New LSS optics for the LHC

20-09-2012

R.B. Appleby The University of Manchester/Cockcroft Institute, UK

Many thanks to everyone in our optics team, especially Riccardo, Bernhard, Stephane

https://espace.cern.ch/HiLumi/wp2/Wiki/Home.aspx

Motivation

So we would like small beta* but have optics limitation, including

1) Match-ability and generating phase advance to the arc sextupoles

2) Magnet strengths, particularly magnets going to 0 or maximum current when squeezing

3) Aperture

4) Aberrations e.g. Chromaticity correction

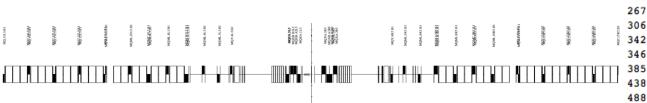
One solution to delivering the low beta* is the ATS optics, which is a clever solution to match-ability and chromatic correction but uses neighboring IR matching sections and gives beta waves in the arcs.

The goal here is **alternatives** to the ATS to deliver small beta* through **smaller** surgery than an entirely new LSS. This confronts the match-ability problem but, through the lack of beta waves in the arcs (for example), does not confront the chromaticity problems.

Or, rephrased, how much (with minor) surgery can we expect from our nominal LSS layout? This can be small beta* or enhanced optics flexibility to, for example, generate phase from IT to sextupoles to correct aberrations.

We'll try and extend the optics **flexibility** of the <u>nominal</u> layout by replacing Q6 with a doublet.

To keep the FODO structure Q5 will also become a doublet.

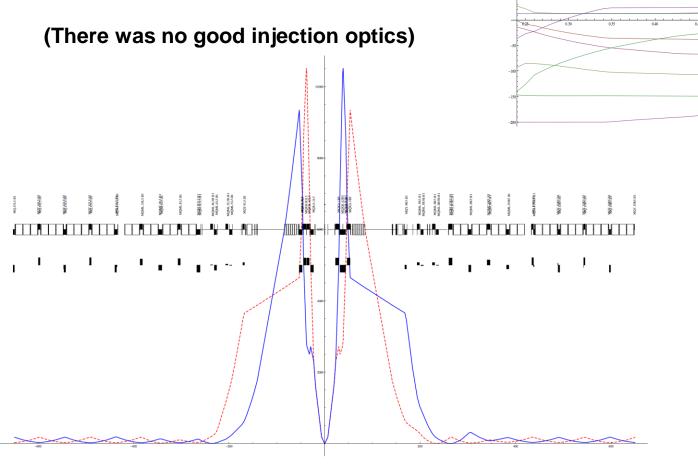

We can imagine many new LSS layouts, but this scheme should give an idea of potential benefits in more flexible optics, lower beta* with just the target IR quads and the ability to generate phase advance to the arc sextupoles for correction of off-momentum beta-beat and possible future local chromaticity correction schemes. (e.g. Barbara's crab talk)

An obvious extension is totally new LSS layouts (Angeles) and local chromaticity correction (Jacques) (?)

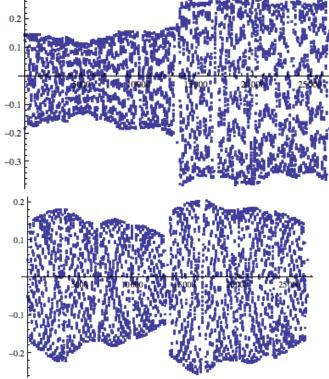
Nominal LHC optics beta*=0.55m

The nominal LHC optics, for a beta* of 0.55m, known for a

very long time. The structure, after the inner triplet, is an array of matching quads into the arc, Q4, Q5 etc.


S	NAME	K1	% STRENGTH	GRAD T/M
-545.787	MQT.13L5.B1	-0.00459958	-89.4959	-107.395
-492.338	MQT.12L5.B1	-0.00169699	-33.019	-39.6228
-434.238	MQTLI.11L5.B1	0.00107246	20.0327	25.0408
-381.478	MQML.10L5.B1	0.00710465	82.9429	165.886
-344.782	MQMC.9L5.B1	-0.00640842	74.8148	-149.63
-341.016	MQM.9L5.B1	-0.00640842	74.8148	-149.63
-301.95	MQML.8L5.B1	0.00771167	90.0295	180.059
-264.284	MQM.B7L5.B1	-0.00775883	90.58	-181.16
-260.517	MQM.A7L5.B1	-0.00775883	90.58	-181.16
-225.99	MQML.6L5.B1	0.00061684	9.00158	14.4025
-194.09	MQML.5L5.B1	-0.00297373	43.3959	-69.4334
-167.853	MQY.4L5.B1	0.00408976	59.6822	95.4915
-46.965	MQXA.3L5	-0.0087302	88.8194	-203.84
-38.55	MQXB.B2L5	0.0087302	88.8194	203.84
-32.05	MQXB.A2L5	0.0087302	88.8194	203.84
-22.965	MQXA.1L5	-0.0087302	88.8194	-203.84
29.335	MQXA.1R5	0.0087302	88.8194	203.84
37.55	MQXB.A2R5	-0.0087302	88.8194	-203.84
44.05	MQXB.B2R5	-0.0087302	88.8194	-203.84
53.335	MQXA.3R5	0.0087302	88.8194	203.84
171.253	MQY.4R5.B1	-0.00408976	59.6822	-95.4915
198.89	MQML.5R5.B1	0.00297373	43.3959	69.4334
230.79	MQML.6R5.B1	-0.00061684	9.00158	-14.4025
263.404	MQM.A7R5.B1	0.00719661	84.0165	168.033
267.171	MQM.B7R5.B1	0.00719661	84.0165	168.033
306.243	MQML.8R5.B1	-0.0076628	89.459	-178.918
342.941	MQMC.9R5.B1	0.00659235	76.962	153.924
346.707	MQM.9R5.B1	0.00659235	76.962	153.924
385.775	MQML.10R5.B1	-0.00709037	82.7762	-165.552
438.579	MQTLI.11R5.B1	-0.000613653	-11.4625	-14.3281
488.653	MQT.12R5.B1	0.00093506	18.1938	21.8326
542.105	MQT.13R5.B1	-0.00317669	-61.8101	-74.1722

The n1 bottleneck is in the inner triplet, where n1=8


.

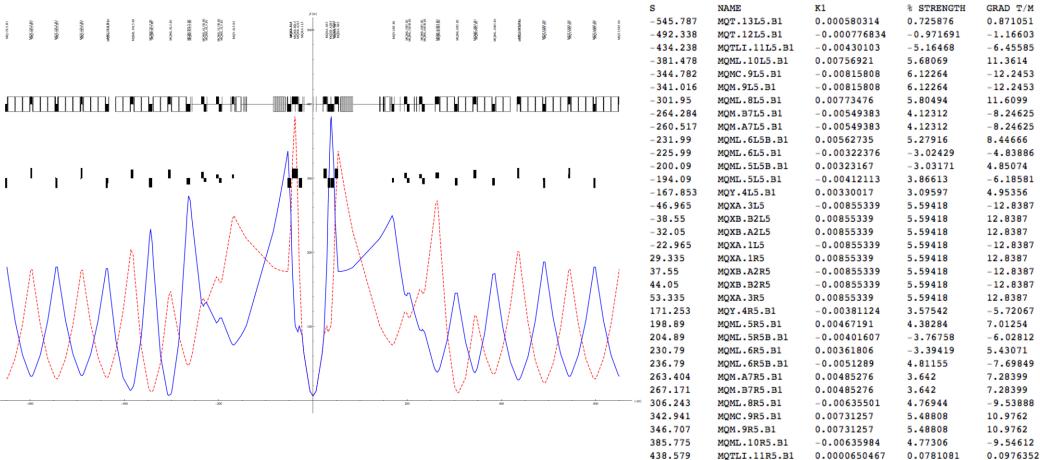
Т

Now Q5 and Q6 are doublets of the same magnet type. We see, for constant left-right IR phase (0.25 [2Pi] to sexts from inner triplet) we can match down to **0.23m**

_	KQ4.L5B1
	KQ5.L5B1
	KQ5B.L5B1
_	KQ6L5B1
	KQ6B.L5B1
	KQ7.L5B1
—	KQ8.L5B1
	KQ9.L5B1
—	KQ10.1.5B1
	KQTL115B1
	KQT12L5B1
	KQT13L5B1

The Q' is corrected to +2 units during the squeeze. The off-momentum beta-beat gets large at beta*=0.23m. No matching is yet done (or at least successfully!) of the real part of W (=B function) but we have the right phase advance to the sextupoles for this to work.

R.B. Appleby


And now we have a new optics...

Done for a nominal IT with g=200 T/m, aperture=70mm

(And yes, I know this gives severe aperture problems!)

An injection optics, nominal layout, Q5/Q6 turned into doublets

For the injection optics, we need to have a minimum in all the magnets of 3% of the maximum current (=0.43 of maximum k taking the 7 TeV rigidity), be ramp-able to 7 TeV in terms of magnet strengths and also have sufficient aperture in the LSS magnets (so beta peaks controlled). We also need a flat tune during the squeeze and corrected chromaticity. We have a suitable optics with beta*=6.5 m.

488.653

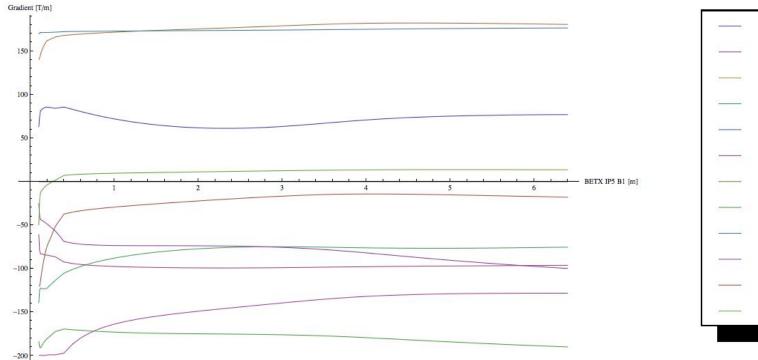
542.105

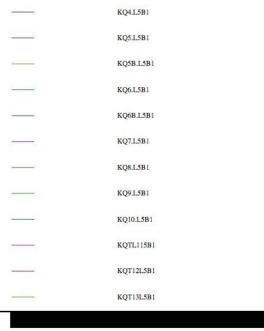
MQT.12R5.B1

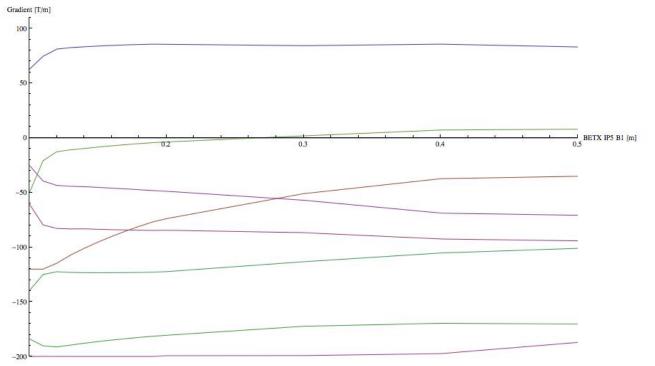
MQT.13R5.B1

-0.00215225

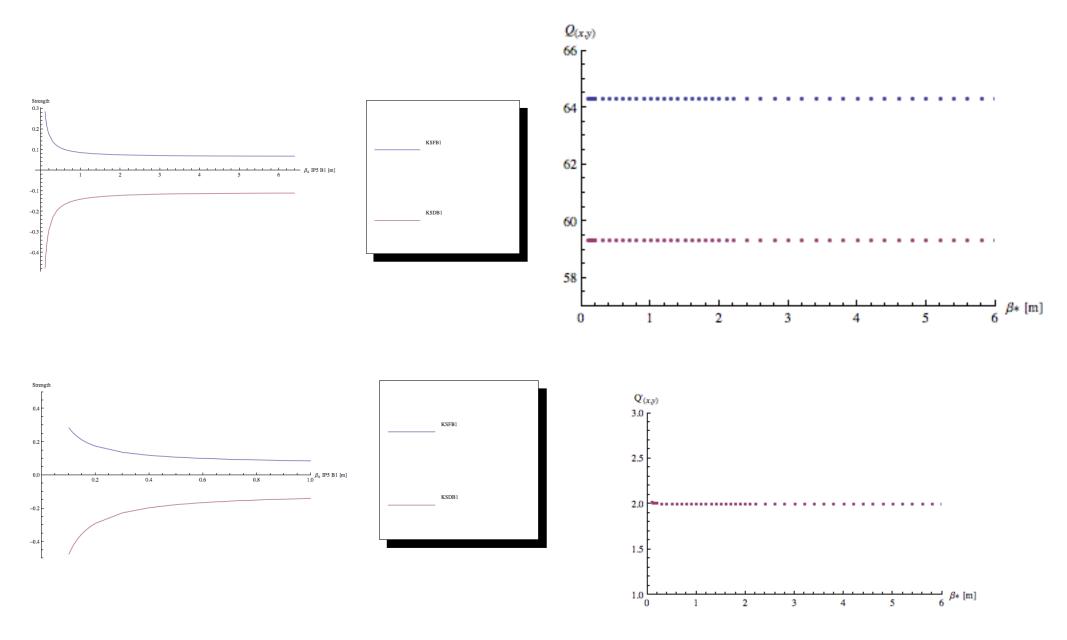
0.00356658


-2.69211


4.4612


-3.23053

5.35344



	KQ4.L5B1	
	KQ5.L5B1	
	KQ5B.L5B1	
2 <u></u>	KQ6.L5B1	
	KQ6B.L5B1	
	KQ7.L5B1	
	KQ8.L5B1	
	KQ9.L5B1	
	KQ10.L5B1	
	KQTL115B1	
	KQT12L5B1	
(,)	KQT13L5B1	

Does it need to be monotonic?

The squeeze from 6.5m to 0.1m : sextupoles, tune and chromaticity

HL-LHC optics meeting, 18th September 2012

This gives an equivalent optics for beam 1. Note the large betas in the final triplet. Q7 is still the limit.

(What happens is the doublets let you reduce Q7 for a given beta*, so you gain slightly more margin to push on beta*)

> SE VIDA SE VIDA SE VIDA

141 | ₁∰₁

This gives an equivalent optics for beam 2.

Note the large betas in the final triplet.

HE STY TWOW

BARALA

QML.8L5.

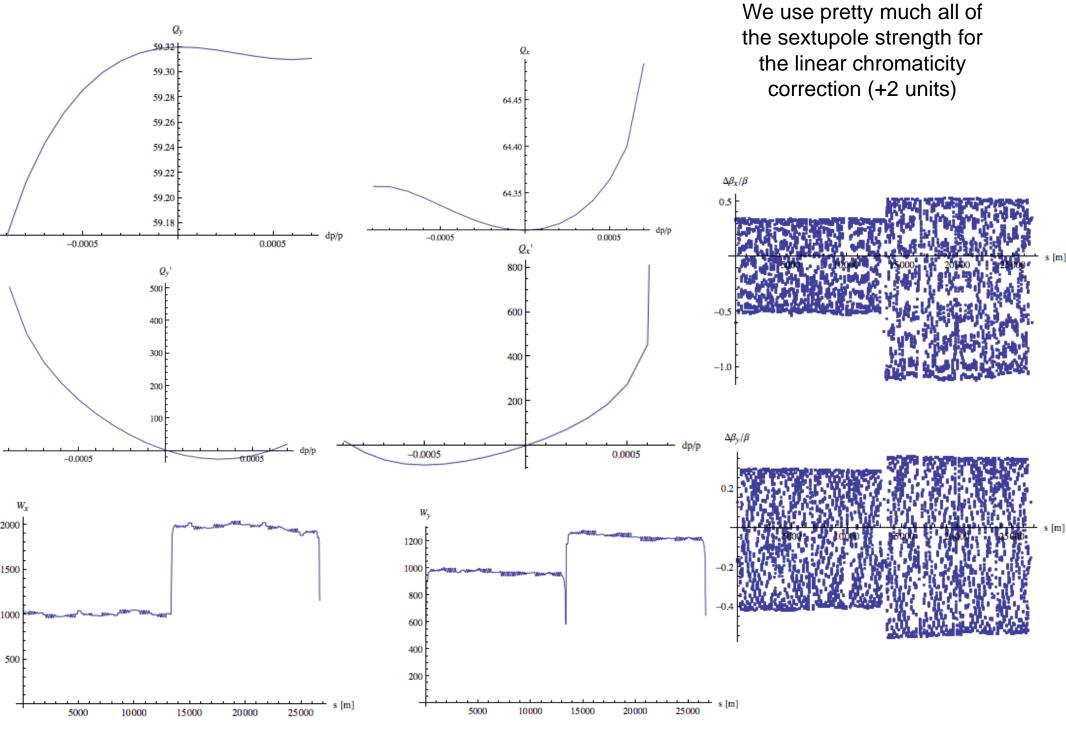
MQML-SLSB.BI MQML-SLS.BI MQKM.3L5 MQXB.B2L5 MQXB.A2L5 MQXA.1L5

8

MQXA..IR5 MQXB.A2R5 MQXB.B2R5 MQXA.3R5

MQY ARS .B1 MQML.5R5.B1 MQML.5R5.B1 MQML.6R5.B1

┼╫<u></u>╢╅╶┼**┦**┱╶┼┼┦┱


BM-BTRS-E

L. I

Q5/Q6 doublet optics with beta*=0.1 m : magnet strengths and aperture

					s	NAME	к2	% STRENGTH	GRAD T/M^2
S	NAME	К1	% STRENGTH	GRAD T/M	439.125	MS.11R5.B1	0.285634	75.2893	6669.23
-545.787	MQT.13L5.B1	-0.00214958	-41.8253	-50.1903	492.581	MS.12R5.B1	-0.476677	-125.646	-11129.9
-492.338	MQT.12L5.B1	-0.00513934	-99.9984	-119.998	546.032	MS.13R5.B1	0.285634	75.2893	6669.23
-434.238	MQTLI.11L5.B1	-0.00107381	-20.0579	-25.0724	599.484	MS.14R5.B1	-0.476677	-125.646	-11129.9
-381.478	MQML.10L5.B1	0.00726712	84.8396	169.679					
-344.782	MQMC.9L5.B1	-0.00787109	91.8907	-183.781					
-341.016	MQM.9L5.B1	-0.00787109	91.8907	-183.781					
-301.95	MQML.8L5.B1	0.00600162	70.0656	140.131					
-264.284	MQM.B7L5.B1	-0.00856345	99.9736	-199.947					
-260.517	MQM.A7L5.B1	-0.00856345	99.9736	-199.947					
-231.99	MQML.6L5B.B1	0.000817212	11.9256	19.081					
-225.99	MQML.6L5.B1	-0.00598357	-87.3187	-139.71					
-200.09	MQML.5L5B.B1	0.00414423	-60.477	96.7632					
-194.09	MQML.5L5.B1	-0.00259296	37.8393	-60.5429					
-167.853	MQY.4L5.B1	0.00268631	39.2015	62.7224					
-46.965	MQXA.3L5	-0.00871219	88.6361	-203.42				. \	
-38.55	MQXB.B2L5	0.00871219	88.6361	203.42			n1(s	51	
-32.05	MQXB.A2L5	0.00871219	88.6361	203.42					
-22.965	MQXA.1L5	-0.00871219	88.6361	-203.42			87 		
29.335	MQXA.1R5	0.00871219	88.6361	203.42			-		
37.55	MQXB.A2R5	-0.00871219	88.6361	-203.42			-		(A / /)
44.05	MQXB.B2R5	-0.00871219	88.6361	-203.42			e-		
53.335	MQXA.3R5	0.00871219	88.6361	203.42			-		
171.253	MQY.4R5.B1	-0.00212478	31.0071	-49.6114	4 V V V		-		
198.89	MQML.5R5.B1	0.000587828	8.57821	13.7251	1 1		- 20-		' V
204.89	MQML.5R5B.B1	-0.00269167	-39.2797	-62.8475			-		
230.79	MQML.6R5.B1	0.00568938	-83.0254	132.841					
236.79	MQML.6R5B.B1	-0.000571044	8.33329	-13.3333			-		
263.404	MQM.A7R5.B1	0.00856571	99.9999	200.			20-		
267.171	MQM.B7R5.B1	0.00856571	99.9999	200.			-		
306.243	MQML.8R5.B1	-0.00538324	62.8463	-125.693			-		
342.941	MQMC.9R5.B1	0.00707416	82 5869	165.174					
346.707	MQM.9R5.B1	0.00707416	82.5869	165.174					
385.775	MQML.10R5.B1	-0.00712505	83.1811	-166.362		Υ '	WINSI WI	· - 1	
438.579	MQTLI.11R5.B1	-0.00151442	-28.288	-35.36				20	400
488.653	MQT.12R5.B1	0.0019672	38.2767	45.932	-14	-440	-	_	
542.105	MQT.13R5.B1	0.00511386	99.5024	119.403					

Chromatic behaviour for fully squeezed optics

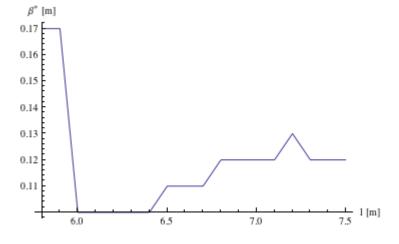
R.B. Appleby

HL-LHC optics meeting, 18th September 2012

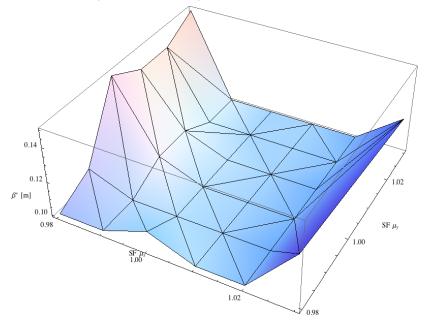
Sextupole phases

This was the previous optics (beta*=23cm), with well defined phase relationships from the IT to the sextupoles

The phase advances from the IT to the arc sextupoles are 0.25 [2PI]


0.369	SEXTUPOLE	-648.756	MS.15L5.B1	-0.0646303	-1.13771	-1.49938
0.369	SEXTUPOLE	-595.308	MS.14L5.B1	0.0777643	-1.01533	-1.36963
0.369	SEXTUPOLE	-541.859	MS.13L5.B1	-0.130663	-0.874367	-1.2563
0.369	SEXTUPOLE	-488.411	MS.12L5.B1	0.0398396	-0.756056	-1.10108
0.369	SEXTUPOLE	-433.691	MS.11L5.B1	-0.0646303	-0.609088	-0.972414
0.369	SEXTUPOLE	439.125	MS.11R5.B1	0.0777643	0.99317	0.645325
0.369	SEXTUPOLE	492.581	MS.12R5.B1	-0.130663	1.12087	0.753665
0.369	SEXTUPOLE	546.032	MS.13R5.B1	0.0398396	1.2321	0.885518
0.369	SEXTUPOLE	599.484	MS.14R5.B1	-0.0646303	1.37321	0.998832

This was too not maintained in the new scheme as we have no beta wave in the arc and so we won't use the sextupoles efficiently enough to correct any more than Q'


						μ'	I X	μ''_{y}
0.3	69	SEXTUPOLE	-648.756	MS.15L5.B1	-0.175894	4 -1.0	0146	-1.64285
0.3	69	SEXTUPOLE	-595.308	MS.14L5.B1	0.105399	-0.8	79082	-1.5131
0.3	69	SEXTUPOLE	-541.859	MS.13L5.B1	-0.175894	4 -0.7	38047	-1.39978
0.3	69	SEXTUPOLE	-488.411	MS.12L5.B1	0.105399	-0.6	17667	-1.25845
0.3	69	SEXTUPOLE	-433.691	MS.11L5.B1	-0.175894	4 -0.4	97824	-1.13113
	369 369	SEXTUPOLE	439.125	MS.11R5.B1 MS.12R5.B1	0.105399	1.05859	0.512	
	369	SEXTUPOLE	492.581 546.032	MS.12R5.B1 MS.13R5.B1	0.105399	1.36677	0.614	
	369	SEXTUPOLE	599.484	MS.14R5.B1	-0.175894	1.50788	0.853	

Some optimisations

An intra-doublet distance of 6 - 6.5 m works well

For I=6.2m we have some phase flexibility (especially vertically)

We clearly need the layout with lower gradient, higher aperture IT magnets to account for the big beams in the IT.

Here we aim for a solution with 155 T/m IT, with doublet Q5 and Q6, matched into the nominal layout of the LSS. (Using mktriplet to generate the triplet and then do some matching into the rest of the LSS).

The triplet matched to the IP and the betas at 153m is made, and the matching into the <u>nominal</u> LSS is on-going....

1000

Open questions

Replacing Q5 and Q6 by doublets (to maintain the FODO structure) gives a LSS optics with more flexibility and the ability to squeeze to 0.1 m while maintaining overall phase advance across the IR but not the left-right phase advance.

The collision optics seem interesting and now we should aim for i) a new large aperture IT (almost there) ii) enhanced Q" and off-momentum beta-beat control through tighter phase advances (Q'=2 but OMBB big!)

There's a solution for the injection optics (beta*=6.5 m) which satisfies aperture and magnet constraints. Note we maintain the phase advances for the injection optics.

The squeezed beta optics is matched to Q'=2, but no matching on Montague B function (Re(W)).

Chromaticity correction is a big issue, as we simply don't have enough sextupole strength to do more than correct the linear chromaticity to +2 (The 'A' in ATS is important!)

Any extra ability to create phase advance should help any local chromaticity correction schemes, as we need sextupoles at a phase advance of pi for geometric aberration cancellation.

As usual, all comments / advice is well received.

Back-up slides

Some background...

Luminosity (round beams):

$$L = \frac{n_b \cdot N_1 \cdot N_2 \cdot f_{rev}}{4\pi \cdot \beta^* \cdot \varepsilon_n} \cdot R(\phi, \beta^*, \varepsilon_n, \sigma_s)$$

maximize bunch brightness (beam-beam limit) → [N_b/e_n]
 minimize beam size
 maximize number of bunches
 compensate for 'R'

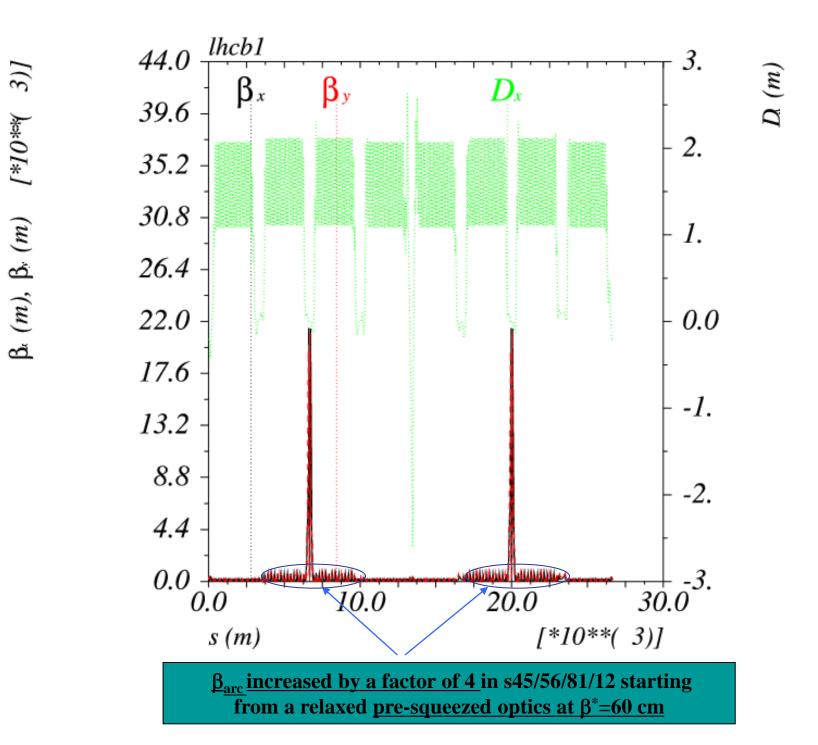
Pushing on beta* gives a zoo of potential issues:

- Aperture
- Optics matchability to the arcs (some IR quads going to 0, others to max. field).
- Chromatic aberrations -> sext strength -> novel squeezing mechanisms
- Event pile up and bunch luminosity limit -> detectors upgrade

Slide from the HL-LHC kick-off meeting

Motivations (2/2)

- → Bare minimum $\beta^* \approx 30$ cm found for the former upgrade project (Phase I) with a 120 T/m 120 mm NbTi triplet.
- → <u>3 options</u> to reach the HL-LHC β* of 15cm (or below)
 <u>1) 480 T/m 120 mm ultra-short triplet (</u>~ 40 T critical field)
 → Not for this Project!


2) Heavy surgery in the ring:

- a) double (triple?) the length of the low-beta insertions, eating in the arcs and with more matching standalone quadrupoles to solve the optics matchability limit.
- b) profit from above to find a local chromatic correction scheme for the triplet (if possible?), or equip ~500 arc quadrupoles with twice stronger chromatic sextupoles.

→ Hardly fit within the planning/budget!

3) Look for non-classical and new concepts

→ The ATS scheme which does the above surgery (almost) for free!
 S. Fartoukh
 1st General HL-LHC meeting, 3
 17.11.2011

For efficient correction of off-momentum beta-beat, we want to keep the betatron phase from the inner triplet to one of the arc cell sextupoles to be 0.25 [2 Pi], plus constant phase across the whole IR. Keeping these conditions we can push beta* with the nominal layout to some smaller value. What limits us?

	vvnat mint	0 00.			$\mu^{IT}x$	μ^{IT}					
0.369	SEXTUPOLE	-648.756	MS.15L5.B1	-0.0702147	-1.13909	-1.50076	S	NAME	K1	* STRENGTH	GRAD T/M
0.369	SEXTUPOLE	-595.308	MS.14L5.B1	0.0424538	-1.01672	-1.37101	-545.787	MQT.13L5.B1	-0.0044173	-85.9492	-103.139
							-492.338 -434.238	MQT.12L5.B1	-0.0000948849	-1.84622 -28.9534	-2.21546
0.369	SEXTUPOLE	-541.859	MS.13L5.B1	-0.0702147	-0.875751	-1.25768	-434.238	MQTLI.11L5.B1 MQML.10L5.B1	-0.00155004 0.00725645	-28.9534 84.7151	-36.1918 169.43
0.369	SEXTUPOLE	-488.411	MS.12L5.B1	0.0424538	-0.757382	-1.10288	-344.782	MQMC.9L5.B1	-0.006344	74.0627	-148.125
0.369	SEXTUPOLE	-433.691	MS.11L5.B1	-0.0702147	-0.612799	-0.974011	-344.782	MQM.9L5.B1	-0.006344	74.0627	-148.125
							-301.95	MQML.8L5.B1	0.00774331	90.3989	180.798
0.369	SEXTUPOLE	439.125	MS.11R5.B1	0.0424538	1.00056	0.633884	-264.284	MQM.B7L5.B1	-0.00856315	99.9701	-199.94
0.369	SEXTUPOLE	492.581	MS.12R5.B1	-0.0702147	1.1235	0.754445	-260.517	MQM.A7L5.B1	-0.00856315	99.9701	-199.94
0.369	SEXTUPOLE	546.032	MS.13R5.B1	0.0424538	1.23316	0.886628	-225.99	MQML.6L5.B1	0.000567825	8.28631	13.2581
							-194.09	MQML.5L5.B1	-0.00406301	59.2918	-94.8669
0.369	SEXTUPOLE	599.484	MS.14R5.B1	-0.0702147	1.37426	0.999942	-167.853	MQY.4L5.B1	0.00491129	71.6707	114.673
							-46.965	MQXA.3L5	-0.00865735	88.0783	-202.14
							-38.55	MQXB.B2L5	0.00865735	88.0783	202.14
							-32.05	MQXB.A2L5	0.00865735	88.0783	202.14
a da da		107 109 109	212 212 212 212 212 212 212 212 212 212		MARCH INCOME	1999 1999 1999 1999 1999 1999 1999 199	-22.965	MQXA.1L5	-0.00865735	88.0783	-202.14
NI DW	MARKAULAN MORE LEVEL	AL MOM. S. MOM. S. MOM. S. MOM	STE NOOM STE NOOM STE NOOM STE NOOM STE NOOM	SUE VOOR SUE VOOR III SUP ADM	MORE & TREAT	NALISAN	29.335	MQXA.1R5	0.00865735	88.0783	202.14
							37.55	MQXB.A2R5	-0.00865735	88.0783	-202.14
							44.05	MQXB.B2R5	-0.00865735	88.0783	-202.14
							53.335	MQXA.3R5	0.00865735	88.0783	202.14
			1				171.253	MQY.4R5.B1	-0.00509562	74.3607	-118.977
							198.89	MQML.5R5.B1	0.004363	63.6696	101.871
	1 1	1 1		1 .	1,1,	1 1	230.79	MQML.6R5.B1	-0.000555816	8.11106	-12.9777
1 1 1			5000	1		` 1 ' 1	263.404	MQM.A7R5.B1	0.00855234	99.8439	199.688
				A			267.171	MQM.B7R5.B1	0.00855234	99.8439	199.688
				IA			306.243	MQML.8R5.B1	-0.00762642	89.0342	-178.068
							342.941	MQMC.9R5.B1	0.00645336	75.3394	150.679
			4000-				346.707	MQM.9R5.B1	0.00645336	75.3394	150.679
							385.775 438.579	MQML.10R5.B1 MQTLI.11R5.B1	-0.006807 -0.000680109	79.4679 -12.7038	-158.936 -15.8798
							488.653	MQT.12R5.B1	-0.00102929	-20.0273	-24.0327
							542.105	MQT.13R5.B1	-0.00340562	-66.2646	-79.5175
			3000-				542.105	MQ1.15K5.51	-0.00340302	-00.2040	-79.5175
							e.g	g. for this r	un, beta*=	0.43m.	
			200-								
							We	e get limits	from Q7 r	unning t	0
							ma	vimum on	d Q6 runn	ing to zo	ro
			1000-				1110	aximum an		ing to ze	<i>i</i> 0.
			/ \!/	$\langle \langle \rangle$							
			′ \ <u> </u> /	La			$\langle N/e$	also see	a growing	heta in t	the inner
				300			-		a growing		
-660	100	-200	,	200	400	000	tric	olet.			00
	nnlohy										20

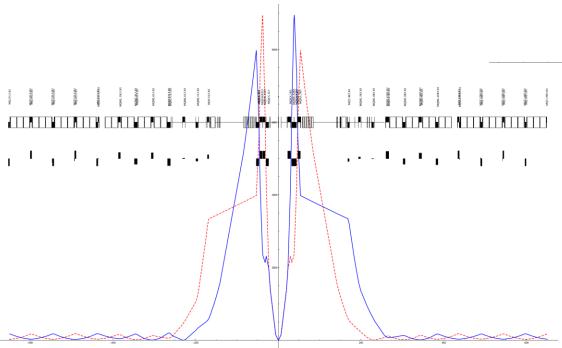
R.B. Appleby

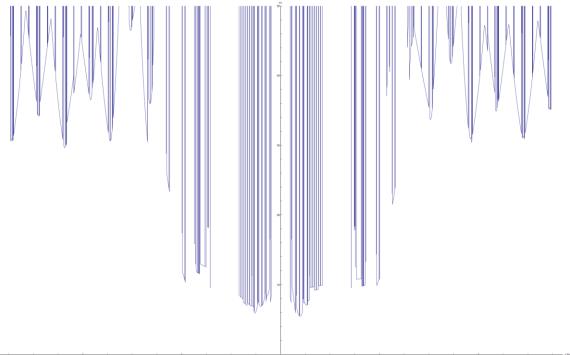
HL-LHC optics meeting, 18th September 2012

If we relax the phase constraint to the arc sextupoles, but maintain the overall IR phase we can push to smaller beta* of 0.37m

-648.756 -595.308	MS.14L5.B	1 0.0455202 -0.9639	4 -1.53044 s 7 -1.40069 -545.
LE	-488.411 MS.12L5.B	1 0.0455202 -0.7047	76 -1.13167 -434. -381.
UPOLE FUPOL FUPOL FUPOL FUPOL	E 439.125 MS.11R5. E 492.581 MS.12R5. E 546.032 MS.13R5.	B1 0.0455202 1.03 B1 -0.0754057 1.16 B1 0.0455202 1.28	-341. -341. -341. -341. -341. -341. -264. -264. -260. 517 0.856198 -225. 528 0.969512 -194. -167. -46.9
482-147294 1822-14294	AGALALIA I MORGASA MORALALIA MORALALIA MORALALIA MORALALIA	MARANA MARANA Salahan Marana M	- 38.5 - 32.0 10.000 - 22.9 10.000 - 20.00 10.000 - 20.000 10.000 - 20.0000 10.0000 - 20.0000 10.00000 10.0000 - 20.0000 10.0000 10.00000 10.00000
			37.55 44.05 53.33 171.2
) ₁	¹ g ¹ g · · · ¹		198.8 230.7 263.4 1 1 267.1 306.2 342.9 346.7 385.7 438.5 488.6 542.1
			We g maxi
		300-	We a

S	NAME	к1	% STRENGTH	GRAD T/M
-545.787	MQT.13L5.B1	-0.00454583	-88.4502	-106.14
-492.338	MQT.12L5.B1	-0.0022637	-44.0458	-52.8549
-434.238	MQTLI.11L5.B1	0.000583642	10.9019	13.6274
-381.478	MQML.10L5.B1	0.00712861	83.2226	166.445
-344.782	MQMC.9L5.B1	-0.00654994	76.4669	-152.934
-341.016	MQM.9L5.B1	-0.00654994	76.4669	-152.934
-301.95	MQML.8L5.B1	0.00723738	84.4924	168.985
-264.284	MQM.B7L5.B1	-0.00848755	99.0875	-198.175
-260.517	MQM.A7L5.B1	-0.00848755	99.0875	-198.175
-225.99	MQML.6L5.B1	0.000554554	8.09263	12.9482
-194.09	MQML.5L5.B1	-0.00327582	47.8043	-76.4869
-167.853	MQY.4L5.B1	0.00436029	63.63	101.808
-46.965	MQXA.3L5	-0.00869996	88.5118	-203.135
-38.55	MQXB.B2L5	0.00869996	88.5118	203.135
-32.05	MQXB.A2L5	0.00869996	88.5118	203.135
-22.965	MQXA.1L5	-0.00869996	88.5118	-203.135
29.335	MQXA.1R5	0.00869996	88.5118	203.135
37.55	MQXB.A2R5	-0.00869996	88.5118	-203.135
44.05	MQXB.B2R5	-0.00869996	88.5118	-203.135
53.335	MQXA.3R5	0.00869996	88.5118	203.135
171.253	MQY.4R5.B1	-0.00425527	62.0974	-99.3559
198.89	MQML.5R5.B1	0.00317434	46.3234	74.1174
230.79	MQML.6R5.B1	-0.000548525	8.00466	-12.8075
263.404	MQM.A7R5.B1	0.00827646	96.6231	193.246
267.171	MQM.B7R5.B1	0.00827646	96.6231	193.246
306.243	MQML.8R5.B1	-0.00752956	87.9034	-175.807
342.941	MQMC.9R5.B1	0.00684398	79.8997	159.799
346.707	MQM.9R5.B1	0.00684398	79.8997	159.799
385.775	MQML.10R5.B1	-0.00780975	91.1745	-182.349
438.579	MQTLI.11R5.B1	-0.000602313	-11.2507	-14.0634
488.653	MQT.12R5.B1	0.00141931	27.6162	33.1394
542.105	MQT.13R5.B1	-0.00121046	-23.5525	-28.263


We get limits from Q7 running to maximum and Q6 running to zero.


We also see a growing beta in the inner triplet.

Finally, for fun, we can let the IR phase vary by p/m 10% (assume we can compensate in the other IRs) to reach a beta* of 0.27

Again, we get limits from Q7 and QT13 running to maximum and QT11 and Q6 running to zero.

We also see large betas in the inner triplet, and a significant aperture problem

Again we are limited by Q6 running to zero and Q7 running to maximum. For Q6, this suggests replacing it by a doublet. We need to replace Q5 also to maintain the FODO structure we need for injection to keep small beam sizes.

The next few slides show a trial layout and optics.