Electroweak and Top Results

 from ATLASLynn Marx
University of Manchester
On behalf of the ATLAS Collaboration
LISHEP 2013, Rio de Janeiro, Brazil
March 20, 2013

Overview

Electroweak Results

Diboson Production

- inclusive and differential cross sections
- $\mathbf{W}(\rightarrow \mid \mathrm{V}) \mathbf{\gamma}$ and $\mathbf{Z}(\rightarrow \|) \mathbf{\gamma}$
- WW \rightarrow Ivlv
- WZ \rightarrow |vil
- ZZ $\rightarrow|||\mid$ and $\mathbf{Z Z} \rightarrow \| v v$
- WW/WZ \rightarrow Ivjj
- triple gauge coupling limits

Overview

Electroweak Results

Diboson Production

- inclusive and differential cross sections
- $\mathbf{W}(\rightarrow \mid \mathrm{V}) \mathrm{\gamma}$ and $\mathbf{Z}(\rightarrow \|) \gamma$
- WW $\rightarrow \mid \mathrm{vlv}$
- WZ $\rightarrow \mid \mathrm{vll}$
- ZZ \rightarrow IIII and $\mathrm{ZZ} \rightarrow \| \mathrm{Vv}$
- WW/WZ $\rightarrow \mid v j j$
- triple gauge coupling limits

Top Results

- single top cross section
- top pair production
- cross section
- differential distributions
- properties
- charge asymmetry
- top quark polarisation
- W polarisation in top decays
- Wtb vertex and CP violation

Why Diboson Production?

Background to Higgs Production

$$
\mathrm{H} \rightarrow \mathrm{VV} \sim 25 \%
$$

- significant and irreducible
- need precise understanding to constrain Higgs couplings

$$
\text { at } \mathrm{m}_{\mathrm{H}}=126 \mathrm{GeV}
$$

Why Diboson Production?

Background to Higgs Production

- significant and irreducible
- need precise understanding to constrain Higgs couplings

$$
\text { at } \mathrm{m}_{\mathrm{H}}=126 \mathrm{GeV}
$$

$$
\mathrm{H} \rightarrow \mathrm{VV} \sim 25 \%
$$

New Physics Searches

- extended Higgs sector
- extra vector bosons
- extra dimensions
- Supersymmetry
- Technicolor

Why Diboson Production?

Background to Higgs Production

- significant and irreducible
- need precise understanding to constrain Higgs couplings
at $\mathrm{m}_{\mathrm{H}}=126 \mathrm{GeV}$
$\mathrm{H} \rightarrow \mathrm{VV} \sim 25 \%$

New Physics Searches

- extended Higgs sector
- extra vector bosons
- extra dimensions
- Supersymmetry
- Technicolor

Gauge Boson Couplings

- fundamental prediction of non-abelian $\operatorname{SU}(2) \times \mathrm{U}(1)$
- model-independent probe of high energy scale physics
- not as well measured as boson masses or couplings to fermions

- inclusive and exclusive ($n_{j e t}=0$) cross sections measured as a function of $E_{T} \curlyvee$
- unfold data to determine true value of an observable
\rightarrow correct measured value for detector acceptance, efficiency, resolution - multi-leg LO Sherpa and Alpgen give good inclusive and exclusive description
- NLO MCFM inclusive prediction low as multiple quark/gluon emission missing

WY and Zy Production

$W(\rightarrow I v) \gamma$ Unfolded

Z $(\rightarrow \mathrm{II}) \gamma$ Unfolded

WY and Zy Production

W(\rightarrow Iv) Y Unfolded

used to set technicolor limits

- fully leptonic decays $\mathrm{WW} \rightarrow|\mathrm{v}| \mathrm{v}$
- largest backgrounds from W/Z+jets and top - main systematic uncertainty from jet veto
- measure inclusive and differential cross section

$$
\sigma_{W W}=51.9 \pm 2.0(\text { stat }) \pm 3.9(\text { syst }) \pm 2.0(\text { lumi }) \mathrm{pb}
$$

$m_{T}{ }^{\left(I I E_{T}^{\text {miss }}\right.}[\operatorname{GeV}]$
includes ~3\% gg
but not $\sim 3 \% \mathrm{H}(126)$

$$
\sigma_{W W}^{\mathrm{NLO}}=44.7_{-1.9}^{+2.1} \mathrm{pb}
$$

(MCFM)

- $Z Z \rightarrow$ |III final states with $66<m_{\|}<116 \mathrm{GeV}$

$$
\sigma_{Z Z}=7.1_{-0.4}^{+0.5} \text { (stat) } \pm 0.3 \text { (syst) } \pm 0.2 \text { (lumi) pb }
$$

includes $\sim 6 \%$ gg
but not $\sim 3 \%$ H(126)

$$
\sigma_{Z Z}^{\mathrm{NLO}}=7.2_{-0.2}^{+0.3} \mathrm{pb}
$$

(MCFM)

- larger branching fraction than fully leptonic channel
- dominated by W/Z+jets backgrounds
- more challenging at LHC than at Tevatron
- cross section extracted by binned maximum likelihood fit of m_{jj} distribution
- main uncertainties from background estimation and jet energy scale

anomalous Triple Gauge Couplings

anomalous Triple Gauge Couplings

- The model-independent effective TGC Lagrangian can be expressed as

$$
\begin{aligned}
& \mathcal{L}_{W W V}=i g_{W W V}\left[g_{1}^{V}\left(W_{\mu \nu}^{\dagger} W^{\mu} V^{\nu}-W_{\mu \nu} W^{\dagger \mu} V^{\nu}\right)+\kappa^{V} W_{\mu}^{\dagger} W_{\nu} V^{\mu \nu}+\frac{\lambda^{V}}{m_{W}^{2}} W_{\rho \mu}^{\dagger} W_{\nu}^{\mu} V^{\nu \rho}\right] \rightarrow \mathbf{W W}, \\
& \left.\mathcal{L}_{Z Z V}=-\frac{e}{M_{Z}^{2}}\left[f_{4}^{V}\left(\partial_{\mu} V^{\mu \beta}\right) Z_{\alpha}\left(\partial^{\alpha} Z_{\beta}\right)+f_{5}^{V}\left(\partial^{\sigma} V_{\sigma \mu}\right) \tilde{Z}^{\mu \beta} Z_{\beta}\right)\right] \rightarrow \mathbf{Z Z} \\
& \mathcal{L}_{Z \gamma V}=-i e\left[h_{3}^{V} \tilde{F}^{\mu \nu} Z_{\mu} \frac{\left(\square+m_{V}^{2}\right)}{m_{Z}^{2}} V_{\nu}+h_{4}^{V} \tilde{F}^{\mu \nu} Z^{\alpha} \frac{\left(\square+m_{V}^{2}\right)}{m_{Z}^{4}} \partial_{\alpha} \partial_{\mu} V_{\nu}\right] \rightarrow \mathbf{Z \gamma}
\end{aligned}
$$

anomalous Triple Gauge Couplings

- The model-independent effective TGC Lagrangian can be expressed as

$$
\begin{aligned}
& \mathcal{L}_{W W V}=i g_{W W V}\left[g_{1}^{V}\left(W_{\mu \nu}^{\dagger} W^{\mu} V^{\nu}-W_{\mu \nu} W^{\dagger \mu} V^{\nu}\right)+\kappa^{V} W_{\mu}^{\dagger} W_{\nu} V^{\mu \nu}+\frac{\lambda^{V}}{m_{W}^{2}} W_{\rho \mu}^{\dagger} W_{\nu}^{\mu} V^{\nu \rho}\right] \rightarrow \mathbf{W W}, \\
& \mathbf{W Z}, \mathbf{W}, \\
& \left.\mathcal{L}_{Z Z V}=-\frac{e}{M_{Z}^{2}}\left[f_{4}^{V}\left(\partial_{\mu} V^{\mu \beta}\right) Z_{\alpha}\left(\partial^{\alpha} Z_{\beta}\right)+f_{5}^{V}\left(\partial^{\sigma} V_{\sigma \mu}\right) \tilde{Z}^{\mu \beta} Z_{\beta}\right)\right] \rightarrow \mathbf{Z Z} \\
& \mathcal{L}_{Z \gamma V}=-i e\left[h_{3}^{V} \tilde{F}^{\mu \nu} Z_{\mu} \frac{\left(\square+m_{V}^{2}\right)}{m_{Z}^{2}} V_{\nu}+h_{4}^{V} \tilde{F}^{\mu \nu} Z^{\alpha} \frac{\left(\square+m_{V}^{2}\right)}{m_{Z}^{4}} \partial_{\alpha} \partial_{\mu} V_{\nu}\right] \rightarrow \mathbf{Z \gamma}
\end{aligned}
$$

- In the Standard Model

$$
g_{1}^{V}=\kappa^{V}=1 \quad \lambda^{V}=f_{4}^{V}=f_{5}^{V}=h_{3}^{V}=h_{4}^{V}=0
$$

- In case of aTGCs, expect a change in production rate and kinematic distributions
- Gain sensitivity using shape distributions to set frequentist 1D + 2D limits on aTGCs

Eur. Phys. J. C (2012) 72:2173 CERN-PH-EP-2012-345 CERN-PH-EP-2012-242

- limits set using
- WZ: Z boson рт
- W_{γ} : photon $\mathrm{E}_{\mathrm{T},} \mathrm{n}_{\mathrm{jet}}=0$
- WW: leading lepton рт
- no deviations from SM observed
- ATLAS limits
comparable or tighter than Tevatron

- limits set using
- ZZ: leading Z boson pт
- $\mathrm{Z} \gamma$: photon $\mathrm{E}_{\mathrm{T}}, \mathrm{n}_{\mathrm{jet}}=0$
- no deviations from SM observed
- ATLAS limits tighter than LEP and Tevatron

Why Top Production?

- heaviest fundamental particle
- large coupling to Higgs boson
- probe of electroweak symmetry breaking
- short lifetime allows to study properties
- sensitive to new physics
- LHC is a top factory

Why Top Production?

- heaviest fundamental particle
- large coupling to Higgs boson
- probe of electroweak symmetry breaking
- short lifetime allows to study properties
- sensitive to new physics
- LHC is a top factory

8 TeV

Single Top Cross Section

- measurement in the lepton+jets t-channel
- neural network based discriminant in 2 and 3 jet bins
- backgrounds from W+jets, QCD multijet and other top production

$$
\begin{gathered}
\sigma_{t}=95 \pm 2(\text { stat }) \pm 18(\text { syst }) \mathrm{pb} \\
\sigma_{t}^{\mathrm{NNLO}}=87.8_{-1.9}^{+3.4} \mathrm{pb}
\end{gathered}
$$

8 TeV

Single Top Cross Section

- measurement in the lepton+jets t-channel
- neural network based discriminant in 2 and 3 jet bins
- backgrounds from W+jets, QCD multijet and other top production

$$
\sigma_{t}=95 \pm 2(\text { stat }) \pm 18(\text { syst }) \mathrm{pb}
$$

$$
\sigma_{t}^{\mathrm{NNLO}}=87.8_{-1.9}^{+3.4} \mathrm{pb}
$$

- direct probe of Wtb coupling vertex
- cross section measurement provides constraint on CKM matrix element

$$
\begin{aligned}
& \left|V_{t b}\right|=1.04_{-0.11}^{+0.10} \text { assuming }\left|V_{t b}\right| \gg\left|V_{t s}\right|,\left|V_{t d}\right| \\
& \left|V_{t b}\right|>0.80 \text { at } 95 \% \text { C.L. assuming }\left|V_{t b}\right| \leq 1
\end{aligned}
$$

- lepton+jets channel measurement

- require 3 or more jets with at least one b-tag
- multivariate likelihood template fit
- less aggressive MC modelling uncertainty gives larger systematic uncertainty compared to 7 TeV combination

- unfolded relative differential cross sections
- systematics dominated
$\frac{1}{\sigma} \frac{d \sigma}{d x}$
- sensitive to
- wide resonances
- QCD radiation
- important background for new searches

- unfolded jet multiplicity
- systematics dominated
- constrain ISR/FSR models
- test pQCD at LHC

7 TeV
 Top Properties

- charge asymmetry in top quark pairs
- NLO corrections in $q \bar{q} \rightarrow t \bar{t}$ introduce small y asymmetries
$t(\bar{t})$ preferentially emitted along $p(\bar{p})$ direction
- initial state pp̄
\rightarrow forward-backward
- observed shift > prediction

PRD 83 (2011) 112003
PRD 84 (2011) 112005

- initial state symmetric
\rightarrow no overall y shift
- q more momentum than \bar{q} in p
\rightarrow t more forward
- without specific cuts
\rightarrow sensitive to width not mean
- charge asymmetry in top quark pairs
- NLO corrections in $q \bar{q} \rightarrow t \bar{t}$ introduce small y asymmetries
- initial state pp̄
\rightarrow forward-backward
- observed shift > prediction

PRD 83 (2011) 112003 PRD 84 (2011) 112005
$t(\bar{t})$ preferentially emitted along p ($\overline{\mathrm{p}}$) direction

- initial state symmetric
\rightarrow no overall y shift
- q more momentum than \bar{q} in p
\rightarrow t more forward
- without specific cuts
\rightarrow sensitive to width not mean

$$
\begin{aligned}
& A_{C}=\frac{N(\Delta|y|>0)-N(\Delta|y|<0)}{N(\Delta|y|>0)+N(\Delta|y|<0)} \\
& =\left|y_{t}\right|-\left|y_{\bar{t}}\right|
\end{aligned}
$$

$$
A_{C}=0.029 \pm 0.018 \text { (stat) } \pm 0.014 \text { (syst) }
$$

7 TeV
 Top Properties

t top polarization in lepton+jets top quark pairs

- full reconstruction of top pair using likelihood method
$-\cos \theta$, template fit to extract polarization fraction
\downarrow
polar lepton angle in parent top frame

$$
f_{p}=\frac{1}{2}+\frac{N\left(\cos \theta_{l}>0\right)-N\left(\cos \theta_{l}<0\right)}{N\left(\cos \theta_{l}>0\right)+N\left(\cos \theta_{l}<0\right)}
$$

- top polarization in lepton+jets top quark pairs
- full reconstruction of top pair using likelihood method
$-\cos \theta_{1}$ template fit to extract polarization fraction

$$
f_{p}=\frac{1}{2}+\frac{N\left(\cos \theta_{l}>0\right)-N\left(\cos \theta_{l}<0\right)}{N\left(\cos \theta_{l}>0\right)+N\left(\cos \theta_{l}<0\right)}
$$

$$
f_{p}=0.470 \pm 0.009(\text { stat })_{-0.032}^{+0.023}(\text { syst })
$$

SM predicts
unpolarized top quark

- W boson polarization in top pair decays

F_{R} right

FL left

Fo longitudinal

- use $\cos \theta^{\star}$ templates to measure different helicity fractions \downarrow angle between lepton and reversed
b direction in W rest frame

$$
\begin{gathered}
F_{0}=0.626 \pm 0.034 \text { (stat) } \pm 0.049 \text { (syst) } \\
F_{L}=0.359 \pm 0.021 \text { (stat) } \pm 0.028 \text { (syst) } \\
\left.F_{R}=0.015 \pm 0.034 \text { (stat }+ \text { syst }\right)
\end{gathered}
$$

$F_{0}^{\text {NNLO }}=0.687 \pm 0.005$
$F_{L}^{\text {NNLO }}=0.311 \pm 0.005$
$F_{R}^{\mathrm{NNLO}}=0.0017 \pm 0.0001$
PRD 81 (2010) 111503

- W boson polarization in top pair decays
- use to set limits on anomalous Wtb couplings
- effective Lagrangian approach

7 TeV
 Top Properties

- search for CP violation using Wtb vertex
- use lepton+jets t-channel single top
- expect highly polarised top quarks

- search for CP violation using Wtb vertex
- use lepton+jets t-channel single top
- expect highly polarised top quarks
forward-backward asymmetry w.r.t. normal to plane
defined by W momentum and top polarization
$A_{\mathrm{FB}}=0.031 \pm 0.065(\mathrm{stat})_{-0.031}^{+0.029}$ (syst)
\checkmark
consistent with
CP invariance

$$
A_{\mathrm{FB}}=0
$$

- use to set first experimental limits on Im(gR)

Summary

- recent electroweak and top results from ATLAS
- diboson cross sections: inclusive systematically dominated, first differential
- most stringent aTGC limits in many channels
- top: precision measurements of cross sections and properties
- no significant deviations from Standard Model found
- many measurements yet to be repeated with 8 TeV dataset
- crucial milestones in understanding Higgs production

BACKUP

Data

Fiducial and total cross sections

measure fiducial and total cross sections

$$
\begin{array}{cc}
\sigma_{f i d}=\frac{N_{o b s}-N_{b k g d}}{\mathbf{C} \times \int \mathcal{L} d t} & \sigma_{t o t}=\frac{\sigma_{f i d}}{\mathbf{A} \times B R} \\
\begin{array}{c}
\text { efficiency corrections } \\
\text { (reconstruction, trigger, ...) }
\end{array} & \text { (extrapolates to full phase space) }
\end{array}
$$

define fiducial cuts

- as close as possible to analysis cuts but using final state "truth" objects
- to reduce extrapolation to phase space regions with large theoretical uncertainties

$$
C=\frac{N_{\text {MC Reco }}^{\text {Pass Reco Cuts }}}{N_{\text {MC Truth }}^{\text {Pass Fid Cuts }}}
$$

$$
A=\frac{N_{\mathrm{MC}}^{\mathrm{Pass} \text { Frid Cuth }}}{N_{\mathrm{MC}}^{\mathrm{All}} \text { Truth }}
$$

corrects for efficiencies and geometric acceptance

- includes selection, trigger and reconstruction efficiency
- includes data/MC corrections
- defines fiducial cross section
extrapolates from fiducial to full
phase space
- extends kinematic cross section
beyond kinematics selection
- defines inclusive cross section

Process	$\mathrm{L}\left[\mathrm{fb}^{-1}\right]$	$\sigma^{\text {tot }}[\mathrm{pb}]$	δ stat	δ syst	δ lumi	$\sigma^{\text {NLO }}[\mathrm{pb}]$	$\delta \sigma^{\text {NLO }}$	
$\mathrm{W}(\rightarrow \mathrm{V}) \mathrm{Y}$	5	2.77	± 0.03	± 0.33	± 0.14	1.96	± 0.17	
$\mathrm{Z}(\rightarrow \\|) \mathrm{Y}$	5	1.31	± 0.02	± 0.11	± 0.05	1.18	± 0.05	
$\mathrm{WW} \rightarrow$ \|viv	5	51.9	± 2.0	± 3.9	± 2.0	44.7	+2.1/-1.9	
WZ \rightarrow vill	5	19.0	+1.4/-1.3	± 0.9	± 0.4	17.6	+1.1/-1.0	
ZZ* \rightarrow III/ $\mathrm{ZZ} \rightarrow \\| \mathrm{vv}$	5	6.7	± 0.7	+0.4/-0.3	± 0.3	5.89	+0.22/-0.18	
WW/WZ \rightarrow Ivjj	5	72	± 9	± 15	± 13 (MC stat)	63.4	± 2.6	

Most cross sections seem to fluctuate $\sim 1 \sigma$ high but agree individually with SM predictions within uncertainties

More aTGC information

Coupling	C	P	CP
$\mathrm{g}^{\mathrm{V}}{ }_{1}$	\checkmark	\checkmark	\checkmark
κ^{\vee}	\checkmark	\checkmark	\checkmark
λ^{\vee}	\checkmark	\checkmark	\checkmark
f_{4}	x	\checkmark	x
fV_{5}	x	X	\checkmark
h^{1}	\checkmark	\checkmark	\checkmark
h^{V}	\checkmark	\checkmark	\checkmark

Top pair cross section

Single top cross section

Top mass

ATLAS-CONF-2012-095

