

PhD Winter School 2013 Grindelwald, Switzerland January 21-25, 2013

Olaf Steinkamp

Universität Zürich^{™™}

olafs@physik.uzh.ch

Your Lecturer

- born in Bremen, Germany
- studied physics in Bonn
- PhD work at CERN
 - on a small experiment you will never have heard of
- 1st PostDoc at Saclay
 - working on the construction of the NA48 detector
 - observation of direct CP violation in neutral kaon decays
- 2nd PostDoc at NIKHEF
 - working on the construction of the HERA-B detector
 - (failed) attempt to search for CP violation in the $B^{\circ}\overline{B}^{\circ}$ system
- "Wissenschaftlicher Mitarbeiter" at Universität Zürich
 - working on the LHCb experiment
 - indirect search for "New Physics" (= physics beyond the Standard Model) via precision measurements of CP violation and rare heavy quark decays

Your Lecturer

- born in Bremen, Germany
- studied physics in Bonn
- PhD work at CERN
 - on a small experiment you will never have heard of
- 1st PostDoc at Saclay
 - working on the construction of the NA48 detector
 - observation of direct CP violation in neutral kaon decays
- 2nd PostDoc at NIKHEF
 - working on the construction of the HERA-B detector
 - a (failed) attempt to search for CP violation in the $B^{\circ}\overline{B}^{\circ}$ system
- "Wissenschaftlicher Mitarbeiter" at Universität Zürich
 - working on the LHCb experiment
 - indirect search for "New Physics" (= physics beyond the Standard Model) via precision measurements of CP violation and rare heavy quark decays

90:00

Outline

• Part I: Introduction

- what is (quark) flavour physics and why is it so exciting?
- how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a short summary of the formalism (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: sin 2β , CKM angle γ , $B^{o}_{s}\overline{B}^{o}_{s}$ mixing phase ϕ_{s}
 - rare decays: search for $B^{0}_{(s)} \rightarrow \mu^{+} \mu^{-}$, angular observables in $B^{0} \rightarrow K^{*0} \mu^{+} \mu^{-}$

[selected topics, no attempt at giving a comprehensive overview of the field !]

21 Jan 2013

Outline

- Part I: Introduction
 - what is (quark) flavour physics and why is it so exciting?
 - how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a short summary of the formalism (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: sin 2β , CKM angle γ , $B_{s}^{o}\overline{B}_{s}^{o}$ mixing phase ϕ_{s}
 - rare decays: search for $B^{0}_{(s)} \rightarrow \mu^{+} \mu^{-}$, angular observables in $B^{0} \rightarrow K^{*0} \mu^{+} \mu^{-}$

Flavour Physics

- study properties of the three lepton families and their interactions
 - masses, lifetimes, spins, ...
 - couplings, amplitudes, phases, ...
- it's all about the weak interaction

- flavour conserved in strong and electromagnetic interactions
- three distinct sectors (theoretical questions and experimental approaches)
 - quarks: measure mixing parameters, test Standard Model predictions
 - charged leptons: test lepton number conservation
 - neutrinos: measure oscillation parameters, masses, Dirac ↔ Majorana ?
- guiding principle: symmetries and their violation
 - Parity (P), Charge Conjugation (C), Time reversal (T),

combined CP symmetry, all violated in weak interactions

21 Jan 2013

O. Steinkamp

this course

CKM Matrix

Observe mixing between quark families in charged-current interactions

- e.g. kaons and B mesons would otherwise be stable particles
- described by quark mixing matrix V_{ij}
 (Cabibbo-Kobayashi-Maskawa = CKM)
 in the charged current Lagrangian

$$-L_{cc} = \frac{g}{\sqrt{2}} \overline{u}_{i} \gamma^{\mu} \left(1 - \gamma_{5}\right) V_{ij} d_{j} W_{\mu}^{+} + h.c.$$

- studying the parameters of the CKM matrix is one of the main goals of quark flavour physics
- 3 quark families: 4 free parameters = 3 rotation angles + complex phase
- this complex phase is the only source of CP violation in the Standard Model

Wolfenstein Parametrization

<u>Values of the CKM matrix elements not predicted by theory</u>

• measured magnitudes show clear hierarchy (PDG 2012)

• measured magnitudes show creating a sine of the end of the end

• is there some deeper meaning hidden in this?

This hierarchy reflected in Wolfenstein parametrisation

- expand all CKM elements in terms of $\lambda = \sin \theta_c \approx 0.23$
- approximate to order λ^3
- assign the complex phase to the smallest elements, V_{td} and V_{ub}

$$V_{CKM} \approx \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A \cdot \lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A \cdot \lambda^2 \\ A \cdot \lambda^3 (1 - \rho - i\eta) & -A \cdot \lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

CHIPP PhD School - Flavour Physics (8)

Unitarity Triangles

Unitarity of CKM matrix \rightarrow 6 orthogonality relations

- can be visualized as triangles in the complex plane
 - all six triangles have the same surface area $\,\propto\,$ CP violation
 - but four of them are "squashed"
- the two non-squashed triangles are identical in Wolfenstein approximation
 - differences appear at higher orders of $\lambda \rightarrow$ become relevant at LHCb

angles and sides of these triangles are related to measurable quantities

"The" Unitarity Triangle

<u>Use $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$ and normalize to $V_{cd}V_{cb}^*$ </u>

- measure the lengths of the two sides: CP conserving quantities
- measure all three angles: CP violating quantities (angles = phases !)
- many observables \rightarrow overconstraint determination of triangle

consistency check of Standard Model !

21 Jan 2013

CHIPP PhD School - Flavour Physics (10)

O. Steinkamp

"The" Unitarity Triangle 2012

- so far a huge success story for the Standard Model
- current measurement precision permits ~20% contribution from New Physics

need more precise measurements: this is the goal of LHCb !

21 Jan 2013

CHIPP PhD School - Flavour Physics (11)

Loops !

Why do we expect New Physics to show up in these observables?

- many processes involve loop diagrams:
 - box diagrams (mixing)
 - Penguin diagrams (decays)
- New Physics models usually predict new, heavy particles (e.g. SUSY)
- these particles can appear in the loops and affect magnitudes and phases
- searches are sensitive to the appearance of <u>virtual</u> particles in loops
 - test much higher mass scales than direct searches for new particles (limited by center-of-mass energy) \bar{b}
- another promising hunting ground: rare heavy quark decays

21 Jan 2013

CHIPP PhD School - Flavour Physics (12)

 B^0_s

W

 γ, Z^0

O. Steinkamp

 H^0, A^0, h^0

 B^0_{\circ} u, c, t

Outline

• Part I: Introduction

- what is (quark) flavour physics and why is it so exciting?
- how we got here: brief history of flavour physics in the 20th century
- Part II: Particle-Antiparticle Mixing
 - a short summary of the formalism (don't worry, I'm an experimentalist ...)
 - introduce experimental facilities and techniques
- Part III: Precision tests of the Standard Model
 - CP violating observables: sin 2β , CKM angle γ , $B_{s}^{o}\overline{B}_{s}^{o}$ mixing phase ϕ_{s}
 - rare decays: search for $B^{0}_{(s)} \rightarrow \mu^{+} \mu^{-}$, angular observables in $B^{0} \rightarrow K^{*0} \mu^{+} \mu^{-}$

Isospin

<u>Observe similar behaviour of proton/neutron and of $\pi^{+}/\pi^{0}/\pi^{-}$ </u>

- different charge but similar masses, same couplings in nuclear interactions Heisenberg (1932): Isospin multiplets

$$p$$
 : $(I, I_z) = (1/2, +1/2)$

n :
$$(I, I_z) = (1/2, -1/2)$$

• p/n form an Isospin doublet • $\pi^+/\pi^0/\pi^-$ form an Isospin triplet

$$\pi^{+} : (\mathbf{I}, \mathbf{I}_{z}) = (\mathbf{1}, +\mathbf{1})$$

$$\pi^{0} : (\mathbf{I}, \mathbf{I}_{z}) = (\mathbf{1}, \mathbf{0})$$

$$\pi^{-} : (\mathbf{I}, \mathbf{I}_{z}) = (\mathbf{1}, -\mathbf{1})$$

Hamiltonian of strong interaction is invariant under global SU(2) rotation in Isospin space \rightarrow strong interaction identical for the members of a multiplet In today's language: $I_{-} = +1/2 \rightarrow u$ quark, $I_{-} = -1/2 \rightarrow d$ quark $\mathbf{p} = (\mathbf{u}\mathbf{u}\mathbf{d})$, $\mathbf{n} = (\mathbf{u}\mathbf{d}\mathbf{d})$, $\pi^{+} = (\mathbf{u}\overline{\mathbf{d}})$, $\pi^{0} = 1/\sqrt{2}(\mathbf{u}\overline{\mathbf{u}} + \mathbf{d}\overline{\mathbf{d}})$, $\pi^{-} = (\overline{\mathbf{u}}\mathbf{d})$ • Isospin is not an exact symmetry but rather successful as a concept

• works so well because $m_u \sim m_d$ and m_u , $m_d \ll \Lambda_{QCD} \approx 200$ MeV

21 Jan 2013

CHIPP PhD School - Flavour Physics (14)

Strangeness

Observe "strangely behaved" particles

- large production cross sections
 - typical for strong interaction
- but long lifetimes of order 10^{-10} s
 - typical for weak decays
- always produced in pairs:
 "associated production"

Pais (1947): "strangeness" quantum number

- conserved in strong interactions (production)
- not conserved in weak interactions (decay)

associated production: creation of an ss-pair in strong interaction

Cabibbo Angle

Observe different coupling strengths of weak interaction

- weak coupling constant should be universal if weak interactions are a fundamental force, but:
 - coupling in decays of strange particles seems about a factor 20 smaller than in muon decay
 - coupling in neutron decay about 4% smaller than in muon decay

S

Cabibbo (1963): weak interaction couples to a linear combination
[PRL 10 (1963) 531]

$$d' = \cos \theta_c \cdot d + \sin \theta_c \cdot s$$
 with $\lambda = \sin \theta_c \approx 0.22$

• coupling strengths in hadronic decays are then (using today's language)

$$\frac{d \to u W^{-}}{\mu^{-} \to \nu_{\mu} W^{-}} = \cos^{2} \theta_{c} \approx 0.96 \qquad \qquad \frac{s \to u W^{-}}{d \to u W^{-}} = \frac{\sin^{2} \theta_{c}}{\cos^{2} \theta_{c}} \approx \frac{1}{20}$$

21 Jan 2013

CHIPP PhD School - Flavour Physics (16)

GIM Mechanism

Observe strong suppression of Flavour-Changing Neutral Currents

- for example: BF (K⁺ $\rightarrow \mu^+ \nu_{\mu}$) ≈ 63.5% but BF (K⁰_L $\rightarrow \mu^+ \mu^-$) ≈ 7 × 10⁻⁹
- but would expect sizeable amplitude if weak interaction couples to u and d'

<u>Glashow, Ilioupolis, Maiani (1970): quark doublets</u>

[PRD 2 (1970) 1285]

$$\begin{pmatrix} \mathbf{u} \\ \mathbf{d'} \end{pmatrix} \begin{pmatrix} \mathbf{c} \\ \mathbf{s'} \end{pmatrix} \quad \text{with} \quad \begin{pmatrix} \mathbf{d'} \\ \mathbf{s'} \end{pmatrix} = \begin{pmatrix} \cos \theta_c & \sin \theta_c \\ -\sin \theta_c & \cos \theta_c \end{pmatrix} \cdot \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \end{pmatrix}$$

- leads to cancellation of FCNC amplitudes at tree level (ightarrow next slide)
- requires an additional, not yet observed quark (c quark discovered in 1974)

GIM Mechanism

<u>Quark doublets \rightarrow suppression of FCNC at tree level</u>

$$\begin{aligned} \mathbf{u}\overline{\mathbf{u}} + \mathbf{c}\overline{\mathbf{c}} + (\mathbf{d}\overline{\mathbf{d}} + \mathbf{s}\overline{\mathbf{s}}) \cdot \mathbf{cos}^2 \theta_c + (\mathbf{d}\overline{\mathbf{d}} + \mathbf{s}\overline{\mathbf{s}}) \cdot \mathbf{sin}^2 \theta_c \\ \dots + (\mathbf{d}\overline{\mathbf{s}} + \overline{\mathbf{d}}\mathbf{s}) \cdot \mathbf{cos}\theta_c \mathbf{sin}\theta_c - (\mathbf{d}\overline{\mathbf{s}} + \overline{\mathbf{d}}\mathbf{s}) \cdot \mathbf{sin}\theta_c \mathbf{cos}\theta_c &= \mathbf{u}\overline{\mathbf{u}} + \mathbf{c}\overline{\mathbf{c}} + \mathbf{d}\overline{\mathbf{d}} + \mathbf{s}\overline{\mathbf{s}} \end{aligned}$$

- cancellation only exact if all quark masses are the same
 - valid to very good approximation, because quark masses « Z^0 mass
- FCNC can proceed through 2nd order processes (e.g. double W-exchange)
 - but strongly suppressed because of smallness of weak coupling constant

Parity Violation

<u>" Θ/τ -puzzle": observe two charged, strange, spin-0 mesons</u>

- same mass (~ 500 MeV) and same lifetime, but:
- one (" Θ ") decays into $\pi^{+}\pi^{0}$ (even parity)
- the other (" τ ") decays into $\pi^{+}\pi^{-}$ (odd parity) <u>Yang,Lee (1956): V-A theory of weak interactions</u> [PR 104 (1956) 254]
- parity is not conserved in weak interactions
- " Θ'' and " τ'' are in fact the same particle (K^)

<u>Wu et al. (1957): experimental proof of parity violation</u>

- measure angular distribution of electrons from β -decay of polarized ⁶⁰Co (spin=5⁺) to ⁶⁰Ni* (spin=4⁺)
- must be up-down symmetric if parity is conserved
- observation: electrons are emitted predominantly
 <u>opposite to ⁶⁰Co-spin</u> → parity is maximally violated !
 21 Jan 2013 CHIPP PhD School Flavour Physics (19)

BETA RAYS (ELECTRONS) BETA RAYS

[PR 105 (1957) 1413]

Parity violation in semi-leptonic pion decays

- muons from $\pi^{\scriptscriptstyle\pm}$ decays are polarized:
 - μ^{-} from π^{-} decays are left-handed
 - μ^+ from π^+ -decays are right-handed
- parity is maximally violated, as expected
- charge conjugation is also maximally violated
- but: decay rates for π^- to left-handed μ^- and for π^+ to right-handed μ^+ are the same !

Landau, Okun (1957): relevant symmetry in weak interactions is CP

• CP = Charge conjugation × Parity

[Nucl Phys 3 (1957) 127] [Zh Eksp Teor Fiz 32 (1957) 1587]

• Richard Feynman in *Symmetries in Physical Laws*, 1963:

"it is really true that right and left symmetry is still maintained ... the right-handed matter behaves the same way as the left-handed antimatter"

21 Jan 2013

CHIPP PhD School - Flavour Physics (20)

<u>Short excursion: K^oK^o mixing</u>

- strangeness is the only quantum number that distinguishes K^o from $\overline{K}{}^o$
- strangeness is not conserved in weak interactions: transitions $K^{o} \leftrightarrow \overline{K}^{o}$
 - in today's language: transitions via double W exchange ("box diagrams")

• pure state |K°> produced at time t=0 will evolve into a mixed state at t>0

$$|\psi(t)\rangle = \alpha(t) \cdot |\mathbf{K}^{o}\rangle + \mathbf{b}(t) \cdot |\bar{\mathbf{K}}^{o}\rangle$$

define Eigenstates of CP operator:

$$\begin{vmatrix} \mathsf{K}_{1} \rangle = \frac{1}{\sqrt{2}} \cdot \left\{ \begin{vmatrix} \mathsf{K}^{0} \rangle + \left| \bar{\mathsf{K}}^{0} \right\rangle \right\} \quad \Rightarrow \quad CP \begin{vmatrix} \mathsf{K}_{1} \rangle = + \begin{vmatrix} \mathsf{K}_{1} \rangle \\ \begin{vmatrix} \mathsf{K}_{2} \rangle = \frac{1}{\sqrt{2}} \cdot \left\{ \begin{vmatrix} \mathsf{K}^{0} \rangle - \left| \bar{\mathsf{K}}^{0} \right\rangle \right\} \quad \Rightarrow \quad CP \begin{vmatrix} \mathsf{K}_{2} \rangle = - \begin{vmatrix} \mathsf{K}_{2} \rangle$$

21 Jan 2013

CHIPP PhD School – Flavour Physics (21)

Two K^o States

<u>Gell-Mann, Pais (1957): two K^o states with different lifetimes</u>

- if CP conserved in weak interactions, then
 - K_1 and K_2 are also eigenstates of weak interaction
 - $K_1 \operatorname{can}$ decay into 2 pions
 - K_2 <u>cannot</u> decay into 2 pions

$$J_{K} = J_{\pi} = 0 \implies L_{\pi\pi} = 0$$
$$\Rightarrow CP_{\pi\pi} = -1^{L_{\pi\pi}} = +1$$

- all possible decay channels for K₂ suppressed:
 - decays to 3 pions by phase space
 - semi-leptonic decays by parity violation
- K_2 must have much longer lifetime than K_1
 - measured lifetimes:

$$\tau \left(\mathsf{K}_{\mathsf{2}} \right) \ \approx \ \mathbf{500} \times \tau \left(\mathsf{K}_{\mathsf{1}} \right)$$

CHIPP PhD School - Flavour Physics (22)

CP Violation

<u>Christenson, Cronin, Fitch, Turlay (1964)</u>: observation of $K_2 \rightarrow \pi^+\pi^-$

- shoot protons into fixed target, produce K^o and K^o
 - let them propagate in a vacuum tube
 - K_1 component decays away \rightarrow obtain pure K_2 beam
- search for $\pi^+\pi^-$ decays in this K₂ beam
 - energy conservation: invariant mass of $\pi^+\pi^-$ pair
 - momentum conservation: momentum balance

[PRL 13 (1964) 138]

10

30

m(K^o)

 $m(\pi^+\pi^-)$

 $m(\pi^+\pi^-) \approx m(K^0)$

Sakharov Conditions

Sakharov (1967): CP violation required to create a matter/antimatter asymmetry in the Universe [JETP Lett 5 (1967) 24]

- Sakharov's three conditions:
 - Baryon-number violation
 - C violation and CP violation
 - thermal non-equilibrium
- but: baryon asymmetry observed in the universe is

$$\eta = \frac{n_{\rm B}^{} - n_{\bar{\rm B}}^{}}{n_{\rm y}^{}} \approx 6 \times 10^{-10}$$

• CKM-induced CP violation gives

 $\eta \approx 10^{-18}$

need additional sources of CP violation

21 Jan 2013

CKM Mechanism

Kobayashi, Maskawa (1972): CP violation if three quark doublets

$$\begin{pmatrix} \mathbf{u} \\ \mathbf{d'} \end{pmatrix} \begin{pmatrix} \mathbf{c} \\ \mathbf{s'} \end{pmatrix} \begin{pmatrix} \mathbf{t} \\ \mathbf{b'} \end{pmatrix} \quad \text{with} \quad \begin{pmatrix} \mathbf{d'} \\ \mathbf{s'} \\ \mathbf{b'} \end{pmatrix} = \begin{pmatrix} \mathbf{V}_{ud} & \mathbf{V}_{us} & \mathbf{V}_{ub} \\ \mathbf{V}_{cd} & \mathbf{V}_{cs} & \mathbf{V}_{cb} \\ \mathbf{V}_{td} & \mathbf{V}_{ts} & \mathbf{V}_{tb} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{d} \\ \mathbf{s} \\ \mathbf{s} \\ \mathbf{b'} \end{pmatrix}$$

- 9 complex numbers = 18 parameters
 - 9 unitarity constraints ($V^{\dagger}V = VV^{\dagger} = 1$)
 - 5 arbitrary ("unphysical") phases

[PTP 49 (1973) 652]

- = 4 free parameters: 3 rotation angles + 1 complex phase
- CP violation due to interference if diagrams with different weak phase contribute to the same process
- "prediction" of third quark family before even charm quark was discovered <u>Various other models proposed at the time to explain CP violation</u>
- most prominent: new "superweak" force that acts only in kaon mixing
 21 Jan 2013 CHIPP PhD School Flavour Physics (25) O. Steinkamp

Charm Quark

"November revolution" (1974)

[PRL 33 (1974) 1404] [PRL 33 (1974) 1406]

J/Ψ

- observation of a narrow resonance at a mass of 3.1 GeV, simultaneously
 - in p + Be \rightarrow e⁺ e⁻ + X at BNL (Ting et al.) \rightarrow "J"
 - in $e^+ e^- \rightarrow e^+ e^-$, $\mu^+ \mu^-$, hadrons at SLAC (Richter et al.) \rightarrow " Ψ "
 - in both cases, measured width dominated by the detector resolution
- narrow width → long lifetime
 → cannot be an excited u,d,s state
- interpretation: bound cc state

m(c) ~ 1.5 GeV

soon confirmed by observation of other
 cc states and of open charm (D mesons)

21 Jan 2013

CHIPP PhD School - Flavour Physics (26)

Bottom and Top Quarks

Lederman et al. (1977): search for $b\overline{b}$ resonances in $p + Cu \rightarrow \mu^+ \mu^- + X$

- observe excess of μ⁺μ⁻ pairs around an invariant mass of 9.4-10.4 GeV
- resolved into three resonances, interpreted as bound bb states

m(b) ~ 4.5 GeV

<u>CDF/D0 (1995): first observation of top quark</u>

[PRL 74 (1995) 2626] [PRL 74 (1995) 2632]

- existence of top quark taken for granted after discovery of b quark
- mass around 170 GeV predicted from fits to electroweak precision measurements at LEP and SLC
- production in 1.8 TeV pp collisions at Tevatron
- detection in t \rightarrow W b decays

O. Steinkamp

21 Jan 2013

CHIPP PhD School - Flavour Physics (27)

B°B° Mixing

Argus experiment at DESY (1987)

- e^+e^- collider operating at Y(4s) resonance
- produce $B^{0}\overline{B}^{0}$ pairs through

 $e^+e^- \rightarrow \Upsilon (4s) \rightarrow B^0 \overline{B}^0$

- $B^{\circ}\overline{B}^{\circ}$ mixing through box diagrams
- can be observed in semi-leptonic decays

- observe "like-sign event" with two μ^- or two μ^+ \to B^o or $\overline{B}{}^o$ must have mixed
- strong mixing observed \rightarrow predict large top quark mass

CHIPP PhD School - Flavour Physics (28)

[PLB192 (1987) 245]

Direct CP Violation

<u>CKM: CP violation from interference of diagrams with different phase</u>

- interference of box diagrams with different internal quarks: "indirect" CP violation in K mixing
- interference of tree and penguin decay diagrams with different phases: "direct" CP violation in decay

$$\eta_{+-} = \frac{\Gamma\left(\mathsf{K}_{\mathsf{L}}^{} \rightarrow \pi^{^{+}} \pi^{^{-}}\right)}{\Gamma\left(\mathsf{K}_{\mathsf{s}}^{} \rightarrow \pi^{^{+}} \pi^{^{-}}\right)} = \varepsilon + \varepsilon \text{ ' } \text{ ; } \eta_{00} = \frac{\Gamma\left(\mathsf{K}_{\mathsf{L}}^{} \rightarrow \pi^{^{0}} \pi^{^{0}}\right)}{\Gamma\left(\mathsf{K}_{\mathsf{s}}^{} \rightarrow \pi^{^{0}} \pi^{^{0}}\right)} = \varepsilon - 2\varepsilon \text{ '}$$

• in Standard Model expect $\varepsilon'/\varepsilon \approx 10^{-3}$

Direct CP Violation

Experimental approach: measure the "double ratio"

$$\mathbf{R} = \left| \frac{\eta_{oo}}{\eta_{\star -}} \right|^{z} = \frac{\Gamma \left(\mathbf{K}_{L} \rightarrow \pi^{o} \pi^{o} \right) / \Gamma \left(\mathbf{K}_{s} \rightarrow \pi^{o} \pi^{o} \right)}{\Gamma \left(\mathbf{K}_{L} \rightarrow \pi^{\star} \pi^{-} \right) / \Gamma \left(\mathbf{K}_{s} \rightarrow \pi^{\star} \pi^{-} \right)} \approx$$

 $\approx 1 - 6 \cdot \text{Re}\left(\frac{\varepsilon'}{\varepsilon}\right)$ same p beam on $K_{L} \text{ and } K_{S} \text{ targets}$ $K_{L} \text{ and } K_{S} \text{ targets}$ $K_{L} \text{ target} \text{ target$

simultaneously (same beam, same detector) <u>NA48/KTeV (2001): observation of $\varepsilon'/\varepsilon \neq 0$ </u>

order if all four decay rates are measured

challenge: control systematics to $O(10^{-4})$

many systematic effects cancel to first

verlapping in detector volur

• end of a decades long competition CERN \leftrightarrow FNAL NA48@CERN: KTeV@FNAL: Re $(\epsilon'/\epsilon) = (14.7 \pm 2.2) \times 10^{-4}$ Re $(\epsilon'/\epsilon) = (19.2 \pm 2.1) \times 10^{-4}$

[PLB 544 (2002) 97] [PRD 83 (2011) 092001]

- vindication of CKM model of CP violation
- but large hadronic uncertainties, do not learn much about CKM parameters
 21 Jan 2013 CHIPP PhD School Flavour Physics (30) O. Steinkamp

21 Jan 2013

CHIPP PhD School - Flavour Physics (31)

CP Violation in The B^oB^o System

O. Steinkamp

 dedicated "B factories" constructed especially for CP measurement: BaBar at PEP-II, Belle at KEKB $\rightarrow \psi(2S)K$ BABAR 0.20 246 \overline{B}^0 tags $234 B^0$ tags

- 20
- 2001: both observe CP asymmetry in "golden decay channel" $B^0 \rightarrow J/\psi K^0_s$
 - measured values in good agreement with CKM prediction

need high-luminosity accelerators and very precise detectors

many decay channels and observables, large CP asymmetries, theoretically "clean" predictions, ...

But experimental challenges

<u>Many advantages over K^oK^o system</u>

- B mesons heavy \rightarrow small production cross section
- many decay channels \rightarrow small branching ratios
- short lifetime and fast oscillation frequency

2001 ++

Many more and much more precise results

- BaBar/Belle, CDF/D0 at Tevatron, now LHCb
- results so far in very good agreement with
 CKM predictions (2-3σ deviations came and went)

remainder of this lecture

- Babar and Belle stopped data taking, Belle collected ~ 1 ab^{-1}
- Tevatron stopped in autumn 2011 \rightarrow CDF/DO collected ~ 9 fb^-1
- LHCb collected ~1 fb⁻¹ at 7 TeV in 2011 and ~2 fb⁻¹ at 8 TeV in 2012
 - $b\overline{b}$ production cross section ~ 5 x Tevatron, ~ 500'000 x Babar/Belle
 - many analyses ongoing, already ~ 80 papers published
- LHC shutdown in 2013/2014, resume at ≥ 13 TeV in 2015
 - another factor two in $b\overline{b}$ production cross section
- "Belle II" under construction; goal: collect ~ 50 x Belle luminosity by 2022 21 Jan 2013 CHIPP PhD School - Flavour Physics (32) O. Steinkamp