# **Baseline optics**

#### B. Dalena, R. De Maria, S. Fartoukh

September, 2012

#### Content

For the HL-LHC new layouts 4 triplet scenarios have been identified:

| technology | aperture | gradient |
|------------|----------|----------|
|            | [mm]     | T/m      |
| NbTi       | 140      | 100      |
| NbTi       | 120      | 118      |
| $Nb_3Sn$   | 140      | 150      |
| $Nb_3Sn$   | 120      | 170      |

In the following the optics will be labeled by the gradient only, since the aperture is relevant only for the obtainable  $\beta^*$ .

### **Triplet options**

The triplet layout are optimized to allow the smallest  $\beta^*$  compatible with the left/right pre-squeeze phase condition.

| aperture | gradient | $l_{\rm Q1}$ | $l_{\rm Q2}$ | $d_{\rm Q12}$ | $d_{\rm Q22}$ | $\beta^*$ | $\Delta_{\rm Q5}$ |
|----------|----------|--------------|--------------|---------------|---------------|-----------|-------------------|
| m        | T/m      | m            | m            | m             | m             | m         | m                 |
| 0.14     | 100      | 10.629       | 8.695        | 1.915         | 3.56          | 0.5       | 14                |
| 0.12     | 118      | 9.465        | 7.97         | 1.64          | 3.05          | 0.43      | 14                |
| 0.14     | 150      | 7.685        | 6.577        | 1.915         | 3.56          | 0.4       | 11                |
| 0.12     | 170      | 7.204        | 6.184        | 1.64          | 3.05          | 0.37      | 11                |

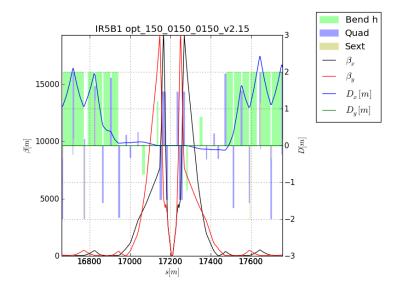
From 140T/m one can squeeze more than the possibility to locally correct the chromatic effect with the neighbouring arc sextupoles. The minimum  $\beta^*$  with the ATS depends only on the aperture available and the size of the beam.

### $\beta$ max comparisons

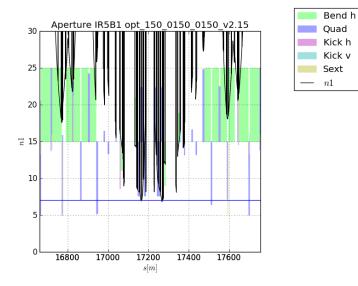
A detailed layout of the available aperture is still under development  $\rightarrow$  realistic  $\beta^*$  limit cannot be estimated. However, triplet options can be compared in terms of  $\beta_{max}$  at a fixed  $\beta^* = 0.6$  m, or of a  $\beta^*$  range by applying a simplistic scaling <sup>1</sup>

| aperture | gradient | $\beta^{\max}$ | $\beta_{\mathrm{range}}^*$ | $\beta_x^{\mathrm{Q4}}$ | $\beta_y^{\mathrm{Q4}}$ |
|----------|----------|----------------|----------------------------|-------------------------|-------------------------|
| m        | m        | T/m            | m                          | m                       | m                       |
| 0.14     | 100      | 6295           | 0.18 to 0.31               | 828                     | 956                     |
| 0.12     | 118      | 5447           | 0.24 to 0.42               | 652                     | 888                     |
| 0.14     | 150      | 4852           | 0.14 to 0.24               | 563                     | 836                     |
| 0.12     | 170      | 4451           | 0.20 to 0.34               | 508                     | 757                     |

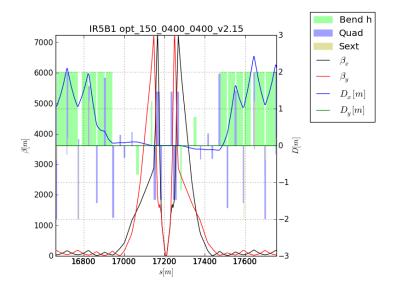
<sup>1</sup>assuming the aperture bottleneck in crossing plane at the  $\beta_{max}$  location  $\beta^* = \left(\frac{n_{\rm bb}+2n_{\rm coll}}{a-a_{\rm shield}}\right)^2 \epsilon \beta_{\rm ref}^{\rm max} \beta_{\rm ref}^*$  with  $\epsilon = 3.5 \mu rad$ ,  $n_{\rm bb}$ =10 to 14,  $n_{\rm coll}$ =11 to 14,  $a_{\rm shield}$ =4cm. Not official specs, used for illustration only.


#### **Available optics**

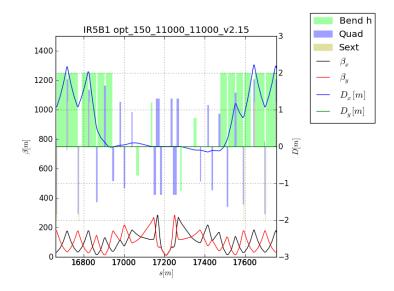
Developed before and after the HL-LHC project


| gradient | pre-squeeze | round      | flat         | inj       | note       |
|----------|-------------|------------|--------------|-----------|------------|
| T/m      | $eta^*$ cm  | $eta^*$ cm | $eta^*$ cm   | $eta^*$ m |            |
| 100      | 50          | 19, 15     |              |           | SLHCV3.1a  |
| 118      | 50          |            |              |           |            |
| 123      | 60          | 15         | 7.5/30       | 11        | SLHC3.01   |
| 150      | 40, 200     | 15, 10     | 7.5/30, 5/20 | 5.5, 11   | SLHCV3.1b  |
| 170      | 38, 40      | 20, 15     |              |           |            |
| 220      | 200 to 40   | 10         |              | 11        | ATS_V6.503 |

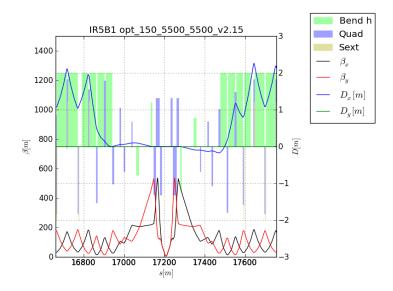
Flat optics are straight forward to generate once they are available for one layout. Minimum  $\beta^*$  for injection optics needs time to develop.

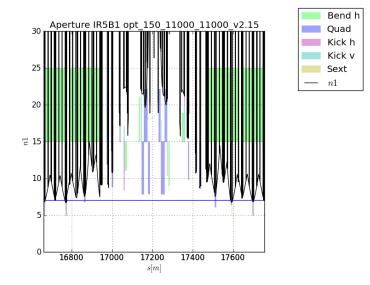

## Squeeze IR1/5: optics

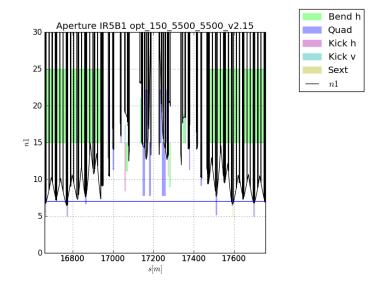


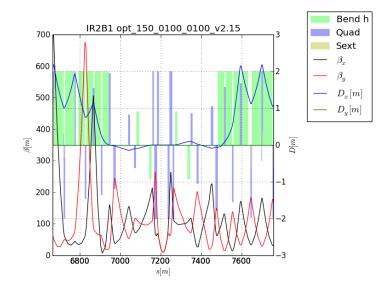

Squeeze IR1/5: apertures

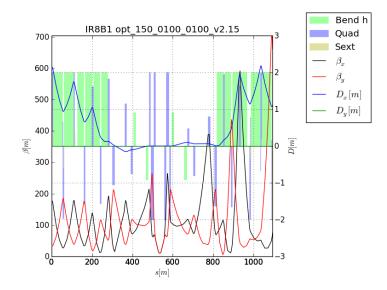


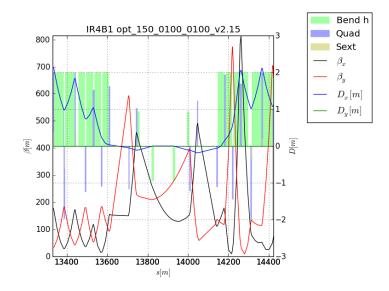

Pre-squeeze IR1/5: optics

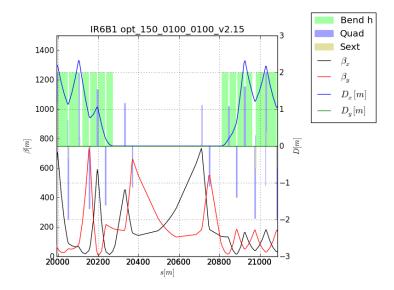




Injection IR1/5: optics  $\beta^* = 11 \text{ m}$ 





Injection IR1/5: optics  $\beta^*=5.5 \text{ m}$ 














## Conclusion

- The ATS scheme can be applied to all the triplet options making an efficient use of the available aperture
- At 100T/m the optics flexibility is at the limit
- Large apertures and high gradients are the preferred options.

To be addressed:

- minimum  $\beta^*$  at injection for low gradient triplets
- robustness to linear imperfections (see C. Milardi's talk)
- impact of fringe field (see R. Appleby's talk)
- demonstrate transitions (see M. Korostelev's talk)

On going:

- new layout for 150mm 140T/m (with new optimized phase advances of IR2 and IR8, see A. Bogomyagkov's talk)
- investigation for new matching section layout for crab cavity efficiency (see B. Dalena talk)
- compare pro and cons of alternative scenarios to the ATS (see R.Appleby, J. Payet, A. Faus-Golfe talks)