
LECTURES ON
ELECTROWEAK
SYMMETRY BREAKING

Roberto Contino
Università di Roma La Sapienza



Outline

 LECTURE 1 -   Evidence for EWSB

 LECTURE 2 -   The role of the Higgs boson

 LECTURE 3 -   Higgs couplings: present status and
                  future strategies

2



Lecture 1

Evidence for EWSB



U(1)Q is a gauge (= local) symmetry and the photon 
is its carrier
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We have discovered a zoo of particles, yet simple 
rules govern their phenomenology:
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 Interactions and decays obey selection rules: 
electromagnetic charge Q is always conserved

 Spectrum degeneracy:  particles organized in multiples 
with same electromagnetic charge

 We feel a long-range force: electromagnetism

ω



W,Z
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In the spectrum of fundamental particles there are 
also massive spin-1 fields: W±, Z0 

They can be thought of as the carriers 
of the ElectroWeak force

It is natural to conjecture that: W and Z are the gauge fields of a 
larger local SU(2)LxU(1)Y invariance
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In the spectrum of fundamental particles there are 
also massive spin-1 fields: W±, Z0 

They can be thought of as the carriers 
of the ElectroWeak force

It is natural to conjecture that: W and Z are the gauge fields of a 
larger local SU(2)LxU(1)Y invariance

Problem: W and Z are massive, and the EW force is not long-range

what is the origin of the W,Z mass ?



 vacuum is invariant under G transformations 

 physical states are classified in multiplets of G

 fields transform linearly under G

 at the classical level there exist conserved currents

Φ0 → g · Φ0 = Φ0 g = eiα ∈ G

ψ → g · ψ

∂µJµ = 0
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It is known that a global symmetry G can be realized 
in two ways in a quantum theory:

[1]    A la Wigner  [ Linear Realization ] 

Example:      U(1)Q is linearly realized



 vacuum is NOT invariant under G transformations: there is 
a whole set of degenerate, inequivalent vacua:

 physical states are NOT classified in multiplets of G

 fields transform non-linearly under G

 at the classical level there still exist conserved currents

 there exist massless scalar fields (Nambu-Goldstone 
bosons)

Φ(g) = g · Φ0

ψ → ψ F (g, ψ) F (g = 1, ψ) = 1
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[2]    A la Nambu-Goldstone  [ Non-Linear Realization ] 

the symmetry G is said to be spontaneously broken (or hidden)



The conservation of the axial current                      in QCD is compatible 
with the nucleon mass if massless scalars exist.  These are identified with the 
pions.

Jµ
A = ψ̄γµγ5ψ
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Existence of massless scalar modes first noticed by Yoichiro Nambu

[ Y. Nambu  Phys. Rev. 117 (1959) 648 ]

 First original observation made in the context of the BCS theory of 
superconductivity (1959):

Gauge invariance (hence the conservation of the electromagnetic current) is 
maintained thanks to the existence of collective (long wave-length) 
excitations 

 Nambu later applied the argument by analogy to the case of the 
axial current in QCD (1960):

[ Y. Nambu  Phys. Rev. Lett.  4 (1960) 380 ]
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 Conservation of axial current previously proposed in analogy with the 
conserved vector current hypothesis (CVC)

L∆S=0
EW = −G cos θC√

2

�
Jµ +

V − Jµ +
A

� �

l

l̄γµνl + h.c. Jµ±
V,A = Jµ 1

V,A ± i Jµ 2
V,A

In modern notation: Jµ,a
V (x) = q̄(x)γµ σa

2
q(x)

Jµ,a
A (x) = q̄(x)γµγ5 σa

2
q(x)
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 Conservation of axial current previously proposed in analogy with the 
conserved vector current hypothesis (CVC)

L∆S=0
EW = −G cos θC√

2

�
Jµ +

V − Jµ +
A

� �

l

l̄γµνl + h.c. Jµ±
V,A = Jµ 1

V,A ± i Jµ 2
V,A

Universality and CVC tested in allowed β transitions 
(0+→0+) at zero-momentum transfer (only the vector 
current contributes):

In modern notation: Jµ,a
V (x) = q̄(x)γµ σa

2
q(x)

Jµ,a
A (x) = q̄(x)γµγ5 σa

2
q(x)

14
O→ 14

N

26
Al→ 26

Mg

π+ → π0e+νe

�p|Jµ +
V |n� = ūpγ

µgV (0)un

GF

G
= gV (0) = 1.006

GF measured in μ-decay
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 Conservation of axial current previously proposed in analogy with the 
conserved vector current hypothesis (CVC)

L∆S=0
EW = −G cos θC√

2

�
Jµ +

V − Jµ +
A

� �

l

l̄γµνl + h.c.



�p|Jµ +
A |n� = ūp

�
γµγ5gA(q2) + qµγ5hA(q2) + iγ5 σµνqν

2mN
fA(q2)

�
un
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Lorentz invariance and CP conservation imply:

gA(0) = 1.22From β decays at zero 
momentum transfer:
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From β decays at zero 
momentum transfer:

Current conservation implies:

For               this requires:
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 Conservation of axial current previously proposed in analogy with the 
conserved vector current hypothesis (CVC)

L∆S=0
EW = −G cos θC√

2

�
Jµ +

V − Jµ +
A

� �

l

l̄γµνl + h.c.

Lorentz invariance and CP conservation imply:

gA(0) = 1.22

qµ�p|Jµ +
A |n� = 0

q2 → 0

From β decays at zero 
momentum transfer:

Current conservation implies:

For               this requires: pole naturally provided by the 
exchange of massless scalars
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 Nambu makes the hypothesis:

under strict axial current conservation there would be no 
renormalization of           and the pion would be masslessgA(0)
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 Nambu makes the hypothesis:

under strict axial current conservation there would be no 
renormalization of           and the pion would be masslessgA(0)

The pole in axial matrix element 
comes from the one-pion exchange:

hA(q2)→ gπNNfπ

q2
gπNN

n π p

�0|Jµ a
A |πb(q)� = iqµδabfπe−iq·x

Jµ +
A



(                        from direct measurement)
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 Nambu makes the hypothesis:

under strict axial current conservation there would be no 
renormalization of           and the pion would be masslessgA(0)

The pole in axial matrix element 
comes from the one-pion exchange:

hA(q2)→ gπNNfπ

q2
gπNN

n π p

�0|Jµ a
A |πb(q)� = iqµδabfπe−iq·x

Jµ +
A

Comparing with the current conservation result

hA(q2)→ 2mNgA(0)
q2

implies the Goldberger-Treiman relation: gπNN =
2mNgA(0)

fπ
� 12.7

gπNN = 13.5
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 In a subsequent calculation with Jona-Lasinio he showed that the      
value                    can be computed in terms of the pion mass, as 
they both come from the breaking of the axial symmetry and are 
thus related

gA(0) = 1.22

[ Y. Nambu, G. Jona-Lasinio  Phys. Rev. 122 (1961) 345;  124 (1961) 246 ]

Nambu received the 2008 Nobel prize in Physics

 ... for the discovery of the mechanism of spontaneous 
broken symmetry in subatomic physics. ” 

“
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Nambu received the 2008 Nobel prize in Physics

 ... for the discovery of the mechanism of spontaneous 
broken symmetry in subatomic physics. ” 

“

Evidence for hidden SU(2)LxSU(2)R→SU(2)V symmetry:

[1] current conservation Goldberger-Treiman relation

[2] existence of almost massless scalars: mπ � mρ
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In general: let G be the global symmetry group and H its largest 
linearly-realized subgroup, so that:

 vacuum is invariant under H
 physical states fill multiplets of H



∀ T
â ∈ Alg(G/H) ∃ πâ / �0|J â

0 |πâ� �= 0
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In general: let G be the global symmetry group and H its largest 
linearly-realized subgroup, so that:

 vacuum is invariant under H
 physical states fill multiplets of H

GOLDSTONE’S THEOREM

For each broken generator there is a massless scalar 
particle (Nambu-Goldstone boson) which is excited out  
of the vacuum by the corresponding Noether current

[ J. Goldstone  Nuovo Cimento 9 (1961) 154

  J. Goldstone, A. Salam, S. Weinberg  Phys. Rev. 127 (1962) 965 ]
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In general: let G be the global symmetry group and H its largest 
linearly-realized subgroup, so that:

 vacuum is invariant under H
 physical states fill multiplets of H

GOLDSTONE’S THEOREM

For each broken generator there is a massless scalar 
particle (Nambu-Goldstone boson) which is excited out  
of the vacuum by the corresponding Noether current

[ J. Goldstone  Nuovo Cimento 9 (1961) 154

  J. Goldstone, A. Salam, S. Weinberg  Phys. Rev. 127 (1962) 965 ]

Is the local SU(2)LxU(1)Y spontaneously broken ?

but:  what is the origin on the W,Z mass ?

 where are the massless NG bosons ?



Spontaneously broken local symmetries:   the Englert-Brout-Higgs mechanism

The problems of the mass and of the 
missing NG bosons can solve each other:



Spontaneously broken local symmetries:   the Englert-Brout-Higgs mechanism

The problems of the mass and of the 
missing NG bosons can solve each other:

“ it is precisely these singularities [of the NG bosons] which 
maintain the gauge invariance of the theory, despite the 
fact that the vector meson acquires a mass ”

• Englert, Brout,  PRL 13 (1964) 321,  “Broken symmetry and the mass of gauge vector bosons”
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Spontaneously broken local symmetries:   the Englert-Brout-Higgs mechanism

The problems of the mass and of the 
missing NG bosons can solve each other:

“ it is precisely these singularities [of the NG bosons] which 
maintain the gauge invariance of the theory, despite the 
fact that the vector meson acquires a mass ”

• Englert, Brout,  PRL 13 (1964) 321,  “Broken symmetry and the mass of gauge vector bosons”

• Higgs,  Phys. Lett. 12 (1964) 132,  “Broken symmetries, massless particles and gauge fields”

choice of Coulomb gauge to quantize a gauge theory 
implies the existence of a time-like vector and thus 
invalidates Goldstone’s theorem based on manifest 
Lorentz covariance
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Spontaneously broken local symmetries:   the Englert-Brout-Higgs mechanism

The problems of the mass and of the NG 
bosons can solve each other:

 the NG boson are ‘eaten’ to form the longitudinal polarizations of 
the massive vector bosons



φ(x) = eiχ(x)/f g = eiα ∈ U(1)φ→ g · φ

Aµ → Aµ + i ∂µαDµφ = ∂µφ + i eAµφ

�φ†φ� = 1

χ(x)
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Spontaneously broken local symmetries:   the Englert-Brout-Higgs mechanism

The problems of the mass and of the NG 
bosons can solve each other:

 the NG boson are ‘eaten’ to form the longitudinal polarizations of 
the massive vector bosons

An abelian example (Stueckelberg trick):

The U(1) global invariance is broken in the vacuum

is the associated (massless) Nambu-Goldstone boson



φ(x) = eiχ(x)/f g = eiα ∈ U(1)φ→ g · φ

Aµ → Aµ + i ∂µα

χ(x) = 0

Dµφ = ∂µφ + i eAµφ

L = (ef)2 AµAµ

mA = ef

L = f2 (Dµφ)†(Dµφ)
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Spontaneously broken local symmetries:   the Englert-Brout-Higgs mechanism

The problems of the mass and of the NG 
bosons can solve each other:

 the NG boson are ‘eaten’ to form the longitudinal polarizations of 
the massive vector bosons

An abelian example (Stueckelberg trick):

invariant under U(1) 
local transformations 

in the unitary 
gauge

vector mass does 
not break the 

local symmetry



a = 1, 2, 3
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The non-abelian case: how to rewrite the W,Z mass terms in a 
manifestly SU(2)LxU(1)Y invariant way

Σ(x) = exp (iσaχa(x)/v)Consider the field ( 2x2 matrix )



a = 1, 2, 3

Σ→ UL Σ U†
Y
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The non-abelian case: how to rewrite the W,Z mass terms in a 
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Σ(x) = exp (iσaχa(x)/v)Consider the field ( 2x2 matrix )

Under SU(2)LxU(1)Y :

UL(x) = exp(iαa
L(x)σa/2)

UY (x) = exp(iαY (x)σ3/2)

SU(2)L acts on the left, 
U(1)Y acts on the right

( 
 )



The vacuum               spontaneously breaks  SU(2)LxU(1)Y→U(1)Q

a = 1, 2, 3

Σ→ UL Σ U†
Y

�Σ� = 1 Q = T3L + Y

χa(x)
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The non-abelian case: how to rewrite the W,Z mass terms in a 
manifestly SU(2)LxU(1)Y invariant way

Σ(x) = exp (iσaχa(x)/v)Consider the field ( 2x2 matrix )

Under SU(2)LxU(1)Y :

UL(x) = exp(iαa
L(x)σa/2)

UY (x) = exp(iαY (x)σ3/2)

SU(2)L acts on the left, 
U(1)Y acts on the right

( 
 )

(                     )

The          are the (three) associated Nambu-Goldstone bosons. 



χ̂
� a = χ̂

a

�
1 +

1
2

�α · χ̂ cot
�

χ

v

��
+

αa

2
cot

�
χ

v

�
+ O(α2)

sin
�

χ�

v

�
= sin

�
χ

v

� �
1 +

1
2

�α · χ̂ cot
�

χ

v

��
+ O(α2)

χ̂a ≡ χa/|�χ|

18

The          transform:χa(x)

 non-linearly under SU(2)LxU(1)Y

ex:  under SU(2)L



χ̂
� a = χ̂

a

�
1 +

1
2

�α · χ̂ cot
�

χ

v

��
+

αa

2
cot

�
χ

v

�
+ O(α2)

sin
�

χ�

v

�
= sin

�
χ

v

� �
1 +

1
2

�α · χ̂ cot
�

χ

v

��
+ O(α2)

χ̂a ≡ χa/|�χ|

UL = UY = exp(iα σ3/2) ≡ UQ

Σ� = UQ eiχ·σ/v U−1
Q = ei UQ(χ·σ)U−1

Q /v (�χ� · �σ) = UQ (�χ · �σ) U−1
Q
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The          transform:χa(x)

 non-linearly under SU(2)LxU(1)Y

ex:  under SU(2)L

 linearly under the unbroken U(1)Q subgroup:
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Σ†Σ = 1
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The          transform:χa(x)

 non-linearly under SU(2)LxU(1)Y

ex:  under SU(2)L

 linearly under the unbroken U(1)Q subgroup:

the field      transforms linearly, but it is subject to the non-
linear constraint

Notice:  Σ
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DµΣ = ∂µΣ− ig2
σa

2
W a

µΣ + ig1Σ
σ3

2
Bµ

It is natural then to define the covariant derivative:
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There are two kinetic terms invariant under SU(2)LxU(1)Y local transformations:

DµΣ = ∂µΣ− ig2
σa

2
W a

µΣ + ig1Σ
σ3

2
Bµ

It is natural then to define the covariant derivative:

Lmass =
v2

4
Tr

�
(DµΣ)† (DµΣ)

�
+

aT

8
v2 Tr

�
Σ†DµΣ σ3

�2



= m2
W W+

µ Wµ− +
1
2
m2

Z ZµZµ

M2
W =

v2

4
g2
2

M2
Z =

v2

4
(g2

1 + g2
2)(1 + aT )
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if gauging is switched off the first term has 
a larger SU(2)LxSU(2)R global symmetry:
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MORAL:

 The pattern of global non-linearly realized symmetry is SU(2)LxSU(2)R→SU(2)V 

complete analogy with chiral symmetry in QCD ! 
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MORAL:

 The pattern of global non-linearly realized symmetry is SU(2)LxSU(2)R→SU(2)V 

 the vacuum preserves a global SU(2)V ‘custodial’ symmetry

complete analogy with chiral symmetry in QCD ! 

physical states come in multiplets of SU(2)V

the NG bosons        form a triplet of SU(2)Vχa
for
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EWSB sector
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The EW effective Lagrangian:

 there’s no “explicit breaking” of gauge symmetry:  SU(2)LxU(1)Y local 
invariance is manifest in the Lagrangian

 custodial SU(2)V explicitly broken only by            , 

... but if ‘breaking of gauge invariance’ is not the issue, why the above 
Lagrangian is not a complete description of Nature ? 

Q:



the Lagrangian           gives an effective description (it is not 
renormalizable) valid below some cutoff scale:
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strength of the interaction grows 
with energy
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If no new physics comes in before then, the scattering of NG bosons becomes 

non-perturbative at energy scales 

strength of the interaction grows 
with energy

the Lagrangian           gives an effective description (it is not 
renormalizable) valid below some cutoff scale:
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1
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g(E)2 = (E/v)2

E ∼ Λs = 4πv
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relates the scattering of NG bosons to that of longitudinal vector bosons
                    (             ) at high energies E � mWVLVL → VLVL V = W,Z

24

The Equivalence Theorem
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symmetry is founded on the following facts: 
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Λs = 4π mV /g

ΛUV

VL ∼ χ

Λs

Evidence for EWSB
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Energy

domain of validity of the 
effective theory

scale at which              eventually 
become strongly interacting

transverse modes must remain elementary up 
to (much) higher scales (shorter distances)

to keep the theory perturbative new physics must come 
in before      to regulate the scattering amplitudes

NOTICE: the longitudinal polarizations need not be elementary

(i.e. they can be composites of some new dynamics)
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Elementary nature of W,Z tested at LEP, Tevatron and LHC through 
Triple Gauge Couplings (TGC)  

95% CL limits from WZ production

95% CL limits ATLAS LEP
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νρW
c
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Tr
�
WµνWνρ Σ σ3Bρµ Σ†�

No evidence so far of compositeness or 
`structure` for the transverse modes
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O(1) correction at 
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if new physics arises 
at the 1-loop level
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Stronger bounds on `structure` scale       come 
from modifications to the vector propagator

m∗

Ex:    S-parameter aS Tr
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Wµν Σ σ3Bµν Σ†� ⊃ γµνZµν ( Z-photon mixing )
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g1g2 v2 + aS E2
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Stronger bounds on `structure` scale       come 
from modifications to the vector propagator
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A counter-example:  the ρ in QCD 

 could the ρ be the gauge field of a larger spontaneously-
broken global symmetry SU(2)LxSU(2)HxSU(2)R→SU(2)V ?

3 NG bosons eaten to give mass to ρ 

3 NG bosons remain in the spectrum = the pions

The gauged SU(2)H group was dubbed the Hidden Local Symmetry

Sakurai, Currents and Mesons, 1969
Schwinger, PRL 24B (1967) 473
Wess, Zumino, Phys. Rev. 163, (1967) 1727
Weinberg, Phys. Rev. 166 (1968) 1568
Bando, et al., PRL 54 (1985) 1215
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 the ρ is a spin-1 triplet of SU(2)V with mass  
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 the ρ is not weakly coupled:
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2
(4π)

mρ = 0.77 GeV
4πfπ = 1.2 GeV

Λs = 4π mρ/gρππ = 1.6 GeV

ΛQCD ∼ 4πfπ ∼ 4π mρ/gρππ ≈ 1 GeV
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A counter-example:  the ρ in QCD 

Things which do not work:

 the ρ is not weakly coupled:

 there is no separation of scales
scale at which ρL 
becomes strongly interacting

scale at which π 
become strongly 
interacting

Now we know that: both longitudinal and transverse polarizations of ρ (as 
well as the pions) are composites of the QCD dynamics



    scattering grows strong up to the cutoff 
scale        and no light new physics comes in 
before to regulate the energy behavior of the 
scattering amplitude  
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Λs = 4π mρ/gρππ = 1.6 GeV
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A counter-example:  the ρ in QCD 

Things which do not work:

 the ρ is not weakly coupled:

 there is no separation of scales
scale at which ρL 
become strongly interacting

scale at which π 
become strongly 
interacting

In fact:  π+

π−
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A counter-example:  the ρ in QCD 

Things which do not work:

 the ρ is not weakly coupled:

 there is no separation of scales
scale at which ρL 
become strongly interacting

scale at which π 
become strongly 
interacting

Hence: there is no energy region in which the theory has a 
(non-linearly realized) SU(2)LxSU(2)HxSU(2)R→SU(2)V 
symmetry and the ρ can be considered a gauge field
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Weak or Strong EWSB ?

To summarize:

 There is convincing evidence (from LEP, Tevatron and LHC) that the transverse 
W and Z polarizations are elementary up to energies much higher than the 
EW scale, hence of a non-linear realization SU(2)LxU(1)Y→U(1)Q of the 
electroweak symmetry
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Weak or Strong EWSB ?

To summarize:

 There is convincing evidence (from LEP, Tevatron and LHC) that the transverse 
W and Z polarizations are elementary up to energies much higher than the 
EW scale, hence of a non-linear realization SU(2)LxU(1)Y→U(1)Q of the 
electroweak symmetry

The question to address is now the following:

 Is the EWSB strong (as for the chiral symmetry in QCD) or weak ? 


