

$\mathbf{H} \rightarrow \mathbf{WW} \rightarrow 2\ell 2\nu$

Analysis Presentation

Daniel Meister

01/24/2013

01/24/2013 — H \rightarrow WW \rightarrow $2\ell 2\nu$ — PhD project presentation for CHIPP Winter School 2013

ersonal Contributions

Introduction & Motivation

• Search for the Higgs Boson

- ightarrow last "missing piece" of the Standard Model, theoretically predicted almost 50 years ago
- ightarrow evidence for the existence of scalar fields in nature
- ightarrow understand how symmetry breaking works for electroweak interaction
- ightarrow hints and/or exclusions of different models of BSM physics

• CMS/ATLAS discovered a boson with mpprox 125 GeV in 2012

→ http://arxiv.org/pdf/1207.7235.pdf

• Search in the $H \rightarrow WW$ channel

 \rightarrow important channel e.g. to measure $\frac{H\rightarrow WW}{H\rightarrow ZZ}$ and properties

Measurement of properties (mass / spin / parity)

 \rightarrow is it really a SM Higgs?

Analysis Description

- HWW signal
 - Two high $p_{\rm T}$ leptons (e, μ)
 - Large missing E_T
 - No resonance peak
- Backgrounds

	Rejection	Estimation
W+jets	lepton ID/ISO	fake rate method
Z/ γ^*	mass / missing E_T	"normalize" to Z-mass
tt/tW	jet bin / b-veto	b-tag efficiency
WZ/ZZ/W γ	mass / m_T / no extra lepton	MC
WW	kinematic shape	normalize to high mass

Personal contribution: Trigger efficiences

ightarrow triggers are not simulated so we need to correct MC samples

Analysis Description

Event Categories

ightarrow sensitive to different production modes / different dominating backgrounds

- Different lepton flavour pairs: **DF** (e μ) and **SF** (ee/ $\mu\mu$)
- Exclusive jet bins (0, 1, and 2 jet)

Analysis Approach

- Template fit to the kinematic distributions
- Personal contribution: Look at different mass variables

 \rightarrow try to get better resolution for low Higgs masses

For low-mass Higgs hypotheses ($m_{\rm H} < 200 \, {\rm GeV}$)

- WW-dominated control region in $m_{\ell\ell} > 100 \, \text{GeV}$
- Subtract contaminations from other backgrounds
- Extrapolate to signal region using ratio obtained from MC
- Good modelling of the kinematic distribution of WW process is crucial
- Personal contribution: WW Monte Carlo studies/validation

 \rightarrow compare WW MC samples from different generators / parton showers

ETH Institute for Particle Physics

 $\mathbf{\Delta}\phi_{\ell\ell}$ – azimuthal angle difference between the two leptons

More plots/numbers at: https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig12042TWiki

- obs./exp. significance: $3.1\sigma/4.1\sigma$
- Best fit value $rac{\sigma}{\sigma_{
 m SM}}=0.74\pm0.25$

Outlook

- Improved analysis with more data
- Measurement of properties (spin/parity)

More plots/numbers at: https://twiki.cern.ch/twiki/bin/view/CMSPublic/Hig12042TWiki

Backup

mT

01/24/2013 — H ightarrow WW ightarrow 2 ℓ 2u — PhD project presentation for CHIPP Winter School 2013

$e\mu$ channel – 0-jet bin

data - background after S+B fit

unrolled histogram after S+B fit

$e\mu$ channel – 1-jet bin

data - background after S+B fit

unrolled histogram after S+B fit

