

Part 1 Lectures at the CHIPP winter School 2013 Roberto Carlin (University of Padova and CERN)

Usual disclaimer

- These lectures cannot cover all of the complex subjects of particle detectors
 - Cannot describe the full variety
 - And even less go in full depth
- Tried to give a balanced overview of the techniques and the reason of their choice
- Tried not to be too CMS-biased
- Working on detector id fun!

Classification of particle detectors

Go to Wikipedia and get all information
you need

- Well not really
 - The Atlas Liquid Argon "accordion" calorimeter is neither a "gaseous" nor a "solid state" detector

Many possible classifications

- Signal generation
 - Ionization
 - Scintillation light
 - Cherenkov light
 - Transition Radiation

- Use
 - Tracking detectors
 - Vertex, Central, Muons
 - Calorimeters
 - Electromagnetic, Hadron
 - Particle Identification
 - Trigger

- Technologies used
 - Gaseous detectors
 - Multi-wire, Drift chambers, Limited Streamer Tubes, RPCs, GEMs
 - Scintillators
 - Crystals, Plastic, Liquid
 - Semiconductors
 - Pixels, Strip

... and then detectors get combined

- Modern large experiments are complex combination of detectors
 - Often with combined tasks, e.g. calorimeters and muon detectors are used for fast trigger

- Similar requirements, the aspect is similar
 - But the specific choice of the technologies are quite different
 - There is space for imagination

Plan of the lectures

- First some recap on interaction of radiation with matter
- Then a description of the main classes of detectors
 - with the different technologies used to build them
- Finally a real life example (...CMS)

What are the particles we detect?

- Stable particles, or unstable particles with long enough lifetimes to transverse the detectors
 - Other particles are identified, when needed, by their decay produces

- Electrons, muons
- Photons
- Neutrinos
- Charged and neutral nucleons, pions, kaons
 - Most of the times hadrons are inside jets of particles coming from hadronization of the partons

Bethe-Bloch

 $\frac{dE}{dx} \left[\frac{MeV}{cm} \right] = 4\rho N_A r_e^2 m_e c^2 z^2 \Gamma \frac{Z}{A} \frac{1}{b^2} \left(\ln \frac{2m_e c^2 g^2 b^2}{I} - b^2 - \frac{d}{2} \right)$

- Energy loss of charged particles per unit length
 - z = charge of the particle
 - Z,A of the absorber
 - I = mean excitation energy of the absorber
 - 4πN_Ar_e²m_ec²=D=0.3071 MeV/(g/cm²)
 - δ describes the E.M. screening effect of the absorber

Bethe-Bloch

Mean excitation energy: I

- NB for light elements I depends on the phase
 - Atomic hydrogen I=15eV
 - Molecular hydrogen I=19.2eV
 - Liquid hydrogen I=21.8eV

 Useful to express the loss of energy in term of "mass thickness" t

$$-\frac{dE}{dt} \left[\frac{\text{MeV}}{\text{g/cm}^2}\right]$$

- dt=pdx [g/cm²]
- Look at the units to understand what is used

- Ionization minimum at $\beta\gamma \sim 4$
 - MIP = minimum ionizing particle (<u>at and above</u> the minimum)
- Dependency on the material is small, apart in the lightest materials
 - in unit of mass thickness, then you have to multiply for the density

dE/dx vs Z

- Notice that, normalized to density, the energy loss at minimum decreases with Z
 - Z/A decreases at high Z

$$-\frac{dE}{dt} = z^2 \frac{Z}{A} f(I)$$

B.**B** examples

- Argon STP
 - 0 °C, 100 kPa: ρ =1.78×10⁻³ g/cm³
 - Z=18, A=40, I=16Z^{0.9}=215.7 eV

$$-\frac{dE}{dx} = \frac{0.246 \cdot 10^{-3}}{b^2} \left(\ln \left(8.463 \cdot \frac{b^2}{1 - b^2} \right) - b^2 \right) \text{ MeV/cm}$$

- Minimum at <u>β=0.952</u>, βγ=3.12
- dE/dx = 2.66 keV/cm 1.49 MeV/(g/cm²)
- at βγ=100 increases by 1.54
- Liquid Argon
 - ρ=1.4g/cm³
 - dE/dx at minimum = 2.09 MeV/cm

- Aluminium
 - $\rho=2.7g/cm^{3}$, Z=13, A=27, I=16Z^{0.9}=160.9 eV
 - Minimum at β =0.954, $\beta\gamma$ =3.175
 - dE/dx =4.47 MeV/cm (1.65 MeV/(g/cm²) at minimum
- Liquid hydrogen
 - $\rho=0.07g/cm^{3}$, Z=1, A=1, I=21.8 eV
 - Minimum at β=0.962, βγ=3.504
 - dE/dx =0.287 MeV/cm (4.1MeV/(g/cm²) at minimum

dE/dx and detectable energy

- NB the Bethe Bloch equation describes the energy lost by the particle in an absorber, not the signal useful to detect it
 - In a slab of lead, lot of energy is lost but none is detectable
 - Losses by ionization, or atomic excitations, can be detectable is some material
- Let's look at some phenomena useful for direct detection
 - Cherenkov radiation
 - Transition radiation

- Electromagnetic shock wave
 - Generated when the speed of the particle in the material is higher than the speed of light

- $-\beta c \ge c/n$
- β≥ 1/n
- Has a threshold in β, useful to measure it

Cherenkoy

- $n \approx \sqrt{k_e}$ is the refraction index
 - If v<c/n the induced polarization is symmetrical, no radiation emitted
 - If v>c/n the induced polarization is asymmetrical, dipoles emit radiation

Cherenkoy

- From the geometry:
 - $-\cos\vartheta_c = 1/n(\omega)\beta$
 - The refraction index depend on the frequency of the light (dispersion)
 - The angle itself depend on the frequency
 - The angle increases with β and n
 - glass, n≈1.5, β ≈1 ϑ_c ≈ 48°

Cherenkov

• Number of photons emitted:

$$\frac{d^2 N}{dxd/l} = \frac{2\rho z^2 a}{l^2} \left(1 - \frac{1}{n(l)^2 b^2} \right)$$

- Spectrum diverges as $1/\lambda^2$
 - But for small λ , $n \rightarrow 1$, no Cherenkov emission
 - Light tend to be on the blue side
- Visible photon emitted (400÷700nm) in glass

$$\frac{dN}{dx} = 2\rho z^2 \partial \left(\frac{1}{I_{\min}} - \frac{1}{I_{\max}}\right) sen^2 J_C$$

• 273 photons/cm. Very small number

Transition radiation

- Transition radiation is produced by relativistic charged particles when they cross the interface of two media of different dielectric constant
 - Very interesting characteristics: the emitted energy is proportional to the Lorentz $\boldsymbol{\gamma}$

$$E = z^{2} \frac{\partial}{\partial t} \frac{\partial}{\partial w_{P}} \times g$$
$$W_{P} = \sqrt{\frac{n_{e}e^{2}}{\theta_{0}m_{e}}}, \quad n_{e} = rN_{A} \frac{Z}{A}$$

 Very small number of photon emitted per transition

$$N_{TR} \sim \alpha$$

Photon energy is in the X-ray region (keV)

Variable dipole emitting E.M. radiation

Bremsstrahlung

- Radiation emitted by charged particle when decelerated in the field of a nucleus
 - Emission probability is proportional to 1/m² so the effect is typical of electrons

$$S \propto \left(\frac{e^2}{mc^2}\right)^2$$

- For muons, the radiation probability at the same energy is $1/200^2 = 1/40000$
- The energy radiated per unit length is proportional to the energy, and function of the material

$$-\frac{dE}{dx} \gg \frac{E}{X_0} \qquad E = E_0 e^{-\frac{x}{X_0}}$$

- So the energy decreases exponentially with x, X_0 is called the "radiation length"

Bremsstrahlung

• An approximated formula for X₀:

$$\frac{1}{X_0} = 4 \partial r_0^2 N_A \frac{Z^2}{A} \ln \frac{183}{Z^{1/3}}$$
$$\partial = \frac{1}{137}$$
$$r_0 = \frac{1}{4\rho e_0} \frac{e^2}{mc^2}$$

Or, taking into account electrons in the material and Coulomb corrections

$$\frac{1}{X_0} = 4 \left(Z (Z+1) N_A \frac{r}{A} \right) \partial r_0^2 \left(\ln \frac{183}{Z^{1/3}} - f(Z) \right)$$
$$F(Z) = \partial^2 \left(\frac{1}{1+\partial^2} + 0.202 - 0.036\partial^2 + 0.008\partial^4 - 0.002\partial^6 \right)$$
$$\partial = Z/137$$

Critical Energy

- Energy where the energy lost for bremsstrahlung is equal to that for collisions

 E_{C}

٠

Critical Energy

NB the E_C gets smaller at high Z, you lose more energy from bremsstrahlung for longer in heavy materials

Muon radiation losses

Above few hundreds GeV also muons radiate in heavy absorbers

- Relevant for LHC and cosmic rays
- Expected energy loss from ionization for a 1TeV muon in 3m of Fe less than 5GeV
- Large tails from radiative processes

2

Summary of energy losses

For charged particle (μ^{-} through copper in this plot)

Interactions of photon

- We cannot talk of energy loss
 - Either photons scatter at large angle, or interact losing all its energy

$$-\frac{dI}{dx} = Im$$
$$I(x) = I_0 e^{-mx}$$
$$N_f = \frac{I}{hn}$$

- μ = absorption coefficient, measuring the fraction of photon flux lost per unit length
- Three main phenomena for energies >1keV
 - Photoelectric effect
 - Compton scattering
 - e⁺e⁻ pair production

 $hv ≈ m_e c^2$ $hv ≈ m_e c^2$

 $hv \ll m_e c^2$

 μ (in cm⁻¹ o in cm²/g) is given by the sum of the different processes:

$$\frac{m}{r} = \frac{N_A}{A} S_{Photo} + Z \frac{N_A}{A} S_{Compton} + \frac{N_A}{A} S_{Pair}$$

 And it depends strongly on the energy of the photon

Photoelectric effect

- The energy is absorbed by an atom, which emits an electron
 - For energetic photons the inner levels are interested 1S = K (≈80% of the cross section)
 - Then the rearrangement may generate emissions of X photons or even an (Auger)
- Very strong dependence on energy and on Z

Sharp variation close to the atomic levels

Pair production

γ→ e⁺e⁻

- There is a threshold energy
 - $hv \ge 2m_ec^2=1.022MeV$
- To conserve momentum and enery, it happens with a spectator nucleus
- Approximated cross sections

$$for \ 2m_e c^2 << hn << \frac{m_e c^2}{a} Z^{-1/3}$$

$$S_{Pair} = 4Z^2 a r_e^2 \left[\frac{7}{9} \ln \left(\frac{2hn}{m_e c^2} - f(z) \right) - \frac{109}{54} \right]$$

$$for \ hn >> \frac{m_e c^2}{a} Z^{-1/3}$$

$$S_{Pair} = 4Z^2 a r_e^2 \left[\frac{7}{9} \ln \left(183Z^{-1/3} - f(z) \right) - \frac{1}{54} \right]$$

• At high energy does not depend on hv

Pair production

• So for high energy photons

$$\mathcal{M}_{Pair} = \Gamma \frac{N_A}{A} S_{Pair} = \frac{1}{I_{Pair}}$$

$$\frac{1}{I_{Pair}} \approx \frac{7}{9} 4Z(Z+1) \Im r_e^2 \Big[\ln (183Z^{-1/3}) \Big] \approx \frac{7}{9} \frac{1}{X_0}$$

$$I_{Pair} \approx \frac{9}{7} X_0 \approx 1.3 X_0$$

$$I = I_0 e^{-\frac{x}{1.3X_0}}$$

 Very similar to the energy loss of electrons for bremmstrahlung

$$E = E_0 e^{-\frac{x}{X_0}}$$

Electromagnetic shower

- Combined process of bremmstrahlung and pair production
- Will come back to that when discussing the calorimeters

Essential multi-purpose detectors

- Measurements of:
 - tracks momentum
 - From deflection in magnetic field
 - Event topology
 - Primary and secondary vertexes
 - dE/dx
 - trigger

Momentum measurement

Bending in magnetic field

- constant, orthogonal to the velocity

$$R = \frac{p}{qB}$$

if p is in GeV/c q is unit charge, B in Tesla and R in meters

$$p = p \left[\frac{GeV}{c} \right] < \frac{10^9 \times 1.6 \times 10^{-19}}{3 \times 10^8}$$
$$R = \frac{p \times \frac{10^9 \times 1.6 \times 10^{-19}}{3 \times 10^8}}{1.6 \times 10^{-19} \times B} = \frac{10}{3} \frac{p}{B}$$
$$p \gg 0.3RB$$

Momentum measurement

- p can be derived from the bending angle
- Given the error on the angle, σ(p)/p increases lineraly with p

Measuring the deflection

- To measure the bending we need two directions
 - At least two precise points before and after the magnet

$$Q \gg \frac{x_2 - x_1}{d}$$

$$S(Q) = \frac{1}{d} \sqrt{S^2(x_1) + S^2(x_2)} = \frac{\sqrt{2}}{d} S(x)$$

$$Q_{bending} = Q_1 - Q_2$$

$$S(Q_{bending}) = \sqrt{2}S(Q) = \frac{2}{d}S(x)$$

$$\frac{S(p)}{p} = \frac{p}{0.3\hat{0}Bdl}S(q) = \frac{2p}{0.3d\hat{0}Bdl}S(x)$$

Example

10

$$\frac{S(p)}{p} = \frac{p}{0.30Bdl}S(q) = \frac{2p}{0.30Bdl}S(x)$$

$$\int B \, dl = 1Tm \qquad d = 1m \qquad S(x) = 200 \, mm$$

$$\frac{S(p)}{p} = 1.3 \cdot 10^{-3} \, p \qquad \text{with } p \text{ in } GeV/c$$

$$p = 1GeV/c \rightarrow S(p)/p = 1.3 \cdot 10^{-3} \approx 0.1\%$$

$$p = 10GeV/c \rightarrow S(p)/p = 1.3 \cdot 10^{-2} \approx 1\%$$

$$p = 100GeV/c \rightarrow S(p)/p = 1.3 \cdot 10^{-1} \approx 10\%$$

Use of bending measurement

Bending typically used to measure p for

- Beams
- Fixed target experiments
- Muons
 - bending in magnetized iron
 - or even in air like in Atlas

• Need at least 3 points to make the measurement

$$s = x_{2} - \frac{x_{1} + x_{3}}{2} \times \frac{x_{3}}{2} \times \frac{x_{3}}$$

• With many points one gets to the following

$$\frac{S(\mathbf{p})}{p} = \sqrt{720/(N+4)} \frac{S(\mathbf{x})}{0.3BL^2} \times p$$

Detectors for tracking

- The requirements are clear
 - Be able to measure with high precisions the charged track positions
 - Most times in magnetic field
 - Other possible requirements
 - Minimize dead material (see later the multiple scattering)
 - Linearity if used to measure also dE/dx

Two main classes of detectors

- Gas detectors
 - Multi-wire chambers, drift chambers, limited streamer tubes, resistive plate chambers, GEMs ...
- Semiconductor detectors
 - SI strips, Pixels

Gas detectors

- Some of the energy lost by a charged particle ionizes the gas
 - Primary ionization
 - The charged particle extracts an electron from an atom
 - Secondary ionization
 - The extracted electron is energetic enough to further ionize the gas
 - W measures the ratio between the energy lost by the particle and the number of ions produced
 - For instances, a MIP produces abu0t 100 ion per cm of Ar at STP

- With an electric filed, the electrons and ions can be made drift, to be collected by the electrodes
- The signal is very small
 - 100 e = 1.6×10⁻² fC
 - Too small even for modern
 amplifier
- Need a mechanism to amplify the signal in the gas
 - High electric field, avalanche ionization

	H_2	He	Ar	CH_4
pot. ion. (eV)	15.4	24.6	15.8	13.1
W (eV)	36.6	41.3	26.4	27.3
dE/dx (keV/cm)	0.34	0.32	2.44	1.48

Wire chambers

- Basic mechanism
 - The anode (+) is a thin wire
 - The field between cathode and anode make the electron drift to the wire
 - Close to the wire, the field grows as 1/r and it becomes high enough to generate an avalanche
 - Most of the charge is generated in the last steps around the wire

Avalanche

$$dn = n \partial dx$$

$$n = n_0 e^{\partial x} \longrightarrow M = \frac{n}{n_0} = e^{\partial x}$$

$$M = e^{x_1} \quad \text{where E changes}$$

Basic mechanism

- An electron from an ionization gets accelerated in the E field and quickly reaches an energy enough to further ionize the gas
 - Max probability to ionize is around 100 eV
- Every mean free path for ionization λ_l the number of electrons doubles
 - $1/\lambda_1$ is called "first Townsend coefficient" α
 - The drift velocity of ions is very small w.r.t. that of the electrons, the ion cloud is left behind
- Gain factor M
 - At too high gains, there is a total discharge in the gas
 - Caused by photon emitted by the excited atoms that ionize elsewhere the gas
 - Gain limit depend mostly on the gas mixture

Wire chambers

 The multiplication gain from the avalanche can be approximated to

 $M = const \times e^{CV_0}$

- Grows exponentially with V₀
- The constant depends on the gas

Wire chambers

- Amplification regimes
 - A. Electric field is not enough to collect all the charge, e-ions will recombine
 - B. The charge is collected without gain (ionization chamber)
 - Gain is modest (M≤10⁵) and the collected charge is proportional to the initial signal (proportional chamber)

Ionization chambers

- NB, if we use liquid instead of gas, the density is about 10³ higher and the ionization yield is enough to give enough signal without gain
 - E.g. ≈10⁵ ions/cm in liquid argon (LAr) calorimeters

Wire chambers

- Amplification regimes
 - D. Gain is high, space charge effect generate saturation (limited proportionality)
 - E. The avalanche propagates all along the wire because of the emitted photons (Geiger)
 - F. Complete breakdown (discharge even without particle crossing)

Wire chambers

Choice of regime

- Proportional
 - Allows to measure dE/dx
 - Small signal
- Limited proportionality
 - Larger signal, easier electronics readout
- Geiger-Müller
 - Very large signal
 - Slow, large recovery times

Choice of gas

- Principal component is a noble gas (Ar)
 - Easy to generate avalanches, not many degree of freedom to absorb energy
 - Photons from recombination can extract electron from the electrodes and generate discharges
- A polyatomic gas is added to absorb the photons (quencher)
 - Typically hydrocarbons CH_4 , C_3H_8 , C_4H_{10} but also CO_2
 - $\approx 20\%$ of quencher is enough to provide M $\approx 10^5$
- Electrons can be extracted on the cathode by the impacting ions
 - A small fraction of electronegative gasses can be added to reduce the mean free path of electron capture (0.4% CF₃Br, freon)
 - risk to lose efficiency for large drift paths
 - Needed to go into limited-proportionality regime
- Magic mixture : 70%Ar, 29.6% Isobutane, 0.4% Freon

Drift of charges in E field

- $v_D = \mu E$ (μ = mobility)
 - Typical situation of motion with viscous friction
- For ions

$$v_D = \mathcal{M}_+ E = const \cdot \frac{E}{p} \left(\Longrightarrow \mathcal{M}_+ \propto \frac{1}{p} \right)$$

The drift velocity scales like E/p (reduced electric field)

in Ar at STP, with E=1kV/cm

- $v_D = 1.7 \times 1000 = 1.7$ cm/ms
- (λ = mean free path between scatterings)

gas (STP)	λ [cm]	µ [cm/s / V/cm]
H_2	1.8 10-5	13.0
He	2.8 10-5	10.2
Ar	1 10 ⁻⁵	1.7
O ₂	1 10 ⁻⁵	2.2

Drift of charges in E field

- <u>Electrons</u> gain much more energy between scatterings
 - Their energy can get similar or larger to the thermal energy (kT≈0.025eV)
 - The e-gas scattering cross section varies strongly with energy (Ramsauer effect)

Drift of charges in E field

- We can still write vD=µE but the mobility is not anymore only proportional to 1/p
 - It is also very sensitive to the gas mixture as the cross section vary a lot
 - Drift velocity can also decrease with increasing E field

32

Drift of charges in E field

- For some gas mixture the drift velocity saturates
 - Including the "magical" mixture
 - Typical values 5 cm/µs (50µm/ns, 200ns for cm)

 Can be a very useful feature, v_D does not depend anymore on the details of the E field

Diffusion

1

I.

I.

I.

1

1

1

н

L

- Another important effect is the diffusion
 - Growth in size of the cloud of drifting charges

$$\frac{dN}{dx} = \frac{N_0}{\sqrt{4\rho Dt}} e^{\frac{x^2}{4Dt}}$$
$$S = \sqrt{2Dt}$$

 The distribution is described by a coefficeint D, and grows as √(Dt)

• There is a correlation between D and mobility $D/m \mu k_B T/e$

Effects of B field on drift

- Described by the "Langevin" equation $m\frac{d\vec{v}}{dt} = -\frac{e}{m}\vec{v} - e\left(\vec{E} + \vec{v} \quad \vec{B}\right) + \vec{h}(t)$
- The solution is

$$\vec{v}_{D} = -\frac{m}{1 + w^{2}t^{2}} \left[\vec{E} + \frac{\vec{E} \times \vec{B}}{B} wt + \frac{\vec{E} \cdot \vec{B}}{B^{2}} \vec{B} w^{2}t^{2} \right]$$

- Where τ is the mean free time between collision and $\omega\text{=}eB/m$

Effects of B field on drift

Effects of B field on drift

condition E || B

$$\vec{v}_{D} = -\frac{m}{1 + w^{2}t^{2}} \left[\vec{E} + \frac{\vec{E} \times \vec{B}}{B} wt + \frac{\vec{E} \cdot \vec{B}}{B^{2}} \vec{B} w^{2}t^{2} \right]$$
$$v_{D\parallel} = \frac{m}{1 + w^{2}t^{2}} \left(E + 0 + w^{2}t^{2}E \right) = \frac{mE}{1 + w^{2}t^{2}} \left(1 + w^{2}t^{2} \right) = mE$$

- v_D does not change
- But the transverse diffusions is limited by B

Wire chambers signal

• In the avalanche, most of the charge is generated in the latest λ_l before the wire

- For wires of 20µm mostly within 100µm
- The signal is generated by the work the E field does to move the charges
 - Cylindrical detector of length I, avalanche of charge Q generated at radius r

$$V^{-} = +\frac{Q}{2\rho e_0 l} \ln\left(\frac{a}{r}\right)$$
$$V^{+} = -\frac{Q}{2\rho e_0 l} \ln\left(\frac{b}{r}\right)$$
$$V^{+} + V^{-} = -\frac{Q}{2\rho e_0 l} \ln\left(\frac{b}{a}\right) = -\frac{Q}{C}$$

• Electrons are already very close to collection, most of the work is done to drift back the ions

- The total time to integrate the signal is typically long
 - Depends on the drift velocity of ions and on the distance anode-cathode
 - Typically 100µs ÷ 1ms
 - μ⁺=1.7 cm²s⁻¹V⁻¹atm⁻¹ (mobility of ions)[,] V₀=2kV, a=20μm, b=0.5cm, l=1m, p=1Atm
 - T ≈200µs
- But the leading edge of the signal is very fast
 - Time to collect ½ charge

$$t_{\frac{1}{2}} \gg \frac{a}{b}T$$

 With previous values one gets t_{1/2}=800ns

MWPC

Multi Wire Proportional Chambers

- Charpack 1968 (Nobel Prize 1992)
- Set of parallel anode wires tightly spaced, between parallel cathodes
- E field essentially uniform in most of the detector
 - Drift field to collect charges
- Becomes very intense close to the anode
 - avalanche

Distance from centre of wire

• If wires are readout

$$S_x = \frac{s}{\sqrt{12}}$$

 $S_x = \frac{2}{\sqrt{12}} = 0.6mm$ for 2 mm wire spacing

- For non perpendicular tracks more wires can give signal
- The resolution does not change

MWPC resolution

- Cathodes can be readout too
 - Signal induced on more adjacent "strips" (or groups of cathode wires)
 - Position along the anode wire can be reconstructed with a resolution ≈100-200µm
 - Across the wires nothing changes, the avalanche position is ON the wire
 - Sometimes both cathodes with orthogonal strips are readout
 - Anode at HV, no decoupling capacitors
 - To get high resolution on both coordinates one can use sets of consecutive MWPC with perpendicular anode directions

MWPC resolution

• Notice

 Statistical fluctuations of the primary ionization, and emission of δ rays can influence the resolution, in particular for tracks not orthogonal to the chamber

- Drift chamber are wire chamber with a long drift path
- The track position is measured by the drift time in a possibly uniform E field
 - Need an external system to give the "start" to the time measurement
 - The "stop" is generated by the signal on the wire

Typical drift velocity are 50µm/ns (with magical mixture)

 Need order of ns resolutions to get space resolutions around 100µm

Drift chambers resolution

Three important effects

- Electronic noise
- Longitudinal diffusion of the charge
 - Proportional to \sqrt{t} and so to \sqrt{x} for constant drift velocity
- Primary ionization statistics
 - Drift path of primary clusters can be different

Drift chambers Often used as central detectors in colliders B parallel to • wires so В orhtogonal to E • Time (ns • Typical drift cell • Time-space relationshiop Ò Notice the left-right ambiguity Position (mm)

Examples of drift chmbers

Examples of drift chmbers

- Drift chambers of the barrel muon detector of CM
 - Homogeneous drift field
 - Linear space/time relationship using careful filed shaping
 - Easier to use in fast trigger
 - Aluminium structure
 - Relatively heavy, not a problem for a muon detector
 - 50µm anode wire
 - Gas mixture 85% Ar 15% CO₂
 - Non flammable
 - Maximum drift time ≈400ns
 - Space resolution ≈ 100µm

Time Projection Chambers

Time Projection Chamber (TPC)

- Long drift path
 - z readout with drift time
- At the extremity a MWPC or similar (GEM)
 - Reading x,y coordinates

Time Projection Chambers

- Advantages
 - A true tridimensional readout is possible helps pattern recognition
 - Transverse diffusion limited by B, improves x,y, resolution
 - Very little material

- Disadvantages
 - Long drift paths(10÷100 µs)
 - Sensitive to electronegative impurities
 - Not well suited to very high bunch crossing rates
The TPC of ALICE at LHC

The TPC of ALICE at LHC

10

P (GeV/c)

- In the TPC the gain is typically small
 - Long drift times, no electronegative gasses possible
 - Work in proportional mode
 - Large number of samples per track
- Very well suited to measure dE/dx
 - To perform PID

- Gas Electron Multiplier
 - Kapton foil, metallized on both sides with micro-holes
 - Using lithographic techniques
 - HV between the two layers generates an amplification region
 - 400-500V on 50µm
 - It is possible to have multiple layers of GEMs with reduced gain/layer
 - Reduced risck of discharge

Example with multi-layer configuration

Advantages

- very good space resolution
 - Down to 30 um
- Very good separation of adjacent tracks
- Ability to sustain high rates
 - Ion are readily collected by nearby electrodes

Limited Streamer Tubes

- Mechanically a multiwire chamber
 - 100 µm thick anode wire
 - Typically 1 cm spacing
 - Structure made by plastic, painted by a resistive material to provide cathodes
 - HV 4.5 \div 5kV (at STP)
 - Need high field as the wire is thick
 - Very economical construction, suited to cover very large surfaces
 - Muon detectors, cosmic rays large area detectors

- Work in limited streamer mode:
 - The E field is large in a big region of space, a plasma filament is generated by the avalanche
 - Lots of photons generated, need strongly quenching from the gas
 - Due to the resistive cathodes, the local E field close to the streamer gets reduced, and the streamer ends

Limited Streamer Tubes

- Large signal
 - ≈ 30pC
- Can be readout by external strips
 - Graphite cathodes are transparent to the fast signals
 - Resolution is
 - Wires pitch/√12 across wires
 - Strip pitch/√12 if digital readout, down to 500µm if analog (centroid) readout

Resistive Plates Chambers

- Flat detectors with large E field between planes
 - Avalanche in the whole space between the planes, quenching concept similar to LST
 - Large signal, readout through external strips/pads
 - No drift, very fast (ns resolution)

Resistive Plates Chambers

- Can be made with bachelite (cheap) or resistive glass
 HV = 8-10kV
- No wire structure, readout in x-y coordinate with the same resolution
- Very high resistivity, cannot sustain very high particle fluxes

Resistive Plates Chambers

- Fast: used by both Atlas and CMS as detectors for muon trigger
 - Only trigger detector in Atlas, complementing other chambers in CMS
- Notice, in LHC the RPC are used in "avalanche" mode and not in "streamer mode"
 - Reduced gain (10⁶ w.r.t.10⁸)
 - Very complex gas mixture to provide high quenching
 - Higher capability to stand particle fluxes (1kHz/cm² w.r.t 10-100Hz/cms²)

SILICON RETECTORS

What are Si detectors?

- Semiconductor (Solid State) detector
 - Essentially, a ionization chamber that collect ionization produced in a solid detector
 - (will discuss later some case where there is also amplification)
 - Need to have a way to collect charge generated inside a solid
- Generally used as position detectors with high resolution

Advantages and disadvantages

advantages

- High density w.r.t other position detectors (gas chambers)
 - Smaller diffusion which translates in better resolution
- Low ionization energy
 - Few eV to generate a e-h pair, effective in translating energy loss in signal
- Large industrial experience
 - Can use frontier technologies developed for microchips
- Radiation hard

disadvantages

- High density
 - Higher multiple scattering
- No internal gain
 - With exceptions

Requirements for solid state detectors

- Signal to noise ratio (SNR) has to be high enough
 - High signal
 - Low ionization energy \rightarrow small band gap
 - Low noise
 - Small number on intrinsic charge carrier \rightarrow large band gap

Requirements for solid state detectors

- Diamond, ideal material, band gap E_g ≈ 6eV
 - Turn out to be expensive (even artificial diamond)
 - Used where extreme radiation hardness is needed
 - "a diamond is forever"
 - Can stand $\approx 10^{16} \text{p/cm}^2$
 - Beam condition monitors at LHC
 - Large detectors being designed, to measure with high precision the luminosity at high intensities of LHC
 - Atlas Diamond Beam Monitor
 - CMS Pixel Luminosity Telescope

Weigh equivalent to this diamond (76 carats, 1 carat = 200mg)

Requirements for solid state detectors

- What if we use intrinsic silicon?
 - Ionization energy I₀=3.62eV
 - dE/dx = 3.87 MeV/cm
 - Density of carriers at T=300K: n_i=1.45×10¹⁰/cm³
- Take a detector with
 - Thickness d=300µm
 - Surface A=100µm×6cm=0.06cm²

Signal
$$\frac{dE/dx \cdot d}{I_0} = \frac{3.87 \cdot 10^6 eV/cm \cdot 0.03 cm}{3.62 eV} \approx 3.2 \cdot 10^4 e^- h^+ pairs$$

Noise $n_i \times d \times A = 1.45 \times 10^{10} cm^{-3} \times 0.03 cm \times 0.06 cm^2 \gg 2.61 \times 10^7 e^- h^+ pairs$

Noise is 3 order of magnitude larger than signal

- Need to remove intrinsic charge carriers
- p-n junction with large depleted volume

p-n junction

- Two semiconductors, doped p and n are put in contact
- Because of the gradient of the carrier densities, electrons diffuse to P zone, holes to N zone until the electrostatic field that is created stops the process
- Close to the junction there is now a region empty of carriers (depletion layer)

p-n junction

pn junction scheme

acceptor and donator concentration

space charge density

- ⊖ ... acceptor + ... empty hole
- ⊕ ... donator ... conduction electron

concentration of free charge carriers

p-n junction

p-n junction reversely polarized

- By applying an external bias voltage V_N > V_P electron and holes move away from the depleted region making it bigger
- The current through the junction is small, the **depletion region can be used as a detector**

- Typical Si detector are largely asymmetric in term of dopant concentration
- The depletion region is asymmetric
- Its width W can be shown to be

$$N_A >> N_D \bowtie x_P << x_N$$
$$W \gg x_N \gg \sqrt{\frac{2e|V|}{qN_D}}$$

depletion voltage and leakage current

Depletion voltage

- Minimum voltage for which the device is fully depleted
- Normally one works slightly over-depleted

$$V_{depletion} = \frac{qN_DW^2}{2e}$$

• Low doping of the bulk \rightarrow High resistivity \rightarrow Low depletion voltage

Leakage current

- Dominated by the e/h pairs generated thermally
- They get separated by the E field and move to the electrodes
- It depends on the quality of the silicon, on the process and on the damages from radiation

Si strip detector

- Microstrip Si detector
 - A MIP releases 24000 e/h pair for a Si thickness of 300µ
 - The pairs in the the depletion region drift in the E field creating the signal
 - The signal is small ≈ 4fC and need to be amplified
 - An amplifier is connected to each strip
 - From the signal on the strips one measures the position of the particle
 - Similar to a MWPC, but no internal amplification
 - MWPC: 100e⁻ ×10⁵=10⁷e⁻

Si strips signal

- Charge released in 300µm
 - 32500e⁻ ≈ 5.2fC (mean)
 - 24000e⁻ ≈ 3.8fC (most probable)

Collection time and diffusion

$$t = \frac{d}{v} = \frac{d}{mE} = \frac{d^2}{mV}$$

$$t_e = 9ns$$
 fast
 $t_h = 27ns$

• While drifting the charge diffuses

$$S_D = \sqrt{2Dt}$$
$$D = \frac{kT}{q}m$$

Typical value σ_D=6µm

Si strips sensor

Sensor Design Baseline

Typical parameters

- Strip pitch 25-250µ
- Thickness 300µ
- DC or AC coupling of the strips
- P+n (n doped bulk)
 - N_a ≈ 10¹⁵ cm⁻³
 - N_d ≈ 10¹² cm⁻³
 - ρ > 2kΩ
- V 100V (E=3kV/cm)

Si strips resolution

Binary readout

- Position = centre of the strip
- Resolution
 - If strip pitch = p

Si strips resolution

Analog readout

 Position = centroid of the signal

$$x = \frac{h_1 x_1 + h_2 x_2}{h_1 + h_2}$$

Resolution

$$S_X \gg \frac{p}{SNR}$$

• σ < 10µm

Si strips resolution

 δ rays can affect the position reconstruction

Shift of the centroid by few µm

• Charge diffusion can instead help to increase the charge sharing between strip, better analogue resolution

Si radiation damage

- Lattice damage (Non Ionizing Energy Loss)
 - Decrease of charge collection efficiency
 - Changes in depletion voltage
 - Larger V, not full depletion
 - Increase of leakage current
- Surface damage (Ionizing Energy Loss)
 - Trapping of charges is the SiO₂ layers
 - Noise, breakdown

Deterioration in Q collection

Si radiation damage

 $a = \frac{\mathsf{D}I}{V \cdot \mathsf{F}_{eq}}$

Damage parameter α

- Change of leakage current per unit of volume and fluence
 - Constant over many order of magnitudes of fluence

- 3 barrel layers, 2 forward wheels
 - Outer diameter 25cm
 - Length ≈ 1m
 - Resolution ≈ 15µ for normal tracks
 - $\approx 3\% X_0$ per layer
 - ≈ 2.5m² of Si planes

- 10 barrel layers and 2×9 end cap layers
- 223m² of Si sensors
 - 600 thin (300µ) sensors,
 20000 thick (500µ) sensors
- 10 millions channels

Pixel detectors

- In case of bi-dimensional x-y readout, high hit density generates ghost hits
- Pixel detectors solve this ambiguity

ghosts

Advantages

- Small area \rightarrow small capacity \rightarrow large SNR
- Small volume small dark current/channel

Disadvantages

- Large number of channels (N² compared to strip readout)
- Large number of electrical connections and amplifiers
 - Big power dissipation

Bump-bonding to electronics

- Expensive
- Limit pixel size
- Increases material budget (X₀)

Pixel detectors

Largely used in the central regions of the LHC experiments

- Very high density of particles close to the interaction point
- In 2012, pile-up (number of overlapping event) up to 35 average

- 80 million channels
- 1.7 m²

Developments: monolithic pixel detectors

Is it possible to integrate on the same Si the sensor and its electronics?

- Detectors → need large signals, large depletion regions → high resistivity (low doping)
- Electronics → large integration in small spaces →small junctions → low resistivity (high doping)

MAPS SOI (Silicon On Insulator)

- Commercial process, electronics separated from the wafer by a small (200nm) layer of SiO₂
- High-resistive substrate, holes through the oxide, P⁺ implants → apply depletion V and collect charges
- Problems
 - Coupling between electronics and depletion voltage
 - Sensitive to ionizing radiation (charge trapped in the SiO₂ layers)

3D detectors

Bulk n type 200 µm

- Same Si thickness of the 2D detectors
 - Same signal
- Carriers move laterally
 - Low bias V and fast collection time if electrodes are close
 - Detector thickness becomes an independent parameter
- More complex fabrication process

Candidate for the new inner barrel layer of Atlas pixel detector
Multiple scattering

- Many choices of tracking detectors with resolution from ≈1mm to ≤ 10µm
 - Is it all we need to take into account?

• No

 Even at infinite detector resolution, the momentum determination is limited by the effect of scattering of the particle in the detector

Multiple scattering

- The contribution of the MS to $\sigma(p)/p$ is a constant term, does not depend on p
 - So it limits the resolution at low p

р

• Is very important when bending is in iron (muon detectors)

Examples

In Iron

In gas

Air:
$$X_0 \approx 300m$$
 B=1.8T
 $\frac{S(p)}{p} \Big|^{MS} = 1.4 \cdot 10^{-3} \frac{1}{\sqrt{L[m]}}$
 $L = 1m \rightarrow \frac{S(p)}{p} \Big|^{MS} = 0.14\%$

Tracking resolution summary

- In general the resolution of a tracking detector is the sum of two terms
 - For example, for the central drift chamber of ZEUS it was $\frac{S(p)}{p} = 0.005 p \oplus 0.007$
- Depending on the momentum range, one can optimize
 - For low momentum, optimize the radiation length
 - E.g. Babar used helium as noble gas
 - At high momenta the term proportional to p dominates
 - Need to increase B, lever arm and resolution
 - E.g. CMS is using a full-silicon central detector, certainly not optimized for dead material

