Meeting of Task 2.2 on HL-LHC Lattice & Optics

Status of Optics calculations

impact on magnet R & D on crab cavity R & D

input for tracking calculations (magnet quality & multipole compensation) for beam-beam simulations for collimation task

etc etc

mid term goal: establish HL-LHC V1.0 (Nov. 2012)

Meeting of Task 2.2 on HL-LHC lattice & optics

time	Wednesday 19-Sep	chair: Bernhard	
09:00-09:40	Welcome and Overview	Bernhard	
09:40-10:20	Layout Conditions & Scripts	Riccardo	
10:20-10:40	Coffee		
10:40-11:20	Baseline Optics	Barbara	
11:20-12:00	Optics Transitions	Maxim	
	Lunch		
		chair: Riccardo	
14:00-14:40	Robustness & Tolerances	Catia	
14:40-15:20	Fringe Field Effects	Rob /Luke / Matthew	
15:20-15:40	Coffee		
15:40-16:20	Optics in IR 2 & IR 8	Anton	
16:20-17:00	Flat Beam Option	Riccardo	

Basic Idea: $\approx 30 \dots 40$ min presentation, $0 \dots 10$ min discussion

time	Thursday 20-Sep	chair: Andy	
09:00-09:40	Magnet Design	Ezio	
09:40-10:20	Crab Cavity Conditions	Rama	
10:20-10:40	Coffee		
10:40-11:20	Q4 Conditions (CRC's)	Barbara	
11:20-12:00	Non-ATS Alternatives	Rob	
12:00-12:40	Local Chromaticity Correction	Antoine & Jacques	
12:40-13:00	Non-ATS Alternatives	Angeles	
	summary discussion	Andy	

Wednesday evening: 19:30 Pizzeria d'Oro

HL-LHC: Task Optics & Lattice Layout:

Plan Nov 2011

Overview about the possible topics

I.) Setting the Baseline for the ATS Optics in IR1 and IR5

This will set the groundwork for the ATS optics; the goal is to establish a feasible beam optics for smallest β^* in IP1 & 5, within the limits given by the magnet strengths (triplet and matching section) and the magnet apertures in the triplet area.

- 1.) MAD-x optics calculations to establish the 120mm aperture / 180 T/m gradient ATS-optics versions: Barbara Dalena, CEA
- 2.) Optics solutions for 140mm compatible gradients: Riccardo CERN
- 3a.) Study the robustness of the HL optics with respect to longitudinal alignment errors and gradient errors within the boundary condition of 10% beta beat limit and /or re-"matchability": Catia Milardi
- 3b.) Study the linear & non-linear fringe field effects: Anton Bogomyagkov, Novosibirsk
- 4.) Optics transition Injection / ATS-Lumi of 1.) : Maxim Korostelev, Cockcroft

II.) Establish a Set of different Beam Optics in IR2 and IR8

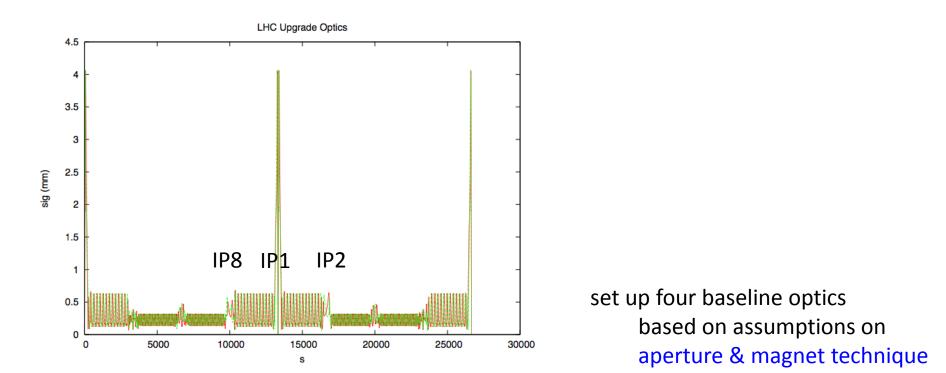
As the matching section in the neighboring sectors to IR1&5 is used for the ATS squeeze, the beam optics in the IRs 2,8 and 4,6 has to be calculated respecting these boundary conditions. Namely the flexibility of different β functions in IR 2, IR8 - as desired by the experiments LHCb and ALICE - has to be studied.

5a.) Optimisation / Flexibility of IR4 / 6 for ATS optics squeeze:

5b.) Optimisation / Flexibility of IR2 / 8 Anton Bogomyagkov, Novosibirsk

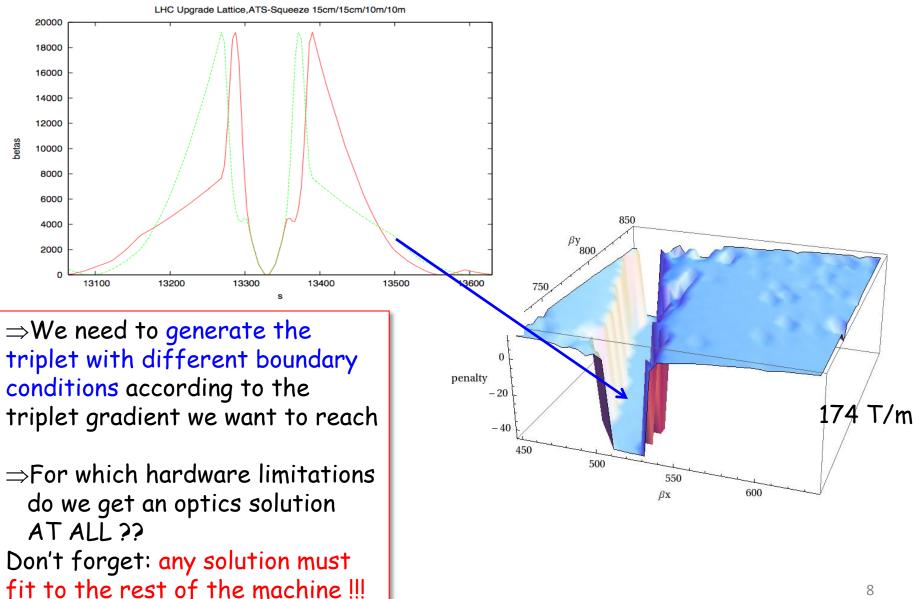
III.) Flat Beam Option in IP1 & 5

6.) As fall back solution to the round beam option, where crab cavities will be needed to compensate the geometric luminosity loss factor, a beam optics has to be studied with unequal β s in the two transverse planes. Up to now this will follow the pre-squeeze optics and so is considered as an alternative part of the ATS scheme.

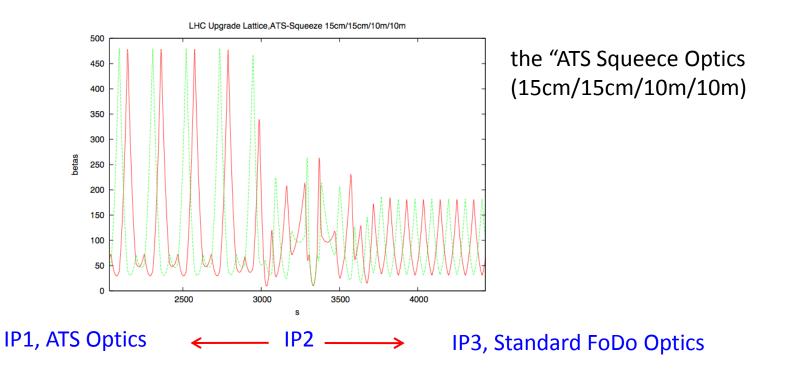

IV.) Alternative Scenarios for smallest β^* without ATS

In parallel to the ATS optics explained in I.) options are studied to gain the smallest possible β^* in IP1 & 5 without ATS. Re-design of parts of the matching section is considered as well as an attempt to investigate a completely new layout of the IRs.

- 7.) Re-design the matching section for optics flexibility and smallest possible β^*
 - * Shifting the position of the matching quadrupoles ... done ?
 - * Introducing additional quadrupoles & explore alternative phase advance IP / arc-sextupoles / Rob Appleby, Cockcroft
- 8.) Re-design of matching section for smallest reachable β^* (additional quads, doublets at Q4/Q5 for sign flip etc) Angeles Faus-Golfe Valencia
- 9.) Introducing local sextupole correction scheme (second triplet at Q4) to improve chromaticity correction: Jaques Payet & Antoine Chance, CEA


LHC Upgrade Challenges

LHC Luminosity Upgrade in ATS

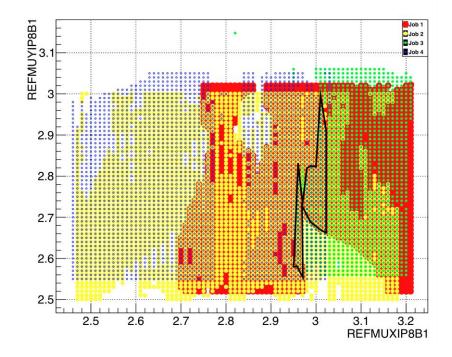


ар. ⁹	grad ¹⁰	lengths ¹¹	β^*	N1 ¹²	N2 ¹³	t ¹⁴
[mm]	[T/m]	[m]	[cm]	[ppb]	[ppb]	[h]
150	144(83%Sn)	8.2 , 7.0	13.0	1.99E11	1.21E11	6.06
150	96(83%Ti)	10.8 , 9.0	17.0	2.03E11	1.36E11	5.24
 →140	150(80%Sn)	8.00, 6.8	15.0	2.01E11	1.29E11	5.64
 →140	100(80%Ti)	10.5, 8.8	19.0	2.05E11	1.42E11	4.89
 →120	180(83%Sn)	7.1 , 6.1	18.6	2.05E11	1.42E11	4.96
 120	120(83%Ti)	9.3, 7.8	24.0	2.11E11	1.58E11	4.14
85	160(78%Ti)	7.7, 6.6	44.0	2.41E11	2.11E11	2.33
80	257(80%Sn)	4.8, 5.5	39.0	2.33E11	1.99E11	2.65

LHC Upgrade Optics in IP1 / IP5

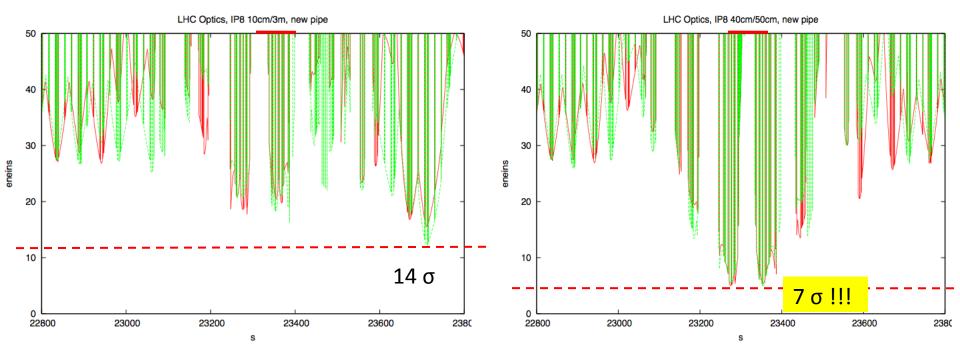
LHC Upgrade Optics in IR2

Find an otpics solution that is feasible for the Luminosity upgrade and guarantees adequate conditions for the ALICS and LHCb experiment at the same time.

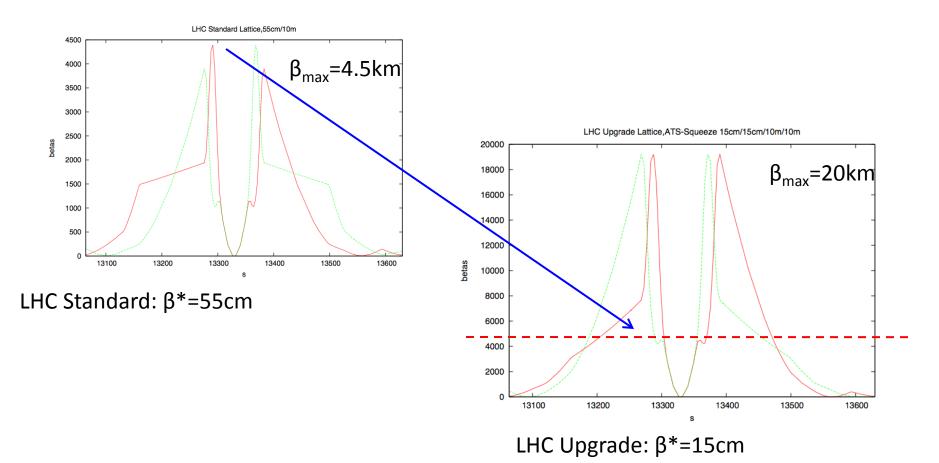

A large variety of beam optics studied & optimised

bog 150 0100 0100 3000 3000.madx bog 150 0050 0200 3000 3000.madx bog 150 0050 0200hv 3000 3000.madx $\beta^{*}(IP8) = 3m$ standard ATS, flat yx bog 150 5500 5500 10000 10000.madx bog 150 0400 0400 0500 0500.madx

```
\beta^{*}(IP8) = 3m standard ATS, round
\beta^*(IP8) = 3m standard ATS, flat xy
\beta^*(IP8) = 10m ATS_injection
\beta^{*}(IP8) = 50 \text{ cm ATS ions}
```


Each optics has to be "implemented" into the overall LHC lattice & optics.

Main Issue: Search for ideal phase advance over IR8.



Aperture Calculations

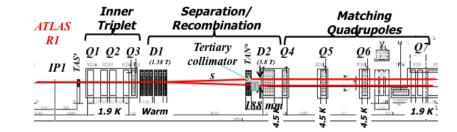
calculate the number of σ that – for a given bam optics – fits into the vacuum chamber magnet aperture new experiment beam pipe

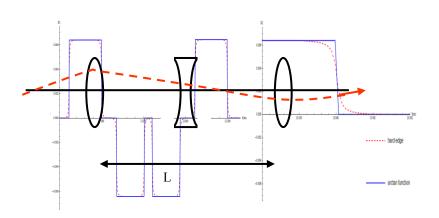
LHC Upgrade Optics Tolerances & Robustnes

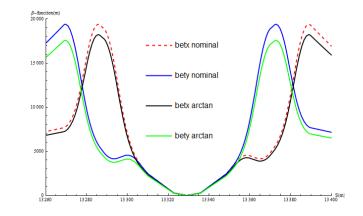
Impact on magnet strength, apertures, sensitivity of the beam (gradient errors & multipoles) crab cavity voltage etc

High Luminosity LHC Study of the tolerances for the quadrupole strengths in the IR5

check the allowed tolerance window in magnet length, power converter stability, quadrupole gradient ...

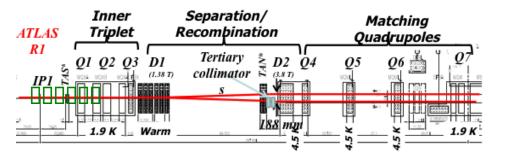

Tolerance criteria: 0.0008 lower limit 0.0006 upper limit 0.0004 0.0002 ∆k/k 0 -0.0002 -0.0004 -0.0006 -0.0008 kqx2b_r5 kqx2a_r5 kqx2b_l5 kqx2a_l5 kqx1_r5 kqx3_l5 kqx3_r5 kqx1_l5

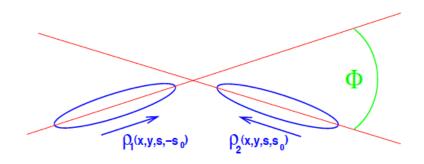

LHC Upgrade Optics Fringe Field Effects


improve the magnet box model, taking into account realistic fringe field effects

clearly we require:

but the effect on the beam is determined also by the β -function



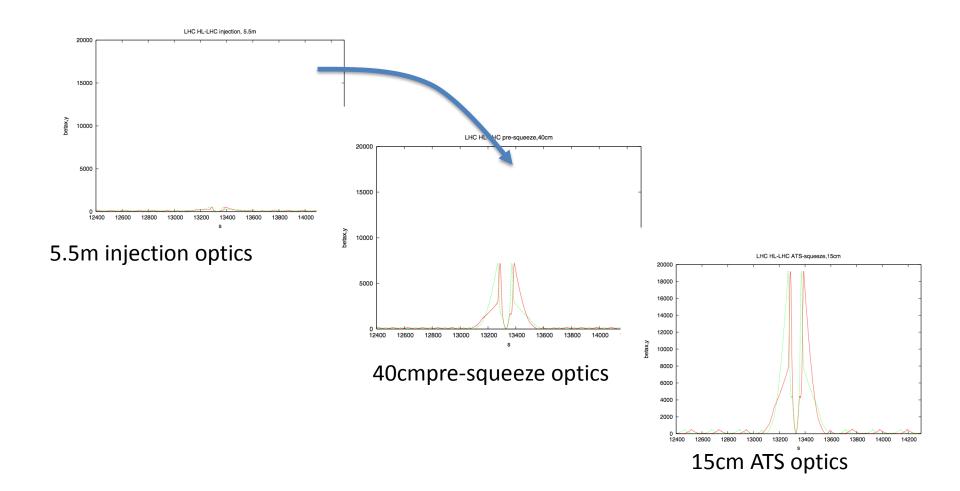


LHC Upgrade Optics x-angle, Crab Cavities, Flat Beam Option

$$\mathcal{L} = \frac{N_1 N_2 f n_b}{2\pi \sqrt{\sigma_{1x}^2 + \sigma_{2x}^2} \sqrt{\sigma_{1y}^2 + \sigma_{2y}^2}} * S$$

ideal luminosity formula

"crab" crossing scheme


loss factor due to crossing with an angle (pure geometric effect ... but large)

$$\Rightarrow S = \frac{1}{\sqrt{1 + \left(\frac{\sigma_s}{\sigma_x} \tan \frac{\phi}{2}\right)^2}} \approx \frac{1}{\sqrt{1 + \left(\frac{\sigma_s}{\sigma_x} \frac{\phi}{2}\right)^2}}$$

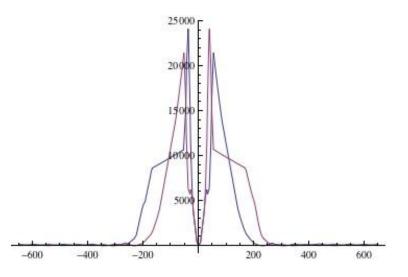
≈ 0.37

LHC Upgrade Optics Transition Injection - Presqueeze

find a smoooooth transition without (too many) hysteresis problems

LHC Upgrade: Non-ATS Solutions

Re-Design of the Matching Section for Optics Flexibility and for Plan "B"


re-positioning of the matching quadrupoles, namely Q4...Q6

introducing an additional quadrupole lens between q3 and q7.

get the smallest β^* at the IP1 & 5, to establish an ambitious pre-squeeze optics or - even more to obtain β^* values that will allow us to get the required luminosity without ATS squeeze.

Re-Design of the Matching Section on Big Scale

Local Sextupole Correction Scheme

