

SEARCH FOR TTBAR RESONANCES IN THE LEPTON PLUS JETS CHANNEL AT 7TEV: PLAN FOR 8 TEV

FARIDA FASSI¹, RAJAA CHERKAOUI EL MOURSLI², MOHAMED AMINE HYAYA²

1-IFIC-VALENCIA, SPAIN
2-LPNR, FACULTÉ DES SCIENCES,
UNIVERSITÉ MOHAMMED V-AGDAL, MOROCCO

ILCP GENERAL MEETING
13TH SEP. 2012

OUTLINE

- Motivation
- Analysis overview
- Results
- Plan for 8Tev

MOTIVATION

- The "usual" introduction:

Top physics is one of the most interesting subjects at the LHC

Detector calibration

precision measurements, and

search for new physics (Top quark strongly couples to dynamics of electroweak symmetry breaking)

New physics in the top sector may happen in production, decay, association

Many models predict resonances in production, for which a spectacular signature would be a peak in mtt → Focus in this analysis

Different spin states and different widths are possible.

- \rightarrow Higgses
- → Axigluons
- \rightarrow Technicolor Z'
- → KK excitations

Benchmark Models considre in the analysis:

- →leptophobic Z'
- → Randall-Sundrum
 - →KK gluons gKK
 - →(RS1) gravitons G*

ANALYSIS OVERVIEW

Goal: investigation of m_{tt} as possible signature of presence of new physics in top-pair production

Top production is studied in different kinematic regions and reconstruction is adapted not to loose sensitivity in any portion of phase space

Analysis Strategy:

Low, medium Energy tops: Resolved regime

High Energy tops
Boosted regime

combine ttbar reconstruction topologies

If no evidence found Combination of resolved and boosted in limit setting

ANALYSIS OVERVIEW- TTBAR RECONSTRUCTION MASS

Boosted regime:

Sum of leptonic W, AKT4 Jet, AKT10 Jet

→ AKT4 jet (lep.jet): △R(l,jet)<1.5, pT>25 GeV

→ AKT10 jet (had. Jet)

∆R(lep jet, AKT10)>1.5, pT>350GeV mass>100 GeV, √d12>40 GeV

 $\Delta \varphi(I, AKT10) > 2.3$

- →leptonic top → Wlep+ AKT4 jet (closest to lepton)
- → hadronic top → AKT10 jet (closest to leptonic jet)

For both regimes:

 $W(lv) = lepton(e,\mu) + MET$

Neutrino pz component is determined by applying the Wboson mass as a constraint.

- →If more than one solution, take smallest |pz|.
- → If no solution, rotate MET until there is one.

Resolved regime:

 χ^2 method: select combination of jets for which χ^2 is minimal.

$$\chi^{2} = \left[\frac{m_{jj} - m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{m_{jjb} - m_{jj} - m_{th-W}}{\sigma_{th-W}}\right]^{2} + \left[\frac{m_{j\ell\nu} - m_{tl}}{\sigma_{t\ell}}\right]^{2} + \left[\frac{(p_{\mathrm{T},jjb} - p_{\mathrm{T},j\ell\nu}) - (p_{\mathrm{T},th} - p_{\mathrm{T},t\ell})}{\sigma_{diff\,p\mathrm{T}}}\right]^{2}$$

RESULTS AT 7 TEV

Boosted regime

Resolved regime:

BACKGROUNDS ESTIMATION

Background estimated using MC:

- >SM ttbar
- >Single top
- >Z+jets
- **>** Diboson

W+jets: estimated using MC but using data-driven methods to determine the total normalisation and flavour-fraction.

For boosted, normalisation factors were derived in a control region without b-tagging, mass and d12 cuts.

QCD: estimated from data using Matrix Method as nominal and Jet Electron as cross-check.

Fake-rate/efficiency estimated for resolved and boosted separately.

EVENT YIELD

	Resolve	ed selection	
Type	e+jets	μ +jets	Sum
$t\bar{t}$	19,607 ± 2,098	$24,506 \pm 2,622$	44,113 ± 4,720
Single top	1,430 ± 110	1,813 ± 140	$3,243 \pm 250$
QCD <i>e</i> +jets	$2,490 \pm 1,245$	- ± -	$2,490 \pm 1,245$
QCD μ +jets	- ± -	$1,005 \pm 201$	$1,005 \pm 201$
W+jets	$2,322 \pm 464$	$4,008 \pm 802$	$6,330 \pm 1,266$
Z+jets	462 ± 222	386 ± 185	848 ± 407
Dibosons	55 ± 26	70 ± 33	124 ± 60
Total	$26,366 \pm 2,496$	$31,786 \pm 2,759$	$58,153 \pm 5,255$
Data	26, 853	34,720	61,573
Boosted selection			
	Booste	d selection	
Туре	Booste e+jets	ed selection μ+jets	Sum
Type tt			Sum 939 ± 101
	e+jets	μ +jets	
$t\bar{t}$	e+jets 326 ± 35	μ +jets 613 ± 66	939 ± 101
Single top	<i>e</i> +jets 326 ± 35 18 ± 1	μ +jets 613 ± 66 32 ± 2	939 ± 101 50 ± 4
Single top QCD e	$e+jets$ 326 ± 35 18 ± 1 12 ± 6	μ +jets 613 ± 66 32 ± 2 0 ± 0	939 ± 101 50 ± 4 12 ± 6
Single top QCD e QCD mu	$e+jets$ 326 ± 35 18 ± 1 12 ± 6 0.00 ± 0.00	μ +jets 613 ± 66 32 ± 2 0 ± 0 19.75 ± 3.95	939 ± 101 50 ± 4 12 ± 6 19.75 ± 3.95
Single top QCD e QCD mu W+jets	$e+jets$ 326 ± 35 18 ± 1 12 ± 6 0.00 ± 0.00 32 ± 6	μ +jets 613 ± 66 32 ± 2 0 ± 0 19.75 ± 3.95 51 ± 10	939 ± 101 50 ± 4 12 ± 6 19.75 ± 3.95 83 ± 17
Single top QCD e QCD mu W+jets Z+jets	$e+jets$ 326 ± 35 18 ± 1 12 ± 6 0.00 ± 0.00 32 ± 6 4.3 ± 2.1	μ +jets 613 ± 66 32 ± 2 0 ± 0 19.75 ± 3.95 51 ± 10 3.5 ± 1.7	939 ± 101 50 ± 4 12 ± 6 19.75 ± 3.95 83 ± 17 7.8 ± 3.7

Extraction of limits

Since no data excess over the expected SM background is observed, an upper limits, using a Bayesian approach, has been considered on the production cross-section for the analysis benchmark models.

Most significant experimental + theory sources are included:

- >Scale variation
- > JER/ JES
- Boosted JES
- > W+jets shape, W+jets HF composition
- > ISR/FSR and PDF for ttbar
- > Parton shower
- > b-tagging efficiency and mis-tag rates
- > ttbar and QCD normalisation

Latest observed limits: draft CONF note/paper on approval stage. Scheduled soon.

Results

Supporting documentation for the analysis can be found here:

ATLAS-COM-PHYS-2012-797

https://cdsweb.cern.ch/record/1455225

ATLAS-COM-CONF-2012-174 https://cdsweb.cern.ch/record/1476727 AT LAS

Not reviewed, for internal circulation only

ATLAS NOTE

September 4, 2012

A search for $t\bar{t}$ resonances in the lepton plus jets final state using 5 fb⁻¹ of pp collisions at $\sqrt{s} = 7 \text{ TeV}$

S. Allwood-Spiers^a, T. Andeen^a, E. Bergeaas Kuutmann^a, Th. Boek^a, G. Brooijmans^a, C. Buttar^a, S. Calvet^a, R. Camacho Toro^a, B. Chapleau^a, S. Crépé-Renaudin^a, T. Cornellisen^a, B. Decheneux^a, P.-A. Delsart^a, D. Duda^a, F. Fassi^a, A. Gershon^a, L.S. Gomez Fajardo^a, J. Ferrando^a, D. Ferreira De Lima^a, S. Fleischmann^a, T. Gadfort^a, P. Handaric^a, T. Heck^a, M. A. Hyaya^a, Ç. Işsever^a, W. Ji^a, K. Johns^a, V. Kaushik^a, Th. Kuhl^a, S. Livermore^a, T. Lenz^a, M. Leone^a, P. Maettig^a, L. Masetti^a, F. O'Grady^a, C. Oropeza Barrera^a, M. Petteni^a, C. Pollard^a, V. Sanchez Martinez^a, S. Swedish^a, E. Thompson^a, L. Valéry^a, M. Villaplana^a, J. Veatch^a, M. Vos^a, J. Zhong^a, H. Zhu^a

^aATLAS

Abstract

This note documents a search for single production of a heavy boson that decays to $t\bar{t}$ pairs. The search is performed using $5\,\text{fb}^{-1}$ of data, taken at centre-of-mass energy $\sqrt{s}=7\,\text{TeV}$, in the lepton+jets final state requiring one electron or muon, large missing transverse momentum, and additional hadronic jets. The $t\bar{t}$ system is reconstructed using standard and "boosted" techniques. The results of the search are used to set upper limits on the cross section times branching ratio for production of a heavy boson that decays to $t\bar{t}$. These limits are interpreted in the context of several benchmark models.

Summary

- > Search for ttbar resonaces with 5fb-1 of proton-proton data at 7 TeV.
 - No significant deviation from SM background is observed.
 - ➤ Upper limits on the production cross-section for different benchmark models. Z' masses below 1.66 TeV and gKK masses below 1.94 TeV are excluded with 95% C.L.

Plan for short and medium term

Potential at 8 TeV: Reproduce the limit curves at 8 TeV with the expected collected luminosity

Analysis framework: We have developped a dedicated package for

Boosted regime→TopD3DP Boosted

update the package to Boosted D3PD 8 TeV

and new conditions

Jet substructure: Study and try another algorithms to understand

deeper the constitute of the fat jet.

improves the systematics, optimize the cut variables

BACKUP

EVENT SELECTION

C0

C1

C2

C3

C4

C5.1

C5.2

C8.1

C9

C10

C11

C12

C13

C11.1

Considered modes: e+jets, µ+jets

e+jets
total number of events

Pile-up+lumi re-weighting+GRL

total number of events

mu+jets

Pass trigger + LAr error

MET > 30

Mwt > 30

necessary)

1 good vertex 1 good vertex >=1 lepton, pt > 25 =1 lepton =1 lepton Veto other leptons(e:with pt>25, mu: pt>20) Jet cleaning Jet cleaning

>= 1 akt4 jet pt > 25 && DR(lep,akt4 jet) < 1.5

DPhi(lep,akt10 jet) > 2.3 && SPLIT12 > 40 &&

>= 1 akt4 jet with MV1 > 0.601713 (no matching

LepJet = akt4 jet with min DR(lep,akt4 jet)

>=1 akt10 jet (pT > 350 && m > 100 &&

 $DR(LepJet_akt10 jet) > 1.5)$

MET > 20

>=1 akt10 jet (pT > 350 && m > 100 &&

 $DR(LepJet_akt10 jet) > 1.5)$

necessary)

DPhi(lep,akt10 jet) > 2.3 && SPLIT12 > 40 &&

>= 1 akt4 jet with MV1 > 0.601713 (no matching

- LepJet = akt4 jet with min DR(lep,akt4 jet)
- Pass trigger + LAr error >=1 lepton, pt > 25 Veto other leptons(e:with pt>25, mu: pt>20) Mwt+MET > 60>= 1 akt4 jet pt > 25 && DR(lep,akt4 jet) < 1.5