

Firmware and Software Design of the New ROD Complex (NRC)

Richard Claus[†]
claus@slac.stanford.edu
CERN, October 8, 2012

On behalf of: Rainer Bartoldus† Anthony DiFranzo†† Raul Murillo Garcia†† Nicoletta Garelli† Ryan T. Herbst† Michael Huffer† Andrew J. Lankford†† Andrew Nelson†† James Russell† Michael Schernau††

Outline

Overview of the system

- The system as a collection of well defined components (Mike's talk) bound together through firmware and software
- Will show the flow of data (of various kinds) through the system
- Will itemize the external interfaces and show how we meet them

Software framework

Development Infrastructure

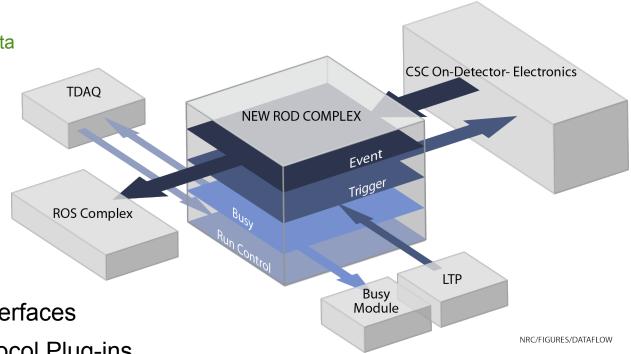
- Trigger Simulator
- CSC Emulator

Configuration management

- Code management
- Release method

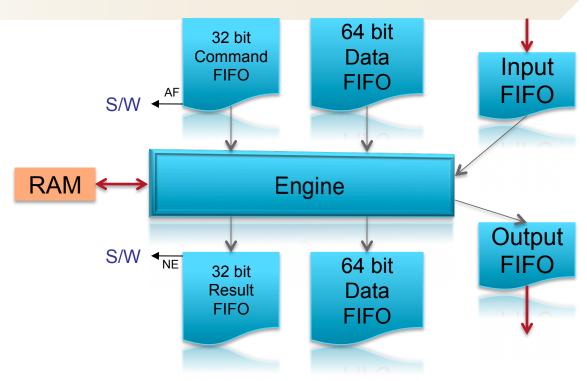
Performance

Summary


Overview of the NRC

SLAC

System is decomposed into a set of independent *planes*Planes are associated with the type of data they transport
RCEs interact on all planes


- Event
 - Physics and Calibration data
- Trigger
 - Trigger information
- Busy
 - Back-pressure
- Run Control
 - Control, monitoring and configuration

Must satisfy the external interfaces
Accomplished through Protocol Plug-ins

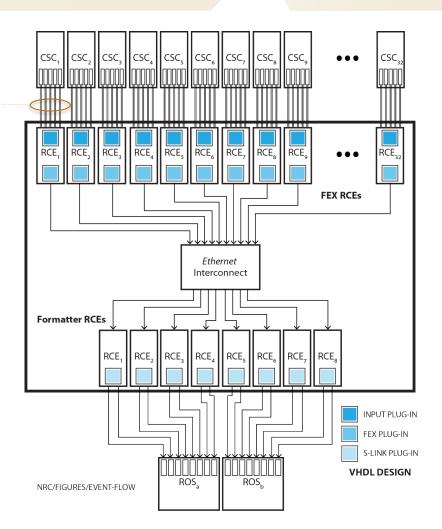
The PPI Plug

Communicates between f/w & s/w Uses user defined instructions:

- Auxiliary Processor Unit (APU) load/store
- 3 CPU cycles per instruction (CPI)

Can interrupt CPU, e.g., Not Empty (NE) Status flags, e.g., Almost Full (AF)

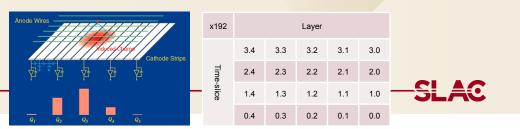
Command/Result contain length & location Location can be:

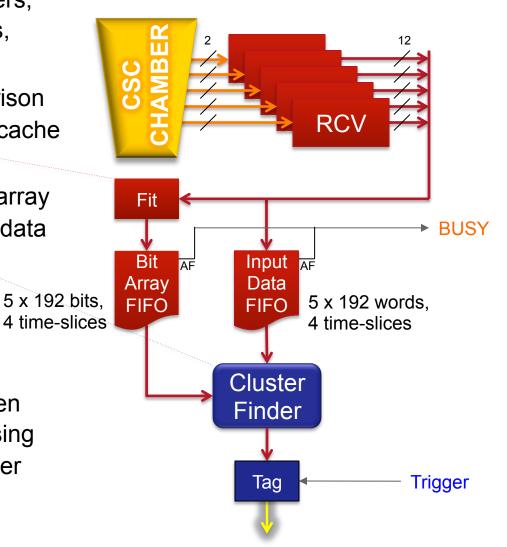

- Data in the Data FIFO
- Address of a block in RAM to DMA

Allows trade between DMA setup overhead and throughput

Event data flow

SLAC

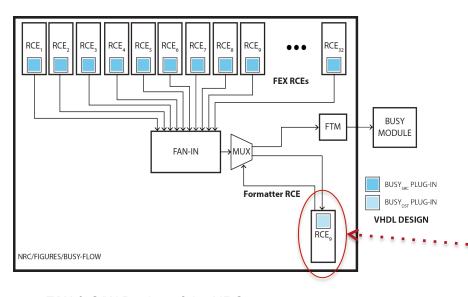

- Input of data on the FEX RCE
 - For each time-slice (samples), a chamber produces 5 layers x 192 channels x 12 bits
 - A nominal event is 4 time-slices = ~6 KB
 - All chamber data comes into the NRC through 5 1.28 Gbit/second links
 - With 4 time-slices per trigger: $9 \mu S = 360 BC = 111 KHz$
- Perform feature extraction (FEX)
 - Reduce the input data volume
 - Threshold & timing cut and composing clusters of hits
 - Expect ~600 Bytes per chamber at $\langle \mu \rangle = 80$
- Forward to Formatter RCE
 - Via Ethernet and the Fabric Interconnect
- Format the data
 - Package up the data from 2 chambers into an ATLAS CSC event contribution
- Send it to the ROS

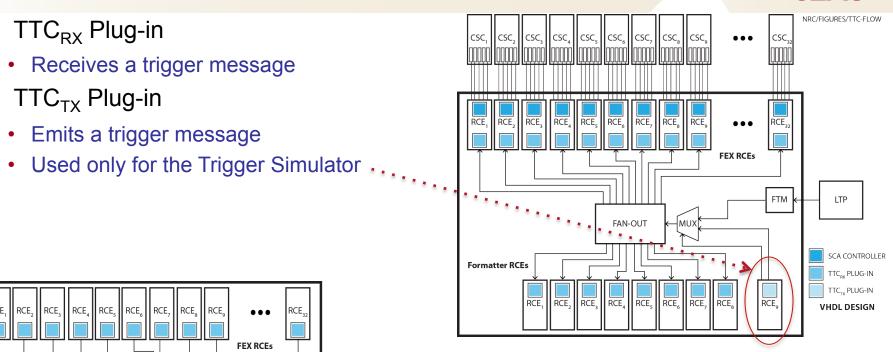


Event data flow via Input and FEX PPIs

- RCV receives data from the fibers, takes up arrival time differences, builds parallel data structure
- FEX f/w does threshold comparison and Out-of-Time cut to build a (cache friendly) bit array of "hits"
- Cluster Finder s/w uses the bit array to determine which of the Input data to forward to its Formatter RCE

- Tag data with trigger info
- Manage transfer latency between FEX and Formatter RCEs by using low-level, point-to-point Link layer protocol


S-Link PPI


SLAC

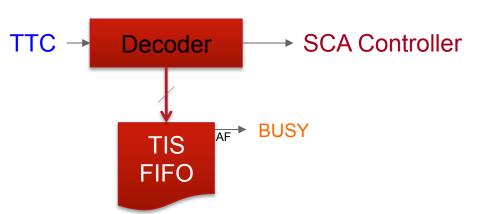
- Is the ROL interface
- Follows CERN's specification
- Full duplex, 160 MByte/second link
 - One duplex carries the data
 - The other carries the flow control

Trigger System

- TTC_{RX} Plug-in
 - Receives a trigger message
- TTC_{TX} Plug-in

- BUSY_{SRC} Plug-in
 - Collects and forwards back-pressure
- BUSY_{DST} Plug-in
 - Handles back-pressure on the Trigger Simulator

TTC_{RX} PPI


SLAC

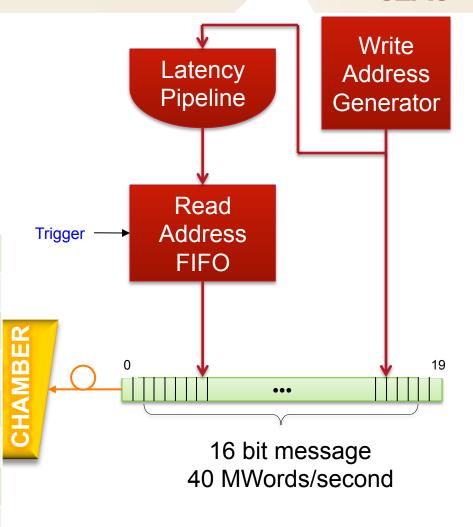
Wraps CERN's TTC_{RX} firmware in a PPI plug

Recovers Beam Crossing clock

Trigger Information Summary (*TIS*):

- L1-Accept ID
- Bunch Crossing ID
- Trigger Type
 - L1A
 - ECR
 - Calibration Strobe
- Orbit count

SCA Controller


SLAC

Manages 144 SCA cells per channel

- Write Address Generator selects a cell for every (other) beam crossing
- Trigger (whether L1A or CalStrobe)
 causes Read Address to be emitted

40 MHz clock recovery on chamber

RD_CLK	5 or <u>6.67</u> MHz		
SD	Serial read address		
RD	Read enable		
GA[1:0]	Part of read address		
WA[7:0]	Write address		
TRIG_DATA	Unused (?)		
ADC_CLK	Phase shifted RD_CLK		
WR_CLK	20 or 40 MHz		

BUSY PPI

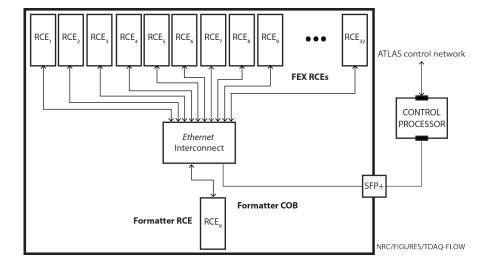
SLAC

SRC plug-in:

- Handles 4 sources of BUSY:
 - Input, FEX and TTC PPIs
 - Software command
- Individually maskable
- Forwards logical OR of source values to BUSY interconnect
- Provides statistics
 - Number of assertions
 - Fraction of total amount of time asserted

TDAQ Plane

Control Processor:


- A "standard issue" Linux machine
- Takes role of RCC SBC in VME systems
 - VME replaced by ethernet
- Runs TDAQ software suite:
 - Run Control FSM
 - Configuration DB access
 - ERS for message reporting
 - OHS for histogramming
 - IS for publishing prompt data
- TDAQ proxy server to RCEs
- Could run the DHCP service to provide RCEs with their IP information
- Isolates NRC network traffic from ATLAS control network

RCEs:

TDAQ proxy clients

Communication:

Through TCP/IP ports and sockets

RCE Software Framework

SLAC

One time configuration of the software framework:

- Boots RTEMS from local on-board file system (FAT SD Card)
- Initializes the RCE (Most of the software work is here)
 - E.g., Connect to the Control Processor TDAQ proxies

TDAQ FSM proxy duties:

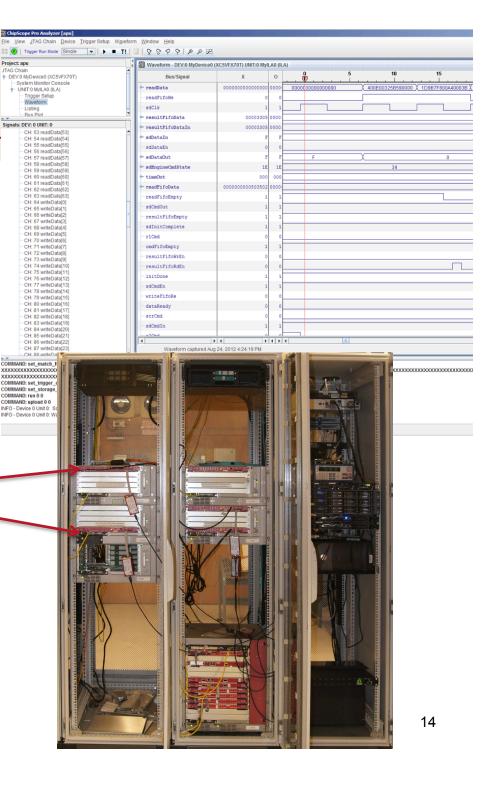
- Address requirements listed in Raul's talk
- Load a configuration
- Monitor run

Event Loop:

- Orchestrate data transfer between PPIs ("glue")
- Perform Cluster finding (FEX RCE)
- Event-build data from two chambers (Formatter RCE)
- Format data to ATLAS standard (Formatter RCE)
 - Identical event format as currently used

Development Infrastructure

Xilinx and GNU tools


- Will put together a system level, mixed s/w and f/w simulation
- "Chipscope" tool for debugging f/w and the f/w / s/w interaction
- GDB: network and RTEMS thread aware

Construct test-stands

 Much can be done with a single, partially populated, COB

Resurrect TDAQ test-bed at SLAC (and instantiate one at UCI)

- To aid in development of proxies, etc.
- Decouple from TDAQ evolutionary path and Pt 1, as much as possible

Trigger Simulator

SLAC

We have LTPs available

Standard COB/RCE hardware can be used to play back trigger information

- Uses 9th RCE (DTM)
- Almost 4 GB available for the trigger pattern
- TTC_{TX} PPI is used to emit trigger messages
 - Inverse function of the TTC_{RX} PPI
- BUSY_{DST} PPI is used to throttle triggers
- Allows each COB to stand alone as a separate system
 - Fine grained partitionability
 - Users can work in parallel (on separate COBs)
 - Decouples dependence on the LTP

CSC Emulator

SLAC

A COB/RCE based system can be used to simulate all or part of the CSC detector

- Hardware is identical to that used in the NRC (COB)
- Only firmware and software is different
- Here, simulate means to play back recorded data

Can use an existing RTM to drive a portion of the NRC

- Planning to build a "reverse" CSC RTM
 - Contains 8 SNAP-12 transmitters + 4 SNAP-12 receivers
 - 1 COB + "reverse CSC" RTM simulates up to 8 chambers
- Simple variation of standard CSC RTM design

4 COBs + 4 "reverse CSC" RTMs would allow testing the full system

Release Management

SLAC

- Will follow the <u>Muon Group policy</u>
- Will use the <u>SVN Code repository</u> at CERN to store both f/w and s/w
- A <u>build system</u> is available for compiling and installing f/w and s/w
- A <u>standard regression test suite</u> will be created to ensure reproducible results, reliability and performance
 - Each requirement (Raul's talk) will have an associated test
- We will maintain a <u>rigorous deployment policy</u>
- Will use Savannah for bug reporting
- Releases will be documented with <u>release notes</u> stored in the CSC twiki at CERN

Performance

SLAC

The NRC is a <u>pipelined</u> system consisting of 5 overlapping stages. Its performance will be given by the slowest stage of this list:

St	Stage Metric		Rate	Time		
1	Input Data	4 time-slices * 192 channels * 12 bits		1.28 Gbit/sec.	7.2 μ S: 140 KHz	
	Feature extract	Index bit array	192 ch * 5 layers / 64 bits per fetch	15 @ 3 CPI		0.15 μS + 0.72 μS * <μ>/80
		TTC data	1 64 bit fetch	1 @ 3 CPI		
		Input buffer ptr	1 64 bit fetch	1 @ 3 CPI		
		Cluster finding	600 Bytes / 32 Bytes per cache-line	19 @ 18 CPI * <µ>/80		
		Output	42 Byte Enet hdr / 8 Bytes per inst.	6 @ 3 CPI		
		Output buffer ptr	1 64 bit store	1 @ 3 CPI		
		Total:		72 + 342 * < <i>µ</i> >/80		
3	FEX - Fmtr	600 bytes * <\mu>>/80		10 Gbit/sec.	0.6 μS * <μ>/80	
4	Format	600 bytes * $<\mu>/80$ * 2 chambers 600 bytes * $<\mu>/80$ * 2 chambers			1 GByte/sec.	1.2 μS * <μ>/80
5	ROL				160 MByte/sec.	7.5 μ S * <μ>/80

Up to a $<\mu>$ of ~80 the NRC is limited by the On-Detector Electronics to 140 KHz. Above $<\mu>$ of ~80 , the ROL takes over. Could double the output rate by doubling the ROLs. F/W & S/W Design of the NRC

Summary

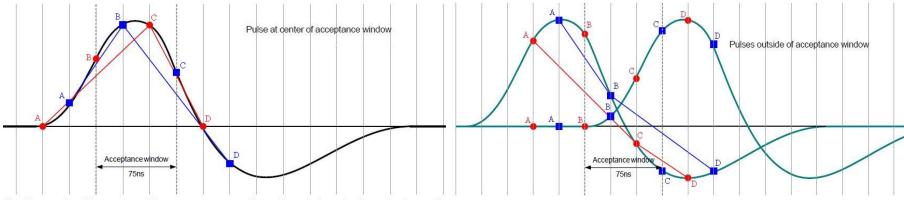
SLAC

- Will deliver a "plug and play" solution.
 - ✓ System conforms to Event, Trigger, BUSY, TDAQ interfaces
 - ✓ Data format won't (need to) change
- This solution is achieved through Protocol Plug-ins.
- The NRC software framework is hosted on the RCEs.
- The TDAQ software & proxies is hosted on the Control Processor.
- Algorithmically, NRC operation is identical to the current ROD Complex'
- Development and validation tools verify requirements enumerated in Raul's talk.
- Will implement a disciplined release management plan that is consistent with ATLAS policy.
- The NRC firmware and software design meets its performance requirement to operate at an L1Accept rate of 100 KHz with a <µ> of 80.

Backups

SLAC

F/W & S/W Design of the NRC


Feature Extraction

SLAC

Threshold cut

Each individual channel is associated with a unique threshold value. The sample is accepted only if it is larger than the corresponding threshold.

Time cut

In-time pulse (lines every 25 ns, squares are phase B samples, circles are phase C) Out-of-time pulses (lines every 25 ns, squares are phase B samples, circles are phase C)

The sampling is adjusted so that the nominal peaking time for in-time hits falls halfway between the B sample of the later sampling and the C sample of the earlier sampling. The nominally largest sample (B or C) must be larger than sample A and D.