ordering is called Weyl-ordering. For details about Weyl ordering in bosonic and fermionic

path integrals see [3].

Let us now compute the trace of the evolution operator. It yields

tr e−itH =

∫
dηdλ̄ eλ̄η〈λ̄|e−itH|η〉 =

∫
dη

∫ ξ̄(1)=λ̄

ξ(0)=η
Dξ̄Dξdλ̄ eλ̄(η+ξ(1))ei

∫ 1
0 (iξ̄ξ̇−H) (3.16)

then the integral over λ̄ give a Dirac delta that can be integrated with respect to η. Hence,

tr e−itH =

∫
ξ(0)=−ξ(1)

Dξ̄Dξ ei
∫ 1
0 (iξ̄ξ̇−H(ξ,ξ̄)) (3.17)
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where we notice that the trace in the fermionic variables corresponds to a path integral with

anti-periodic boundary conditions (ABC), as opposed to the periodic boundary conditions

of the bosonic case. Finally, we can rewrite the latter by using real (Majorana) fermions

defined as

ξ =
1√
2

(
ψ1 + iψ2

)
, ξ̄ =

1√
2

(
ψ1 − iψ2

)
(3.18)

and

tr e−itH =

∫
ABC

Dψ ei
∫ 1
0 ( i

2
ψaψ̇a−H(ψ)) . (3.19)

In particular

2 = tr1 =

∫
ABC

Dψ ei
∫ 1
0
i
2
ψaψ̇a , a = 1, 2 . (3.20)

For an arbitrary number of fermionic operator pairs ai , a
†
i , i = 1, ..., l, the latter of course

generalizes to

2D/2 = tr1 =

∫
ABC

Dψ ei
∫ 1
0
i
2
ψaψ̇a , a = 1, ..., D = 2l (3.21)

that sets the normalization of the fermionic path integral with anti-periodic boundary

conditions. The latter fermionic action plays a fundamental role in the description of

relativistic spinning particles, that is the subject of the next section.

3.1 Problems for Section 3

(1) Show that the ket and bra defined in (3.3) are eigenstates of a and a† respectively.

(2) Demonstrate properties (3.4)-(3.7).

(3) Test property (3.8) using A = 1.

(4) Obtain the equations of motion from action (3.15) and check that the boundary terms

cancel.

4 Relativistic particles: bosonic particles and O(N) spinning particles

We consider a generalization of the previous results to relativistic particles in flat space.

In order to do that we start analyzing particle models at the classical level, then consider

their quantization, in terms of canonical quantization and path integrals.

4.1 Bosonic particles: symmetries and quantization. The worldline formalism

For a nonrelativistic free particle in d-dimensional space, at the classical level we have

S[x] =
m

2

∫ t

0
dτ ẋ2 , x = (xi) , i = 1, ..., d (4.1)

that is invariant under a set of continuous global symmetries that correspond to an equal

set of conserved charges.
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• time translation δxi = ξẋi −→ E = m
2 ẋ2, the energy

• space translations δxi = ai −→ P i = mẋi, linear momentum

• spatial rotations δxi = θijxj −→ Lij = m(xiẋj − xj ẋi), angular momentum

• Galilean boosts δxi = vit −→ xi0 : xi = xi0 + P it, center of mass motion.

These symmetries are isometries of a one-dimensional euclidean space (the time) and a

three-dimensional euclidean space (the space). However the latter action is not, of course,

Lorentz invariant.

A Lorentz-invariant generalization of the free-particle action can be simply obtained

by starting from the Minkowski line element ds2 = −dt2 + dx2. For a particle described

by x(t) we have ds2 = −(1− ẋ2)dt2 that is Lorentz-invariant and measures the (squared)

proper time of the particle along its path. Hence the action (referred to as geometric

action) for the massive free particle reads

S[x] = −m
∫ t

0
dt
√

1− ẋ2 (4.2)

that is, by construction, invariant under the Poincarè group of transformations

• x′µ = Λµνx
ν + aµ , xµ = (t, xi) , Λ ∈ SO(1, 3) , aµ ∈ R1,3

the isometry group of Minkowski space. Conserved charges are four-momentum, angular

momentum and center of mass motion (from Lorentz boosts). The above action can be

reformulated by making x0 a dynamical field as well in order to render the action explicitly

Lorentz-invariant. It can be achieved by introducing a gauge symmetry. Hence

S[x] = −m
∫ 1

0
dτ
√
−ηµν ẋµẋν (4.3)

where now ˙ = d
dτ , and ηµν is the Minkowski metric. The latter is indeed explicitly Lorentz-

invariant as it is written in four-tensor notation and it also gauge invariant upon the

reparametrization τ → τ ′(τ). Action (4.2) can be recovered upon gauge choice x0 = tτ .

Yet another action for the relativistic particle can be obtained by introducing a gauge

fields, the einbein e, that renders explicit the above gauge invariance.

S[x, e] =

∫ 1

0
dτ

(
1

2e
ẋ2 − m2e

2

)
. (4.4)

For an infinitesimal time reparametrization

δτ = −ξ(τ) , δxµ = ξẋµ , δe =
(
eξ
)•

(4.5)

we have δS[x, e] =
∫
dτ
(
ξL
)•

= 0. Now a few comments are in order: (a) action (4.3) can

be recovered by replacing e with its on-shell expression; namely,

0 = m2 +
1

e2
ẋ2 ⇒ e =

√
−ẋ2

m
; (4.6)
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(b) unlike the above geometric actions, expression (4.4), that is known as Brink-di Vecchia-

Howe action, is also suitable for massless particles; (c) equation(4.4) is quadratic in x and

therefore is more easily quantizable. In fact we can switch to phase-space action by taking

pµ = ∂L
∂ẋµ = ẋµ/e (e has vanishing conjugate momentum, it yields a constraint)

S[x, p, e] =

∫ 1

0
dτ
[
pµẋ

µ − e1

2

(
p2 +m2

)]
(4.7)

which is like a standard (nonrelativistic) hamiltonian action, with hamiltonianH = e1
2

(
p2+

m2
)
≡ eH0 and phase space constraint H0 = 0. The constraint H0 works also as gauge

symmetry generator δxµ = {xµ, ξH0} = ξpµ and, by requiring that δS = 0, one gets δe = ξ̇.

Here { , } are Poisson brackets.

Upon canonical quantization the dynamics is governed by a Schrödinger equation with

hamiltonian operator H and the constraint is an operatorial constraint that must be im-

posed on physical states

i∂τ |φ(τ)〉 = H|φ(τ)〉 = eH0|φ(τ)〉 = 0 (4.8)

⇒ (p2 +m2)|φ〉 (4.9)

with |φ〉 being τ independent. In the coordinate representation (4.9) is nothing but

Klein-Gordon equation. In conclusion the canonical quantization of the relativistic, 1d-

reparametrization invariant particle action (4.4) yields Klein-Gordon equation for the wave

function. This is the essence of the “worldline formalism” that uses (the quantization) of

particle models to obtain results in quantum field theory (see [5] for a review of the method).

Another important comment here is that the local symmetry (1d reparametrization) en-

sures the propagation of physical degrees of freedom; i.e. it guarantees unitarity. Before

switching to path integrals let us consider the coupling to external fields: in order to achieve

that, one needs to covariantize the particle momentum in H0. For a coupling to a vector

field

pµ → πµ = pµ − qAµ ⇒ {πµ, πν} = qFµν (4.10)

H0 =
1

2

(
ηµνπµπν +m2

)
(4.11)

and

S[x, p, e;Aµ] =

∫ 1

0
dτ
[
pµẋ

µ − e1

2

(
π2 +m2

)]
(4.12)

with q being the charge of the particle and Fµν the vector field strength. Above the vector

field is in general nonabelian Aµ = AaµTa and Ta ∈ Lie algebra of a gauge group G. For

the bosonic particle, (minimal) coupling to gravity is immediate to achieve, and amounts

to the replacement ηµν → gµν(x); for a spinning particle it would be rather more involved

(see e.g. [6]), but will not be treated here. In order to switch to configuration space we just

solve for πµ in (4.12), πµ = ηµν ẋ
ν/e and get

S[x, e;Aµ] =

∫ 1

0
dτ
[ 1

2e
ẋ2 − e

2
m2 + qẋµAµ

]
(4.13)
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so, although the hamiltonian involves a term quadratic in Aµ, the coupling between particle

and external vector field in configuration space is linear. Moreover, for an abelian vector

field, action (4.13) is gauge invariant upon Aµ → Aµ + ∂µα. For a nonabelian vector field,

whose gauge transformation is Aµ → U−1(Aµ − i∂µ)U , with U = eiα action (4.13) is not

gauge invariant; however in the path integral the action enters in the exponent so it is

possible to give the following gauge-invariant prescription

eiS[x,e;Aµ] −→ tr
(
PeiS[x,e;Aµ]

)
(4.14)

i.e. we replace the simple exponential with a Wilson line. Here P defines the “path

ordering” that, for the worldline integral eiq
∫ 1
0 ẋ

µAµ , is nothing but the “time-ordering”

mentioned in footnote 1; namely

Peiq
∫ 1
0 ẋ

µAµ = 1 + iq

∫ 1

0
dτ ẋµAµ + (iq)2

∫ 1

0
dτ1 ẋ

µ1Aµ1

∫ τ1

0
dτ2 ẋ

µ2Aµ2 + · · · (4.15)

that transforms covariantly Peiq
∫ 1
0 ẋ

µAµ → U−1Peiq
∫ 1
0 ẋ

µAµU , so that the trace is gauge-

invariant, and that, for abelian fields, reduces to the conventional expansion for the expo-

nential.

Let us now consider a path integral for the action (4.13). For convenience we consider

its Wick rotated (iτ → τ) version (we also change q → −q)

S[x, e;Aµ] =

∫ 1

0
dτ
[ 1

2e
ẋ2 +

e

2
m2 + iqẋµAµ

]
(4.16)

for which the path integral formally reads∫
DxDe

Vol (Gauge)
e−S[x,e;Aµ] (4.17)

where “Vol (Gauge)” refers to the fact that we have to divide out all configurations that

are equivalent upon gauge symmetry, that in this case reduces to 1d reparametrization.

The previous path integral can be taken over two possible topologies: on the line where

x(0) = x′ and x(1) = x, and on the circle for which bosonic fields have periodic boundary

conditions, in particular x(0) = x(1). However, such path integrals can be used to compute

more generic tree-level and (multi-)loop graphs [7, 8].

4.1.1 QM Path integral on the line: QFT propagator

Worldline path integrals on the line are linked to quantum field theory propagators. In

particular, for the above 1d-reparametrization invariant bosonic model, coupled to external

abelian vector field, one obtains the full propagator of scalar quantum electrodynamics

(QED), i.e. a scalar propagator with insertion of an arbitrary number of couplings to Aµ.

On the line we keep fixed the extrema of x(τ) and the gauge parameter is thus con-

strained as ξ(0) = ξ(1) = 0, and the einbein can be gauge-away to an arbitrary positive

constant ê ≡ 2T where

2T ≡
∫ 1

0
dτ e , δ(2T ) =

∫ 1

0
dτ
(
eξ
)•

= 0 (4.18)
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and therefore

De = dTDξ (4.19)

where Dξ is the measure of the gauge group. Moreover there are no Killing vector as

(êξ)• = 0 on the line has only a trivial solution ξ = 0. Hence the gauge-fixed path integral

reads 〈
φ(x)φ(x′)

〉
A

=

∫ ∞
0

dT

∫ x(1)=x

x(0)=x′
Dx e−S[x,2T ;Aµ] (4.20)

and

S[x, 2T ;Aµ] =

∫ 1

0
dτ
( 1

4T
ẋ2 + Tm2 + iqẋµAµ

)
(4.21)

is the gauge-fixed action. For Aµ = 0 it is easy to convince oneself that (4.20) reproduces

the free bosonic propagator; in fact∫ ∞
0

dT

∫ x(1)=x

x(0)=x′
Dx e−

∫ 1
0 ( ẋ

2

4T
+Tm2) =

∫ ∞
0

dT 〈x|e−T (p2+m2)|x′〉 = 〈x| 1

p2 +m2
|x′〉 .

(4.22)

In perturbation theory, about trivial vector field background, with perturbation by Aµ(x) =∑
i ε
i
µe
ipi·x, i.e. sum of external photons, expression (4.20) is nothing but the sum of the

following Feynman diagrams

∫ ∞
0

dT

∫ x(1)=x

x(0)=x′
Dx e−S[x,2T ;Aµ] =�+�

+�+�+ · · · (4.23)

as two types of vertices appear in scalar QED

iqAµ(φ̄∂µφ− φ∂µφ̄) −→ � , q2AµA
µφ̄φ −→ � (4.24)

i.e. the linear vertex and the so-called “seagull” vertex. It is interesting to note that the

previous expression for the propagator of scalar QED was already proposed by Feynman

in his famous “Mathematical formulation of the quantum theory of electromagnetic in-

teraction,” [9] where he also included the interaction with an arbitrary number of virtual

photons emitted and re-absorbed along the trajectory of the scalar particle.
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4.1.2 QM Path integral on the circle: one loop QFT effective action

Worldline path integrals on the circle are linked to quantum field theory one loop effective

actions. With the particle model of (4.16) it yields the one loop effective action of scalar

QED. The gauge fixing goes similarly to previous case, except that on the circle we have

periodic conditions ξ(0) = ξ(1). This leaves a non-trivial solution, ξ = constant, for the

Killing equation that corresponds to the arbitrariness on the choice of origin of the circle.

One takes care of this further symmetry, dividing by the length of the circle itself. Therefore

Γ[Aµ] =

∫ ∞
0

dT

T

∫
PBC

Dx e−S[x,2T ;Aµ] (4.25)

yields the worldline representation for the one loop effective action for scalar QED. Pertur-

batively the latter corresponds to the following sum of one particle irreducible Feynman

diagrams

Γ[Aµ] =
∑
� (4.26)

i.e. it corresponds to the sum of one-loop photon amplitudes. The figure above is meant to

schematically convey the information that scalar QED effective action involves both types

of vertices. Further details about the many applications of the previous effective action

representation will be given by Christian Schubert in his lectures set [10].

4.2 Spinning particles: symmetries and quantization. The worldline formal-

ism

We can extend the phase space bosonic form by adding fermionic degrees of freedom. For

example we can add Majorana worldline fermions that carry a space-time index µ and an

internal index i and get

Isf [x, p, ψ] =

∫ 1

0
dτ
(
pµẋ

µ +
i

2
ψµiψ̇

µ
i

)
, i = 1, . . . , N . (4.27)

The latter expression is invariant under the following set of continuous global symmetries,

with their associated conserved Noether charges

• time translation: δxµ = ξpµ , δpµ = δψµi = 0 −→ H0 = 1
2pµp

µ

• supersymmetries: δxµ = iεiψ
µ
i , δp

µ = 0 , δψµi = −εipµ −→ Qi = pµψ
µ
i

• O(N) rotations: δxµ = δpµ = 0 , δψµi = αijδψ
µ
j −→ Jij = iψµiψ

µ
j

with arbitrary constant parameters ξ, εi, αij , and αij = −αij . Conserved charged also

work as symmetry generators δz = {z, g} with z = (x, p, ψ) and G = ΞAGA ≡ ξH0+iεiQi+
1
2αijJij , and { , } being graded Poisson brackets; in flat space the generators GA satisfies
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a first-class algebra {GA, GB} = CCABGC , see [6] for details. Taking the parameters to be

time-dependent we have that the previous symplectic form transforms as

δIsf [x, p, ψ] =

∫ 1

0
dτ
(
ξ̇H0 + iε̇iQi +

1

2
α̇ijJij

)
(4.28)

so that we can add gauge fields E = (e, χi, aij) and get the following locally-symmetric

particle action

S[x, p, ψ,E] =

∫ 1

0
dτ
(
pµẋ

µ +
i

2
ψµiψ̇

µ
i − eH0 − iχiQi −

1

2
aijJij

)
. (4.29)

This is a spinning particle model with gauged O(N)-extended supersymmetry. The fact

that the symmetry algebra is first class ensures that (4.29) is invariant under the local

symmetry generated by G = ΞA(τ)GA, provided the fields E transform as

δe = ξ̇ + 2iχiQi

δχi = ε̇i − aijQj + αijχj

δaij = α̇ij + αimamj − aimαmj

(4.30)

from which it is clear that they are gauge fields.

Upon canonical quantization Poisson brackets turn into (anti-)commutators [pµ, x
ν ] =

−iδνµ , {ψ
µ
i , ψ

ν
j } = δijη

µν , where { , } now represent anti-commutators. One possible rep-

resentation of the previous fermionic algebra, that is nothing but a multi-Clifford algebra,

is the spin-basis, where ψµi are represented as Gamma-matrices. So, in the spin-basis and

in bosonic coordinate representation the wave function is a multispinor φα1···αN (x) where

ψµi acts as Gamma-matrix on the i−th α−index. First class constraints again act à la

Dirac-Gupta-Bleuler on the wave function. In particular the susy constraints

Qi|φ〉 = 0 −→
(
γµ
)
αiα̃i

∂µφα1···α̃i···αN (x) = 0 (4.31)

amount to N massless Dirac equations, whereas the O(N) constraints

Jij |φ〉 = 0 −→
(
γµ
)
αiα̃i

(
γµ
)
αj α̃j

φα1···α̃i···α̃j ···αN (x) = 0 (4.32)

are “irreducibility” constraints, i.e. they impose the propagation of a field that is described

by a single Young tableau of SO(1, D−1), with N/2 columns and D/2 rows. The previous

set of constraints yields Bargmann-Wigner equations for spin-N/2 fields in flat space. For

generic N only particle models in even dimensions are non-empty, whereas for N ≤ 2

the O(N) constraints are either trivial or abelian and the corresponding spinning particle

models can be extended to odd-dimensional spaces.

Coupling to external fields is now much less trivial. Coupling to gravity can be achieved

by covariantizing momenta, and thus susy generators; however, for N > 2, in a generically

curved background the constraints algebra ceases to be first class. For conformally flat

spaces the algebra turns into a first-class non-linear algebra that thus describes the prop-

agation of spin-N/2 fields in such spaces [6].
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4.2.1 N = 1 spinning particle: coupling to vector fields

We consider the spinning particle model with N = 1 that describes the first quantization

of a Dirac field. For the free model, at the classical level, the constraint algebra is simply

{Q,Q} = −2iH0 , {Q,H0} = 0 (4.33)

that is indeed first class. To couple the particle model to an external vector field we

covariantize the momentum as in (4.10), and consequently

Q ≡ πµψµ , {Q,Q} = −2iH (4.34)

with

H =
1

2
ηµνπµπν +

i

2
qFµνψ

µψν (4.35)

and the phase-space locally symmetric action reads

S[x, p, ψ, e, χ;Aµ] =

∫ 1

0
dτ
[
pµẋ

µ +
i

2
ψµψ̇

µ − eH − iχQ
]

(4.36)

whereas

S[x, ψ, e, χ;Aµ] =

∫ 1

0
dτ
[ 1

2e
ηµν(ẋµ − iχψµ)(ẋν − iχψν) +

i

2
ψµψ̇

µ

+ qẋµAµ − eq
i

2
Fµνψ

µψν
]

(4.37)

is the locally symmetric configuration space action where, along with the bosonic coupling

found previously, a Pauli-type coupling between field strength and spin appears.

4.2.2 QM Path integral on the circle: one loop QFT effective action

We now consider the above spinning particle models on a path integral on the circle,

i.e. we consider the one loop effective actions produced by the spin-N/2 fields whose first

quantization is described by the spinning particle models. On the circle (fermionic) bosonic

fields have (anti-)periodic boundary conditions. It is thus not difficult to convince oneself

that gravitini χi can be gauged-away completely. For the N = 1 model of the previous

section this yields the spinor QED effective action

Γ[Aµ] =

∫ ∞
0

dT

2T

∫
PBC

Dx

∫
ABC

Dψ e−S[x,ψ,2T,0;Aµ] (4.38)

with

S[x, ψ, 2T, 0;Aµ] =

∫ 1

0
dτ
[ 1

4T
ẋ2 +

1

2
ψµψ̇

µ + iqẋµAµ − iT qFµνψµψν
]

(4.39)

being the (euclidean) gauge-fixed spinning particle action, that is globally supersymmetric.

Perturbatively the previous path integral is the sum of one particle irreducible diagrams

with external photons and a Dirac fermion in the loop.
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For arbitrary N we will not consider the coupling to external fields as it too much

of an involved topic to be covered here. The interested reader may consult the recent

manuscript [11] and references therein. Let us consider the circle path integral for the

free O(N)−extended spinning particle. The euclidean configuration space action can be

obtained from (4.29) by solving for the particle momenta and Wick rotating. We thus get

S[x, ψ,E] =

∫ 1

0
dτ
[ 1

2e
ηµν(ẋµ − χiψµi )(ẋν − χiψνi ) +

1

2
ψµψ̇

µ − 1

2
aijψµiψ

µ
j

]
(4.40)

that yields the circle path integral

Γ =
1

Vol (Gauge)

∫
PBC

DxDeDa

∫
ABC

DψDχ e−S[x,ψ,E] . (4.41)

Using (4.30), with antiperiodic boundary conditions for fermions, gravitini can be gauged

away completely, χi = 0. On the other hand O(N) gauge fields enter with periodic bound-

ary conditions and cannot be gauged away completely. In fact, as shown in [12] they can be

gauged to a skew-diagonal constant matrix parametrized by n = [N/2] angular variables,

θk. The whole effective action is thus proportional to the number of degrees of freedom of

fields described by a Young tableau with n columns and D/2 rows. Such Young tableaux

correspond to the field strengths of higher-spin fields. For D = 4 this involves all possible

massless representations of the Poincaré group, that at the level of gauge potentials are

given by totally symmetric (spinor-) tensors, whereas for D > 4 it corresponds to conformal

multiplets only.

4.3 Problems for Section 4

(1) Use the Noether trick to obtain the conserved charges for the free particle described

by the geometric action (4.2).

(2) Repeat the previous problem with action (4.3).

(3) Show that the interaction term Lint = qẋµAµ, with Aµ = (φ,A), yields the Lorentz

force.

(4) Show that, with time-dependent symmetry parameters, the symplectic form transforms

as (4.28).

(5) Show that action (4.39) is invariant under global susy δxµ = εψµ , δψµ = − 1
2T εẋ

µ.
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5 Final Comments

What included in the present manuscript is an expanded version of a set of lectures given

in Morelia (Mexico) in November 2012, where we reviewed some elementary material on

particle path integrals and introduced a list of (more or less) recent topics where parti-

cle path integrals can be efficiently applied. In particular we pointed out the role that

some locally-symmetric relativistic particle models have in the first-quantized description

of higher spin fields [13]. However the list of topics reviewed here is by no means complete.

Firstly, coupling to external gravity has been overlooked (it has been partly covered in [10].)

In fact, path integrals in curved spaces involve nonlinear sigma models and perturbative

calculations have to be done carefully as superficial divergences appear. Although this

issue is well studied and understood by now, it had been source of controversy (and errors)

in the past (see [14] for a review.) Moreover, for the O(N) spinning particle models dis-

cussed above, coupling to gravity is not straightforward as (for generic N) the background

appears to be constrained [6] and the symmetry algebra is not linear and thus the topic is

an on-going research argument (see [11] for some recent results.)

Some other modern applications of particle path integrals that have not been cov-

ered here, include: the numerical worldline approach to the Casimir effect [15], AdS/CFT

correspondence and string dualities [16], photon-graviton amplitudes computations [17],

nonperturbative worldline methods in QFT [4, 18], QFT in curved space time [19], the

worldgraph approach to QFT [8], as well as the worldline approach to QFT on manifolds

with boundary [20] and to noncommutative QFT [21].

A Natural Units

In quantum field theory it is often convenient to use so called “natural units”: for a generic

physical quantity X, its physical units can always be express in terms of energy, angular-

momentum × velocity and angular momentum as

[X] = Ea(Lc)bLc = mαlβtγ (A.1)

with

a = α− β − γ
b = β − 2α

c = γ + 2α .

(A.2)

Therefore, if velocities are measured in units of the speed of light c and angular momenta

are measured in units of the Planck constant ~, and thus are numbers, we have the natural

units for X given by

[X]
∣∣
n.u.

= Eα−β−γ , (~c)
∣∣
n.u.

= 1 , ~
∣∣
n.u.

= 1 (A.3)

and energy is normally given in MeV. Conversion to standard units is then easily obtained

by using

~c = 1.97× 10−11 MeV · cm , ~ = 6.58× 10−22 MeV · s . (A.4)
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For example a distance expressed in natural units by d = 1 (MeV)−1, corresponds to

d = 1.97× 10−11 cm.

B Fermionic coherent states

This is a compendium of properties of fermionic coherent states. Further details can be

found for instance in [22].

The even-dimensional Clifford algebra

{ψM , ψN} = δMN , M,N = 1, . . . , 2l (B.1)

can be written as a set of l fermionic harmonic oscillators (the index M may collectively

denote a set of indices that may involve internal indices as well as a space-time index), by

simply taking complex combinations of the previous operators

am =
1√
2

(
ψm + iψm+l

)
(B.2)

a†m =
1√
2

(
ψm − iψm+l

)
, m = 1, . . . , l (B.3)

{am, a†n} = δmn (B.4)

and it can be thus represented in the vector space spanned by the 2l orthonormal states

|k〉 =
∏
m(a†m)km |0〉 with am|0〉 = 0 and the vector k has elements taking only two possible

values, km = 0, 1. This basis (often called spin-basis) yields a standard representation of

the Clifford algebra, i.e. of the Dirac gamma matrices.

An alternative overcomplete basis is given by the coherent states that are eigenstates

of creation or annihilation operators

|ξ〉 = ea
†
mξ

m |0〉 → am|ξ〉 = ξm|ξ〉 = |ξ〉ξm (B.5)

〈η̄| = 〈0|eη̄mam → 〈η̄|a†m = 〈η̄|η̄m = η̄m〈η̄| . (B.6)

Below we list some of the useful properties satisfied by these states. Using the Baker-

Campbell-Hausdorff formula eXeY = eY eXe[X,Y ], valid if [X,Y ] = c-number, one finds

〈η̄|ξ〉 = eη̄·ξ (B.7)

that in turn implies

〈η̄|am|ξ〉 = ξm〈η̄|ξ〉 =
∂

∂η̄m
〈η̄|ξ〉 (B.8)

〈η̄|a†m|ξ〉 = η̄m〈η̄|ξ〉 (B.9)

so that { ∂
∂η̄m

, η̄n} = δmn . Defining

dη̄ = dη̄l · · · dη̄1 , dξ = dξ1 · · · dξl (B.10)
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so that dη̄dξ = dη̄1dξ
1dη̄2dξ

2 · · · dη̄ldξl, one finds the following relations∫
dη̄dξ e−η̄·ξ = 1 (B.11)∫
dη̄dξ e−η̄·ξ |ξ〉〈η̄| = 1 (B.12)

where 1 is the identity in the Fock space. One can also define a fermionic delta function

with respect to the measure (B.10) by

δ(η̄ − λ̄) ≡ (η̄1 − λ̄1) · · · (η̄l − λ̄l) =

∫
dξ e(λ̄−η̄)·ξ . (B.13)

Finally, the trace of an arbitrary operator can be written as

TrA =

∫
dη̄dξ e−η̄·ξ〈−η̄|A|ξ〉 =

∫
dξdη̄ eη̄·ξ〈η̄|A|ξ〉 . (B.14)

As a check one may compute the trace of the identity

Tr 1 =

∫
dξdη̄ eη̄·ξ〈η̄|ξ〉 =

∫
dξdη̄ e2η̄·ξ = 2l . (B.15)

C Noether theorem

The Noether theorem is a power tool that relates continuous global symmetries to conserved

charged. Let us consider a particle action S[x]: dynamics associated to this action is the

same as that obtained from the action S′[x] that differs from S[x] by a boundary term,

i.e. S′[x] ∼= S[x]. Then, if a continuous transformation of fields δxi = α∆xi, parametrized

by a continuous parameter α, yields S[x + α∆x] = S′[x] , ∀xi(τ), the action is said to

be symmetric upon that transformation. Moreover, taking the parameter to be time-

dependent the variation of the action will be given by

δS ≡ S[x+ α∆x]− S′[x] =

∫
dτ α̇Q . (C.1)

The latter in general does not vanish. However it does vanish (∀α(τ)) on the mass shell of

the particle, i.e. imposing equations of motion. Hence

d

dτ
Q
∣∣
on−shell = 0 (C.2)

in other words, Q
∣∣
on−shell is a conserved quantity. The formal construction that lead

to (C.1) is often called the “Noether trick”.
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