

Step IV & VI: Local Flux Return

Holger Witte Brookhaven National Laboratory Advanced Accelerator Group

Outline

Introduction and Concept

- Shielding efficiency
- Extension to Step VI

• Effect on beam

• Forces

Local Flux Return

- Explore shielding options
 - Initially only for Step IV, but should also work for Step VI (or upgradable)
- What has been done so far?
 - general concept
 - performance Step IV&VI (all cases)
 - effect of shielding on field of MICE
 - individual components
 - walls, Q9, floor, ...
- However, there are many things which have not been done so far...

Concept

- To get good shielding horizontally: need continuous steel in azimuthal direction
- Geometry
 - Tube of radius 1.2 m
 - wall thickness 10 cm
 - azimuthally -50..50°
 - weight: 30t

(Note: not to scale)

Magnetization In Shield

Initial Situation

Shielding Efficiency

r = 1.5 m

Development of Fringe Field

31/Jul/2012 17:39:37

Development of Fringe Field BROOKHAVEN NATIONAL LABORATORY

31/Jul/2012 17:40:07

Development of Fringe Field

31/Jul/2012 17:40:39

Fringe Field

Vertical Position: 0.75m

17 October 2012

Options for Extension Step VI

- MICE Step VI: significantly larger in diameter
 - Coupling coils
 - RF waveguides
- Adaption of scheme possible?
- Ideally:
 - single scheme for both scenarios
 - Or: possibility of modification

Extension to Step VI

Geometry

(both halfs)

Geometry

Geometry

Outside faces removed

200 MeV Flip Mode

17 October 2012

MICE Step VI – Option 2

Gap in radial direction - still continuous flux 0.8 return path in 0.6 longitudinal direction 0.4 Shield at different radii azimuthal angles must match 5 0.4 overlap seems not -0.4 necessary -0.6 Allows feed-in/out of -0.8tracker wiring? -1

Or

MICE Step VI – Option 2

6/Aug/2012 13:59:37

Additional Iron Structures

- Additions:
 - 'Virostek' shields
 - TOF cage
 - Quad Q9 (simplified)
 - Floor
- Field reductions due to shield
 - Q9: 63 to 36 mT
 - Walls: 150 mT to 12 mT

Effect on Field in Channel

Variation of B_z

Unwanted Multipole Components

Additional hor. field introduced by shield

Unwanted Multipole Components

3D Field Correction

Forces

- Forces on shield under quench conditions
 - Normal operation: no longitudinal force on proposed shield
 - Cases studied: Step IV
 - 1. one tracker solenoid switched off
 - 2. one focusing coil switched off
- Coil forces
- Forces evaluated in Opera/VectorFields
 - Maxwell stress tensor
 - (virtual work gives identical results within simulation accuracy)
 - Field evaluation: Mesh = nodal, coil = integral

Forces on Shield

	Hor. Force [kN]	Long. Force [N]
200 MeV Flip One tracker inactive	-13.6	73
200 MeV Sol One tracker inactive	-9.3	70
200 MeV One FC inactive	-30	-8
Reference 200 MeV Flip	-30	-158
Reference 200 MeV Solenoid	-13	-143

Coil Forces Step VI

	No Iron	Iron	Change
FC1	-3367202	-3410424	1.012836
CC	-203400	-379805	1.867281
FC2	3235323	3294357	1.018247
FC3	-3281620	-3339131	1.017525
Match 1	-190322	-199323	1.047294
Match 2	-49992	-51374	1.027644
End1	-851298	-850645	0.999233
Spect. Sol	-29037	-14438	0.497228
End2	1400771	1407749	1.004982

Force in Newton

Radial Field CC

No Iron

Step VI Force on CC

17 October 2012

Engineering

BNL engineering effort to look into practical design and manufacturing Present estimate: Full design 1st week January

Procurement: 4 months 17 October 2012

Geometric Freedom

12/Oct/2012 13:12:56

Conclusion

- Conceptual design of local flux return
 - reduces stray field in hall significantly (factor 30)
 - shield: about 30t of iron (130t for Step VI)
 - force on shield manageable
- Effect on beam
- Effect on other iron structures in hall
 - Q9, floor, walls
- Extension to Step VI possible
 - includes solution for natural breaks in shield for wire feed-in/out
- Engineering

Additional Slides

Simulation Details

- Finite element simulations
 - Opera from
 VectorFields/Cobham
 - Comsol Multiphysics
- Iron
 - AISI 1010 steel
 - BH curve: Opera/VF
- (Benchmarking)

3D Field Correction

17 October 2012

Quad Q9

BROOKHAVEN NATIONAL LABORATORY

No Shield: 62mT

Shield: 36 mT (average)

9/Oct/2012 17:44:36

Walls

BROOKHAVEN NATIONAL LABORATORY

No Shield: 150 mT (peak)

Shield: 12 mT (peak)

Reduction of factor 10+