
Data & Storage Services

CERN IT Department
CH-1211 Geneva 23

Switzerland
www.cern.ch/it

DSS

Diskpool and cloud storage
benchmarks used in IT-DSS

Geoffray ADDE

CERN IT Department
CH-1211 Geneva 23

Switzerland
www.cern.ch/it

Internet
Services

DSS

• I- A rational approach to storage
systems evaluation
– Hypothesis, metrics and experiments
– Some examples

• II- Introduction to the benchmarking
framework
– Why? What? Where? Who? How?

Outline

Data &
Storage
Services

A storage system
 Architecture (features, hardware, software)
 Physical Resources (nodes, CPU, RAM, HD, SSD, network, …)
 User Interface (POSIX, GridFTP, S3, ...)

A question
 What is the aggregated capacity of the system for a given operation? How does it
scale?
 What is the impact of a given setting of the system on the system on a given
operation?
 How the system behaves in degraded mode? during rolling upgrades?

➢ An experiment:
▪ a workload

A set of clients (number, resources)
A set of tasks (read/write, small/big files, random/pattern/seq access,

combinations)
 selected metrics

Host specific metrics (CPU, mem, IO, network)
Client specific metrics (request processing time, request througput, ...)

I- A Rational Approach

Data &
Storage
Services

Storage System:
● 7 head nodes 2x10Gb fiber network
● 400 storage nodes, 700TB
● no encryption, 1 session per operation

Question:
● How does the metadata read performance scale?

I- Metadata Read Performance

Experiment:
● 20 boxes 1Gb network 24 cores 48GB memory
up to 20 processes/box
● One repeated task : read an entire randomly
chosen 4k file
● Host specific metrics (CPU, mem, IO, network)
check any client bound
● Counting the number of completed requests

Results:
● Scaling is almost linear
● Saturation of the metadata subsystem is not
reached

Data &
Storage
Services

Storage System:
● 7 head nodes 2x10Gb fiber network
● 400 storage nodes, 700TB
● no encryption, 1 session per operation

Question:
● How does the read throughput scale?

I- Read Throughput

Experiment:
● 20 boxes 1Gb network 24 cores 48GB memory
up to 20 processes/box
● One repeated task : read an entire randomly
chosen 100MB file
● Host specific metrics (CPU, mem, IO, network)
to check any client bound
● number of completed requests, run time,
network

Results:
● Scales linearly up to 80% of the max bandwidth
● Beyond it's still growing slower and slower and
reaches the max at 240 processes.

Data &
Storage
Services

Storage System:
● 7 head nodes 2x10Gb fiber network
● 400 storage nodes, 700TB
● no encryption, 1 session per operation

Question:
● How fast is the ROOT S3 plugin compared to
other storage plugins?

I- S3 plug-in for ROOT

Experiment:
● 20 boxes 1Gb network 24 cores 48GB memory
up to 20 processes/box. Idle
● One real ATLAS ROOT file : 793MB on disk,
2.11GB after decompression, 12K entries, 6K
branches, cache size = 30MB
● One client reads in entries sequentially in
“physics tree”
● Time to process the task. CPU client to check
that the client is not CPU bounded.

Results:
● Negligible gap of performance compared to EOS

Data &
Storage
Services

I- about metrics...

Evaluation of a storage file system:
● Measuring a global quality of service
● Looking at aggregated distributions

● Host process-specific and machine-specific
● CPU (User / Kernel / Wait)
● RAM (mainly remaining RAM)
● Network (transmit / receive, only machine-specific)
● IO (local storage)

● Host process-specific and machine-specific
● Request response time
● Request throughput
● Dedicated user-defined metric

● Dedicated metrics on the server side

● Network metrics

Data &
Storage
Services

II- A tool for the evaluation of
storage systems

Context:
●Metering the raw performances
●Evaluate the scalability(ies)
●Understanding the bottlenecks

Need:
●Simulate the requests from a pool of clients (1~10000)
●Collect (if possible in real-time) metrics from these clients
●Don't interfere with this evaluation (low CPU/Net/Disk overhead)
●Ease of use (call, writing client, network, io)

Proposed Solution:
●A C++ client/server framework
●Based on SSH (Kerberos)
●Using Root as a way of compacting/transmitting/presenting the
data

Data &
Storage
Services

SSH

Box 1

Box 2

Box n

Master Box

II- Framework OverView

Master

Spawner

Slave

Client

diskcpu net

Storage
System

Data &
Storage
Services

Architecture:
●SSH tunneling avoid any firewall issue (vs cyphering overhead)
●Timestamped data
●Built-in CPU, Network and Disk IO loads reporting (yet configurable)

Master side:
●Clean Management of remote processes (signal 2, 15 and 9)
●Real-time reporting
●Built-in graphs for histograms (1D and 2D) and plots
●Command line interface
●Some debug facilities

Remote side:
●One class, one instance, few methods.
●Can report

•histograms or raw data
•instant, elapsed, rate (./sec)

●A set of thread-safe methods and a SubId identifier to cope with
multithreaded clients
●A Python wrapper is available

II- Main Features

Data &
Storage
Services

Technical facts:
●requires root and boost
●build with cmake
●4600 lines of code

Level of maturity:
●Successfully tested on Ubuntu x86, x86_64, SLC 6.x
●Daily run on SLC 6.x on 5 to 20 boxes at a 1Hz reporting rate

Concret usage:
●Evaluation of Huawei S3 implementation (stress-test and ROOT)
●Evaluation of OpenStack

Perspectives:
●A web platform to collect measurements from many storage
systems to build-up a benchmark.

II- Status

	Slide 1
	Slide 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Slide 3
	Diapo 9
	Diapo 10
	Diapo 11

