

MD title: Electron cloud effects characterization at 4TeV

Requesters: G. Arduini, V. Baglin, G. Rumolo, L. Tavian

Participants:

G. Arduini, Ph. Baudrenghien, V. Baglin, H. Bartosik, T. Bär, G. Bregliozzi, R. Bruce,
S. Claudet, O. Dominguez, J. Esteban Muller, W. Höfle, <u>G. Iadarola</u>, J.M. Jimenez,
G. Lanza, T. Mastoridis, H. Maury-Cuna, E. Métral, S. Redaelli, G. Rumolo,
B. Salvachua Ferrando, B. Salvant, E. Shaposhnikova, L. Tavian, F. Zimmermann et al.

Description

- The goal is to study the behavior of the beam and of the machine with 25ns beam (≥72b. trains) at 4TeV (ecloud expected to be worse due to photoelectrons)
- Monitor electron cloud indicators:
 - Vacuum pressure rise
 - Heat load on beam screens in arcs and other SC magnets
 - e⁻ flux on BPMs (tbc)
 - Stable phase shift along the train
 - Beam losses
 - Emittance blow-up
 - Stability (damper pick-ups, head-tail monitor)
- Time requested: 12h (up to 2 ramps with 4h at flat top)

Beam parameters

- Bunch spacing: 25ns
- Bunch intensity: up to 1.3x10¹¹ppb
- Optics: injection
- Energy: 450GeV → 4TeV
- Number of bunches: ≤400 (1st ramp), ≤800 (2nd ramp) (exact number and filling scheme to be defined after the scrubbing run)
- **Tr. emittance:** minimum possible for given bunch int.
- Bunch length: nominal

Possible parallel studies:

UFOs, beam stability, components heating, RF

- - **Collimation:** whole hierarchy retracted by 1.4σ (more margin for ecloud induced emitt. blow-up, see R. Bruce and S. Redaelli proposal)
 - **RF system:** klystron DC parameters increased in order to get higher saturation power (tested without beam on 12/9/2012)
 - Transverse feedback: Settings for 25ns beam and larger bandwidth (should be already tested during the scrubbing run)

Proposed plan for 4 TeV 25 ns studies

	Time	# bunches/beam
Collimation setup and validation	3 shifts	2-3
Ramp down and Recovery	2 h	
Long range beam-beam MD (IR1/5)	5 h	72+12
Long range beam-beam MD (IR1/2/5/8)	5 h	2x72+12 25 5 1
Ramp down and Recovery	2 h	int.
		rar ar
E-cloud ramp (no squeeze)	6 h	~400 (tbc)
E-cloud ramp (no squeeze)	6 h	~800 (tbc)
Ramp down and Recovery	2 h	
possible 25ns physics run		

See LMC#149 presentation

Regular measurements during scrubbing

→ Chromaticity measurement before starting any high intensity fill → Beam measurements

- Transverse emittance:
 - LHC: Wire scanner (up to 156 bunches), BSRT in fast scan mode, BGI
 - SPS: Wire scanner in bunch-by-bunch mode at SPS extraction
- Bunch-by-bunch intensity (FBCT) and total intensity (DCBCT)
- Transverse oscillations:
 - BBQ and Hump buster
 - ADT pickup (bunch-by-bunch position)
 - Head-tail monitor
- Longitudinal parameters:
 - Bunch length evolution
 - Longitudinal beam spectra
- \rightarrow Electron cloud measurements
 - Heat load in the arcs, stand-alone and triplets
 - Bunch-by-bunch RF stable phase
 - Vacuum pressures (selection of gauges to be defined with vacuum team)

Additional slides

- Heat loads (also stand-alones and triplets)
- BSRT temp. (especially if frequent alignment needed)
- TDI temp./ angle
- MKIs temp. and press.
- Collimators' temp

Contacts with equipment groups and procedures being established

Rather confident to accelerate few trains of 72 bunches to flat-top (ecloud wise) to fulfil requirement for beam-beam long-range MDs: 1-2 trains of 72 bunches

- Criterion for the choice of the filling pattern (at the end of the scrubbing run) number of trains of 72 (or larger) bunches that do not show:
 - Sign of instability / important blow-up at injection
 - Vacuum pressures above 10⁻⁷ mbar