Total pp cross section measurements at $2,7,8$ and 57 TeV

A) One (out of several) theoretical framework
B) Topologies of events in $\sigma_{\text {tot }}$
C) Direct measurement of $\sigma_{\text {inel }}$:

1) cosmic-ray experiments
2) collider experiments
D) The art of elastic scattering

E) Results: $\sigma_{\mathrm{Tot}} \sigma_{\mathrm{SD}}, \sigma_{\mathrm{DD}}$
F) Implication of the new results

Let's set the scale...

 The total cross section isdominated by soft processes. The total cross section is
dominated by soft processes.

If you were to eliminate every process below the first line (even the Higgs, the first AND the second one..!) the value of the total cross section would be the same

If $\mathrm{R}_{1}=\mathrm{R}_{2}=10^{-13} \mathrm{~cm}$ (one fermi)
$\Rightarrow \sigma \sim 10^{-25} \mathrm{~cm}^{2}=100 \mathrm{mb}$
proton - (anti)proton cross sections

Scattering of composite particles

The cross section between composite particles has a much more complex dependence from the center-of-mass energy, and it's not calculable.

Let's consider a proton.
It contains:
-valence quarks
-sea quarks
-gluons

These define the particle to be a proton Mostly SU(3) color symmetric, common to protons and anti-protons (almost true..)

What part is controlling the total cross section?

At low energy σ is different: valence quarks need to be important here

At high energy σ is the same: only sea quarks and gluons can contribute

Theoretical framework: Regge Theory

"Regge Theory", and derivations, is the language used to describe the total cross sections of hadron-hadron scattering.
The value of the total cross section depends on the exchanges of many particles.

1) Particles, when plotted in the mass (t) spin plane, form lines, called trajectories.
2) You cannot exchange a single particle, you exchange all the particles on the trajectory.

Plot of spins of families of particles against their squared masses:

Contribution of each trajectory to σ

All known particles lie on trajectories such as:

$$
\alpha(\mathrm{t}) \approx \alpha+\alpha \square \mathrm{t}
$$

Each trajectory contributes to σ according to.
$\sigma_{\text {тот }}(\mathrm{s})=\operatorname{Im} \mathrm{A}(\mathrm{s}, \mathrm{t}=0)=\mathrm{s}^{\alpha-1}$

And therefore the prediction for the total cross section is: α smaller than $1!!$

$$
\sigma_{\mathrm{TOT}}(\mathrm{~s})=\mathrm{s}^{\alpha(0)-1}=\mathrm{s}^{-1 / 2}
$$

So, it should decrease with s.
However....

Overview of hadronic cross sections

The cross section is raising at high energy: every process requires a trajectory with the same positive exponent: $\mathrm{s}^{0.08} \ldots .$. something is clearly missing

The advent of the Pomeron

Intercept larger than one!
A trajectory without known particles

Intercept larger than one

V. Gribov introduced, within Regge theory, a vacuum pole (Pomeron with $\alpha(0) \sim 1.1)$ in order to have a constant (or rising) total cross section.

The exchanged particles (poles) on Reggeon an pion trajectories offer guidance on how to write the scattering amplitude $\mathrm{A}(\mathrm{s})$

There is little spectroscopic guidance from the pomeron trajectory, as it has no particles.

Pomerons exchange contribute as:
$\sigma_{\text {тот }}(\mathrm{s})=\operatorname{Im} \mathrm{A}(\mathrm{s}, \mathrm{t}=0) \sim \mathrm{s}^{\varepsilon}$ (simple pole)
$\sigma_{\text {TOT }}(\mathrm{s})=\operatorname{Im} \mathrm{A}(\mathrm{s}, \mathrm{t}=0) \sim \ln (\mathrm{s})$ (double pole)
$\sigma_{\text {Tот }}(\mathrm{s})=\operatorname{Im} \mathrm{A}(\mathrm{s}, \mathrm{t}=0) \sim \ln ^{2}(\mathrm{~s})$ (triple pole)

The COMPETE collaboration has scanned a large selection of models compared with all available experimental data points and has produced a comprehensive set of predictions.

COMPETE Collaboration:

COMPETE Collaboration fits all available hadronic data and predicts at LHC:

$$
\sigma_{\text {tot }}=111.5 \pm 1.2_{-2.1}^{+4.1} \mathrm{mb}
$$

$$
\sigma_{\text {tot }} \operatorname{COMPETE}(7 \mathrm{TeV})=98 \pm 5 \mathrm{mb}
$$

$$
\sigma_{\text {tot }}{ }^{\text {COMPETE }}(8 \mathrm{TeV})=101 \pm 5
$$

Regge Theory: master formula pre-LHC

 Three large families of parametrization:$$
\begin{aligned}
& \sigma_{\mathrm{TOT}}(\mathrm{~s})=\mathrm{c}+\alpha \mathrm{s}^{-0.5}+\beta \mathrm{s}^{0.08} \\
& \sigma_{\mathrm{TOT}}(\mathrm{~s})=\mathrm{c}+\alpha \mathrm{s}^{-0.5}+\gamma \ln ^{2}(\mathrm{~s}) \\
& \text { (most favorite COMPETE prediction) }
\end{aligned}
$$

$$
\sigma_{\mathrm{TOT}}(\mathrm{~s})=\mathrm{c}+\alpha \mathrm{s}^{-0.5}+\beta \ln (\mathrm{s})+\gamma \ln ^{2}(\mathrm{~s})
$$

The Rise of the gluons

As measured at HERA, the gluon PDFs experience a very strong rise as the energy increases.

If the pomeron is related to "gluons", it's reasonable to assume a modification of the pomeron term: the cross section will start rising more rapidly at higher energy.

2-pomeron formula for higher energy

In a simple model (DL, Cudel et al.) an additional term called "hardPomeron" can be introduced in $\sigma_{\text {тот }}$ to account for this effect. It gives a steeper energy behavior:

$$
\sigma_{\mathrm{TOT}}(\mathrm{~s})=\alpha \mathrm{s}^{-0.5}+\beta \mathrm{s}^{0.067}+\gamma \mathrm{s}^{0.45}(2 \text { simple poles })
$$

$$
\begin{aligned}
& \text { DL for LHC: } \\
& \sigma_{\mathrm{TOT}}(\sqrt{ } \mathrm{~V}=7)=100+-25 \mathrm{mb} \\
& \sigma_{\mathrm{TOT}}(\sqrt{ } \mathrm{~V}=14)=125+-25 \mathrm{mb}
\end{aligned}
$$

At small t , elastic scattering is governed by an exponential law.

Elastic scattering probes the proton at a distance

$$
b \sim 1 / \sqrt{|t|}
$$

Different models predicts different t spectrum and contributions

The proton is made of different layers, each contributing differently to the cross section
(3) $\mathrm{t}>\sim 4 \mathrm{GeV}^{2}$

Elastic scattering on valence quark $\sim 0.2 \mathrm{fm}$

Monte Carlo models: RFT vs. pQCD

Topologies of events in $\sigma_{\text {tot }}$

TOTAL cross section means measuring everything...
We need to measure every kind of events, in the full rapidity range:

Elastic: two-particle final state, very low p_{t}, at very high rapidity.
\rightarrow Very difficult, needs dedicated detectors near the beam

Diffractive: Single, Double, Central diffractions, gaps everywhere.
\rightarrow Quite difficult, some events have very small mass, difficult to distinguish diffraction from standard QCD.

Everything else: jets, multi-particles, Higgs....
\rightarrow Easy

The very difficult part: elastic scattering

Need dedicated experiments able to detect scattered particles very closed to the beam line: $\mathrm{pp} \rightarrow \mathrm{pp}$

TOTEM @ LHC

Roman Pot and silicon detector

The difficult part: pomeron exchange

Pomeron exchange is a synonym of colour singlet exchange (diffraction)

Many different

 topologies to measureImportance of very low mass events

Double
Pomeron
(Photon)
Exchange

Multi
Pomeron
Exchange

The easy part: everything else

The non-diffractive inelastic events are usually not difficult to detect:

Direct measurement of parts of σ_{TOT} : cosmic-ray and collider experiments

In cosmic-ray experiments (AUGER just completed its analysis), the shower is seen from below. Using models, the value of $\sigma_{\text {inel }}(p-a i r)$ is inferred, and then using a technique based on the Glauber method, $\sigma_{\text {inel }}(\mathrm{pp})$ is evaluated.

In collider experiments (currently ALICE, ATLAS, CMS, and TOTEM @ LHC), the detector covers a part of the possible rapidity space. The measurement is performed in that range, and then it might be extrapolated to $\sigma_{\text {inel }}$.

Cosmic-ray shower

the method to measure $\sigma_{\text {inel }}$

- The path before interaction, $X_{1,}$ is a function of the p-air cross section.
- The experiments measure the position of the maximum of the shower, Xmax
- Use MC models to related $X_{\max }$ to X_{1}, and then σ (p-air)

$$
\frac{\mathrm{d} p}{\mathrm{~d} X_{1}}=\frac{1}{\lambda_{\mathrm{int}}} \mathrm{e}^{-X_{1} / \lambda_{\mathrm{int}}}
$$

Difficulties:

- mass composition
- fluctuations in shower development $\operatorname{RMS}\left(X_{1}\right) \sim \operatorname{RMS}\left(X_{\max }-X_{1}\right)$ \Rightarrow model needed for correction

Auger: the measurement

The position of the air shower maximum, at fixed energy, $X_{\text {max, }}$ is sensitive to the cross section

The Pierre Auger Collaboration, Phys. Rev. Lett. 109, 062002 (2012)

Auger: p-air cross section

The Glauber model

The p-air cross section is interpreted as the convolution of effects due to many nucleons

Auger: pp cross section

The Pierre Auger Collaboration, Phys. Rev. Lett. 109, 062002 (2012)

Collider experiments:

How to use pile-up events to your advantage

Pileup Analysis Technique

The probability of having $\mathrm{n}_{\text {pileup }}$ depends only on the visible $\sigma(p p)$ cross section:

$$
P(n)=\frac{(L \cdot \sigma)^{n}}{n!} e^{-L \cdot \sigma}
$$

If we count the number of pile-up events as a function of luminosity L, we can measure $\sigma_{\text {vis }}(p p)$.

For an accurate measurement we need a large luminosity interval.

Probability of n extra vertices depends upon σ

$$
P\left(n_{\text {vertexes }}\right)=\frac{(L)^{n_{\text {vertexes }}} e^{(L)}}{n_{\text {vertexes }}!}
$$

$$
\text { Fit to } \sigma
$$

Collider experiments:

measure $\sigma_{\text {inel }}$ by counting number of events

The total inelastic proton-proton cross section is obtained by measuring the number of times opposite beams of protons hit each other and leave some energy in the most Hadronic Forward calorimeter (HF)

$\mathrm{E}_{\mathrm{HF}}>5 \mathrm{GeV}$ is converted, using MC correction, into $\mathrm{M}_{\mathrm{x}}>15 \mathrm{GeV}$ $\left(\mathrm{M}_{\mathrm{x}}^{2} / \mathrm{s}=\xi>5 * 10^{-6}\right)$

Hadronic Forward Activity: analysis technique

1) Count the number of times (i.e. the luminosity, $L d t$) in which there could have been scattering, for example using beam monitors that signal the presence of both beams.
2) Measure the number of times there was a scattering, for example measuring a minimum energy deposition in the detector
3) Correct for detection efficiency ε
4) Correct for the possibility of having more than one scattering (pileup) Fpu.

$$
\text { Inel }=\frac{N_{E v e n t} F_{p u}}{L d t} \quad \begin{aligned}
& \text { This method works only at } \\
& \text { low luminosity }
\end{aligned}
$$

Coverage of pileup and HF measurements

Very small masses,
"invisible" part What is escaping?

Rapidity coverage and low mass states

The difficult part of the measurement is the detection of low mass states $\left(M_{x}\right)$. A given mass M_{x} covers an interval of rapidity:

$\xi=\mathrm{M}_{\mathrm{x}}{ }^{2} / \mathrm{s}$ characterizes the reach of a given measurement.

$\sigma_{\text {Tот }}$ measured via optical theorem

Optical theorem: elastic scattering at $\mathrm{t}=0 \rightarrow \sigma_{\mathrm{TOT}} \quad d \sigma_{\mathrm{EL}} / d t=A e^{-8|t|}$
Optical Theorem:

$$
\sigma_{T O T}^{2}=\left.\frac{16 \pi(\mathrm{~h} c)^{2}}{1+\rho^{2}} \cdot \frac{d \sigma_{E L}}{d t}\right|_{t=0}
$$

Using luminosity from CMS: $\frac{d \sigma_{E L}}{d t}=\frac{1}{L} \cdot \frac{d N_{E L}}{d t}$

ρ from COMPETE fit:

$$
\rho=0.14_{-0.08}^{+0.01} \quad \rho=\left.\operatorname{Ref}_{\mathrm{el}}\right|_{\mathrm{t}=0} /\left.\operatorname{Imf}_{\mathrm{el}}\right|_{\mathrm{t}=0}
$$

$$
\sigma_{\text {TOT }}=\sqrt{\left.19.20 \mathrm{mb} \mathrm{GeV}^{2} \cdot \frac{d \sigma_{E L}}{d t}\right|_{t=0}}
$$

Results

Three basic type of results:

1) Elastic scattering
2) Comparison of the total value of the cross section between data and parameterizations as a function of the center-of-mass energy
3) Comparison of the value of parts of the cross section (elastic, diffractive, soft) with hadronic models (for example MCs) of pp interactions.

Using the optical theorem:

And then: $\sigma_{\text {inel }}=\sigma_{\mathrm{TOT}}-\sigma_{\mathrm{el}}$
$\sigma_{\text {inel }}=73.1 \mathrm{mb} \pm 1.3 \mathrm{mb}$

LISHEP 18 March 2013
N. Cartiglia, INFN Turin.

35

Compilation of inelastic pp cross section

$\sigma_{\text {inel }}$ for specific final states

LHC experiments have measured the cross section for specific final states.

These results are really useful to distinguish the importance of the various processes that are making up $\sigma_{\text {tot }}$

Very few models predict concurrently the correct values of σ for specific final states and $\sigma_{\text {Tot }}$

Summary and outlook - I

The study of the total cross section and its components is very active.
A large set of new results have been presented in the last year:
$\cdot \sigma_{\text {Tot }}(7 \mathrm{TeV}), \sigma_{\mathrm{El}}(7 \mathrm{TeV}), \sigma_{\mathrm{Ine}}(7 \mathrm{TeV}), \sigma_{\mathrm{SD}}(7 \mathrm{TeV}), \sigma_{\mathrm{DD}}(7 \mathrm{TeV})$
${ }^{-} \sigma_{\text {Tot }}(8 \mathrm{TeV}), \sigma_{\mathrm{El}}(8 \mathrm{TeV}), \sigma_{\mathrm{Ine}}(8 \mathrm{TeV})$
-B slope and dip position of elastic scattering at 7 TeV
$\bullet^{-} \sigma_{\text {Tot }}(57 \mathrm{TeV}), \sigma_{\text {Inel }}(57 \mathrm{TeV})$
$\bullet^{-} \sigma_{M x>15}(7 \mathrm{TeV}), \sigma_{>1 \text { trk }}(7 \mathrm{TeV}), \sigma_{2 \text { trk }}(7 \mathrm{TeV}), \sigma_{3 \text { trk }}(7 \mathrm{TeV})$

Summary and outlook - II

The value of the total cross section $\sigma_{\text {tot }}^{\text {TOTEM }}(8 \mathrm{TeV})=101.7 \pm 2.9 \mathrm{mb}$ is well reproduced by the preferred COMPETE fits, $\sigma_{\text {tot }}^{\text {COMPETE }}(8 \mathrm{TeV})=101 \pm 5 \mathrm{mb}$ ($\left.\sim \ln ^{2}(\mathrm{~s})\right)$ while the 2-pomeron prediction, $\sigma_{\text {tot }}{ }^{2 \text {-pomeron }}(8 \mathrm{TeV}) \sim 125 \pm 5 \mathrm{mb}$, is disfavored.

Commonly used MCs such as PYTHIA do not reproduce correctly the "sub-components" of the total cross section.

LHC data at $7 \& 8 \mathrm{TeV}$, together with cosmic-ray results, are becoming more and more precise, and they are constraining the available models.

A very interesting contact is happening: measurements at LHC detectors are used to constrain cosmic-ray models, as finally collider energies are high enough: the extrapolation between LHC @ 14 GeV and AUGER is the same as Tevatron \rightarrow LHC.

Please invite me back in 3 years, 14 TeV in 2015!!

Reference

1. Several talks from the TOTEM home page:http://totem.web.cern.ch/Totem/conferences/conf tab2012.html
2. Donnachie \& Landshoff: http://arxiv.org/abs/0709.0395v 1
3. AUGER: http://lanl.arxiv.org/abs/1208.1520v2
4. ALICE results, ISVHECRI 2012, Berlin, August 2012
5. D'Enteria et al, Constraints from the first LHC data on hadronic event generators for ultra-high energy cosmic-ray physics
6. ATLAS http://arxiv.org/abs/1104.0326v1
7. COMPETE collaboration (and reference in the linked page): http://hermes.ihep.su:8001/compas/kuyanov/OK/eng/intro.html
8. Many articles from the "13th Int. Conf. on Elastic and Diffractive Scattering CERN", http://indico.cern.ch/conferenceOtherViews.py?confId=41547\&view=standar d\&showDate=all\&showSession=all\&detailLevel=contribution

EXTRA

Experimental reach of t and β^{*}

Beam angular spread:

$$
\sigma(\theta) \sim \sqrt{ }\left(1 / \beta^{*}\right)
$$

Low t requires very small angular spread \rightarrow very large β^{*}

October 24-25, 2012:
$\beta^{*}: 11 \rightarrow 90 \rightarrow 500 \rightarrow 1000 \mathrm{~m}$
de-squeeze in 45 minutes

2012: $\beta^{*}=1000 \mathrm{~m}$

The Coulomb peak at $\mathrm{t}=0$

The t slope changes as a function of t value.

Do no use: Coulomb part

We need to measure this part

$$
\sigma_{t o t}^{2}=\frac{16 \pi}{\left(1+\rho^{2}\right)} \frac{1}{\mathcal{L}}\left(\frac{d N_{e l}}{d t}\right)_{t=0}
$$

Measurement of ρ by studying the Coulomb - Nuclear interference region down to $|\mathbf{t}| \sim \mathbf{6 x} \mathbf{1 0}^{-\mathbf{4}} \mathbf{G e V}^{\mathbf{2}}$

Measuring ρ using the Coulomb part

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma}{\mathrm{dt}}= \\
& \frac{4 \pi \alpha^{2}(c)^{2} G^{4}(t)}{|t|^{2}}+ \\
& \text { Coulomb- } \\
& \text { Nuclear } \\
& \frac{\alpha(\rho-\alpha \phi) \sigma_{t o t} G^{2}(t)}{|t|} e^{-B|t| / 2}+ \\
& \text { interference } \\
& \frac{\sigma_{t o t}^{2}\left(1+\rho^{2}\right)}{16 \pi(c)^{2}} e^{-B^{\prime}|t|} \\
& \text { a = fine structure constant } \\
& \phi=\text { relative Coulomb-nuclear phase } \\
& G(\dagger)=\text { nucleon em form factor }=(1+|\dagger| / 0.71)^{-2} \\
& \rho \quad=\operatorname{Re} / \operatorname{Im} f(p \leftarrow p)
\end{aligned}
$$

Measure the exponential slope B in the t-range $0.002-0.2 \mathrm{GeV}^{2}$
From Marco Bozzo

Experimental coverage of rapidity

ATLAS and CMS measure up to $\eta=+-5$, which means they can reach values as low as $\xi>5 * 10^{-6}(\mathrm{Mx} \sim 17 \mathrm{GeV})$

LHC detectors coverage
ALICE covers $-3.7<\eta<5.1$

TOTEM has two detectors:
T1: $3.1<|\eta|<4.7, \mathrm{~T} 2: 5.3<|\eta|<6.5$, $\xi>2 * 10^{-7}(\mathrm{Mx} \sim 3.4 \mathrm{GeV})$

Main problem:
from $\sigma_{\text {inel }}$ vis to the total value $\sigma_{\text {inel }}$
Solutions:

1) Don't do it
2) Put large error bars

TOTEM: t -distribution of pp elastic scattering at @ 7 TeV

The t-distribution measured by TOTEM was not predicted by any of the dynamical models of the proton

Predictions for 14 TeV (pre-LHC)

J. R. Cudell:

The measurement of the total cross section at the LHC will tell us a lot about the analytic structure of the amplitude, as there is a variety of predictions that span the region from 90 to 230 mb :

- $\sigma_{\text {tot }}>200 \mathrm{mb}$: the only unitarisation scheme able to accommodate such a large number is the U matrix. It basically predicts the same inelastic cross section as more standard schemes, but the elastic cross section is much larger, and accounts for the difference.
- $120 \mathrm{mb}<\sigma_{\text {tot }}<160 \mathrm{mb}$: this would be a clear signal for a two-pomeron model, and would also tell us about the unitarisation scheme.
- $\sigma_{\text {tot }} \approx 110 \mathrm{mb}$: this is the standard prediction not only of the COMPETE fits, but also of many models based on a simple eikonal and only one pomeron pole.
- $\sigma_{\text {tot }}<100 \mathrm{mb}$: this would indicate either the validity of double-pole parametrisations, or that of unitarisation schemes in which multiple-pomeron vertices are important.

Cross Section Bounds

Problem: the infinite rise of the cross section violates unitarity. The predictions have incorporated various processes and unitarity constrains that tame the rise of the value of the cross section.
This process is called "unitarization"
Two-pomeron model without and with simple
Froissart-Martin bound: $\sigma_{\text {TOT }}(\mathrm{s})<\pi / \mathrm{m}^{2}{ }_{\pi} \log ^{2}(\mathrm{~s})$
However it's not a big deal for LHC:

$$
\sigma_{\mathrm{TOT}}<4.3 \text { barns }
$$

Pumplin bound: $\sigma_{\mathrm{El}}(\mathrm{s})<1 / 2 \sigma_{\mathrm{TOT}}(\mathrm{s})$

$$
\begin{aligned}
& \sigma_{\mathrm{El}}(\mathrm{~s}) \sim \mathrm{s}^{2 \varepsilon} \\
& \sigma_{\mathrm{Tot}}(\mathrm{~s}) \sim \mathrm{S}^{\varepsilon}
\end{aligned}
$$

The shrinkage of the forward peak continues, the proton becomes larger and larger.

The elastic component is becoming more important with energy

