
ROOT I/O Benchmarking and
Client Side Efficiency Metrics

Fons Rademakers
CERN

pre-GDB, 9-Oct, 2012, LAPP, Annecy.

ROOT and Performance Measurements
• Performance benchmarking has been of primary importance

since the beginning of ROOT
■ Introduction of the ROOTMARKS

• The $ROOTSYS/test directory contains a large number of
benchmark programs:

2

stress.cxx stressMathCore.cxx
stressEntryList.cxx stressMathMore.cxx
stressFit.cxx stressProof.cxx
stressGUI.cxx stressRooFit.cxx
stressGeometry.cxx stressRooFit_tests.cxx
stressGraphics.cxx stressRooStats.cxx
stressGraphics.ref stressRooStats_models.cxx
stressHepix.cxx stressRooStats_ref.root
stressHistoFit.cxx stressRooStats_tests.cxx
stressHistogram.cxx stressShapes.cxx
stressInterpreter.cxx stressSpectrum.cxx
stressIterators.cxx stressTMVA.cxx
stressIterators.h stressVector.cxx
stressLinear.cxx

ROOTMARKS
• Output of the stress programs are a ROOTMARK number:

3

**
* *
* S T R E S S H E P I X S U M M A R Y *
* *
* ROOTMARKS =1339.8 * Root5.99/01 20120509/1205 *
* *
* Real Time = 284.1 seconds, CpuTime = 208.0 seconds *
* SYS: Darwin macrdm.rademakers.org 12.2.0 Darwin Kernel Version 12 *
* SYS: 10.8.2 Mac OS X *
**

roottest Regression Test Suite
• In roottest suite, measure memory and CPU time
• Any few percent deviation triggers an regression test error

4

Client Side I/O Performance Analysis
• Monitor TTree reads with TTreePerfStats

5

TFile *f = TFile::Open("xyz.root");
T = (TTree*)f->Get("MyTree");

TTreePerfStats ps("ioperf",T);

Long64_t n = T->GetEntries();
for (Long64_t i = 0;i < n; ++i) {
 GetEntry(i);
 DoSomething();
}
ps.SaveAs("perfstat.root");

TTreePerfStats
• Visualizes read-access
• x-axis: tree entry number
• y-axis: file offset
• y-axis: real time

6

Non Optimal File Layout

7
Performance measurements made using the TTreePerfStats class

Overlapping Reads

8

10
0

M
B

Optimized File Layout

9

Old Real Time = 722s
New Real Time = 111s

OptimizeBaskets and FlushBaskets
• Solutions, enabled by default:

■ Tweak basket size
■ Flush baskets at regular intervals

10

Available in v5.26.00

OptimizeBaskets
• The TTree::OptimizeBaskets() method is a new function that will

optimize the buffer sizes taking into account the population in
each branch

• Tunes the branch buffer size
• Without this tuning branches containing the same event are

scattered in the file
• You can call this method on an existing read-only Tree to see the

diagnostics

11

FlushBaskets
• The TTree::FlushBaskets() method was introduced in 5.22 but

called only once at the end of the filling process
• In version 5.26 this method is called automatically when a

reasonable amount of data (default 30MB) has been written to
the file

• The first time that TTree::FlushBaskets() is called, we also call
TTree::OptimizeBaskets()

• The frequency to call TTree::FlushBaskets() can be changed by
TTree::SetAutoFlush()

• Thanks to TTree::FlushBaskets() there are no backward seeks
anymore (for files written with 5.26).

12

What is the TreeCache
• It groups into one buffer all blocks from the used branches
• The blocks are sorted in ascending order and consecutive blocks

merged such that the file is read sequentially
• It reduces typically by a factor 10000 the number of transactions

with the disk and in particular the network with servers like
httpd, xrootd or dCache

• The typical size of the TreeCache is 30 Mbytes, but higher values
will always give better results

13

readv&
readv&
readv&
readv&
readv&

ROOT Optimizations for WAN
• Load phase (where data is fetched from an SE into the

TreeCache) is
■ Short for LAN transfers
■ Significant for WAN transfers (latency, bandwidth)

• Gain in WAN by asynchronous (double buffering) transfer
technique
■ Independent of access protocol (xrootd, httpd, etc)

• In addition local file caching
• And site proxy server

• Implemented in v5.30 by Elvin Alin Sindrilaru (fellow IT-DSS)
14

Pre-fetching and Caching Summary
• Asynchronous pre-fetching has been demonstrated as an

efficient way to improve the cpu/RT efficiency of analysis
applications
■ Allows to use every synchronous protocol in asynchronous mode
■ Allows to proxy caching of TreeCache blocks on any ROOT

supported file storage
■ TreeCache transforms sparse/random access into sequential local

access
■ Integrated in ROOT v5.30, activated using rootrc flag:

■ TFile.AsyncPrefetching: yes

15

Benchmarking Programs
• roottest comes with several scripts that can be used for

benchmarking
■ io/perf/userdatasets/readfile.C

16

for example the following session:

 root > .x readfile.C("atlasFlushed.root","",60000000,-1,1,0.33)

will use a 60 MBytes cache, reading all branches and only 1/3 of entries

Conclusions
• ROOT 5.26 came with a drastically optimized Tree buffer sizing

and writing algorithm
• ROOT 5.30 comes with optimized WAN access using double

buffered file transfer and local file caching
• After 17 years of developments, we are still making substantial

improvements in the I/O system thanks to the many use cases
and a better understanding of the chaotic user analysis

• Performance monitoring and benchmarking are essential to
understanding how to achieve more performance
improvements

