

Electroweak Results From CMS

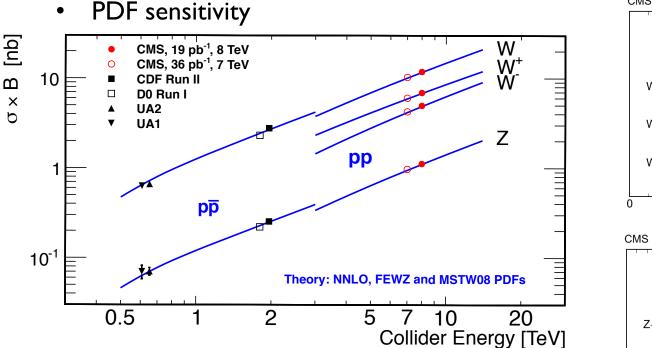
Matt Herndon University of Wisconsin – Madison

CMS Integrated Luminosity, pp

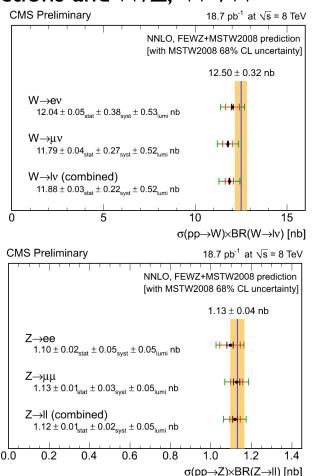
https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

WISCONSIN MADISON W & Z Precision Measurements

- Combination of several factors have made unprecedented precision measurements possible in a Hadron collider environment.
 - The capabilities and performance of the LHC experiments
 - The development sophisticated experimental techniques to treat collider data
 - The existence of inclusive and differential calculation of cross sections at NLO and NNLO precision
 - The integration of matrix element MCs with parton shower generators in a consistent way at NLO
- These factors allow an exciting program of measurements with sensitivity to fundamental issues.
 - pQCD tests at NLO and NNLO
 - Test of matrix element + parton shower techniques
 - PDF sensitivity
 - Test of Electroweak predictions for asymmetries and polarizations
 - Differential distributions for transverse momentum, rapidity, and jets
 - Associated production of vector boson and heavy flavor jets
 - Vector boson fusion



W & Z Cross Sections

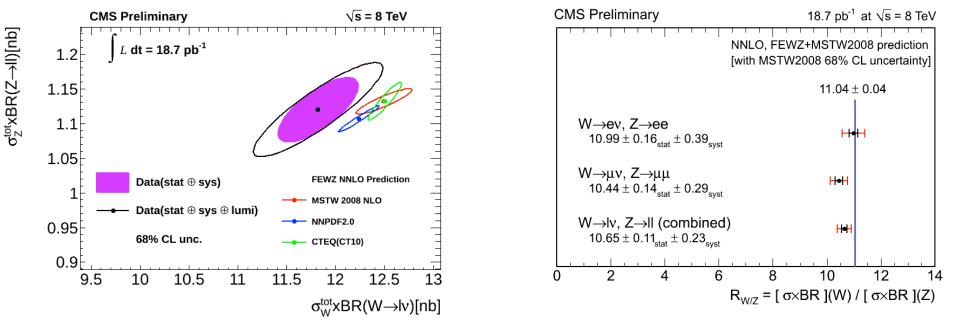


Measurement of total W and Z cross sections.

pQCD test from ratio of 7 TeV to 8 TeV cross sections and W/Z, W⁺/W⁻

- Comparable experimental and theory uncertainty
- 2-3% systematic and 5% luminosity uncertainty
 <u>CMS PAS SMP-12-011</u>

Matthew Herndon, Wisconsin



W and Z Cross Sections

Cancelation of systematic errors in ratio

- both experimental and theoretical
- Removes largest experimental uncertainty, luminosity

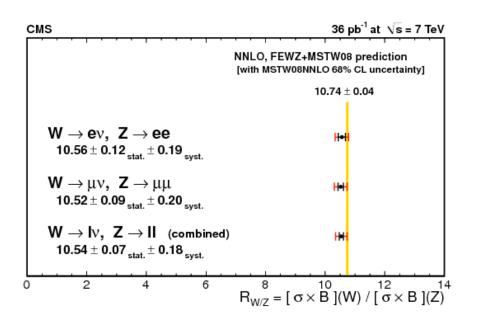
- W/Z ratio at 8 TeV: ~1.5 sigma difference all PDF sets
 - 2% experimental systematic uncertainty.
 - Milder tension was present in the 7 TeV measurement

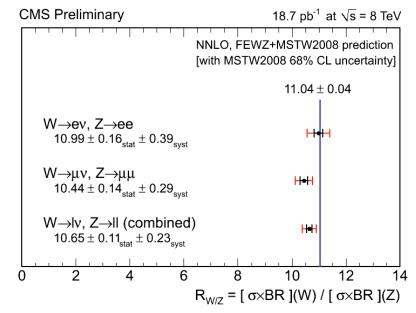
Matthew Herndon, Wisconsin

5

CMS PAS SMP-12-011

|HEP 10 (2011) 132




W and Z Cross Sections

• Cancelation of systematic errors in ratio

- both experimental and theoretical
- Removes largest experimental uncertainty, luminosity

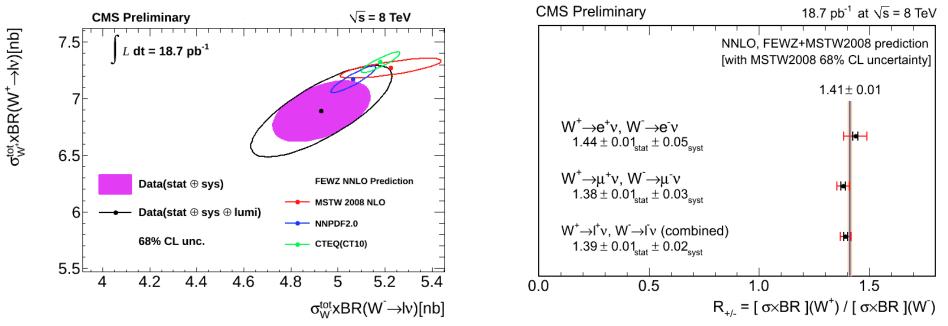
CMS PAS SMP-12-011

IHEP 10 (2011) 132

- W/Z ratio at 8 TeV: ~1.5 sigma difference all PDF sets
 - 2% experimental systematic uncertainty.
 - Milder tension was present in the 7 TeV measurement

Matthew Herndon, Wisconsin

LISHEP 2013



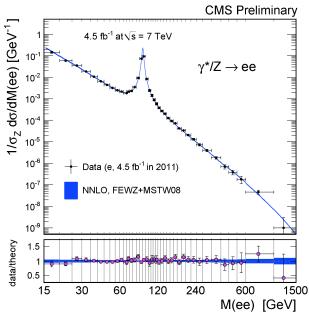
Cancelation of systematic errors in ratio

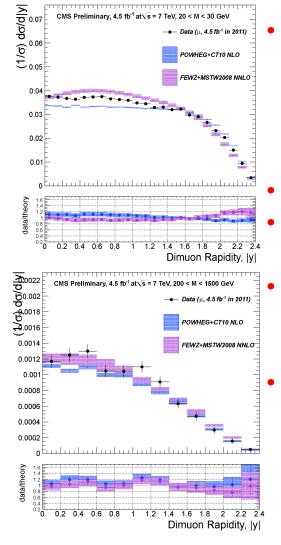
- both experimental and theoretical
- Removes largest experimental uncertainty, luminosity

- Expect 2:1 ratio form valence quarks in valance-sea annihilation, diluted by sea-sea
- Agrees with theory predictions
- Tested at 2% level driven by experimental systematic uncertainty.

Matthew Herndon, Wisconsin

LISHEP 2013


CMS PAS SMP-12-011

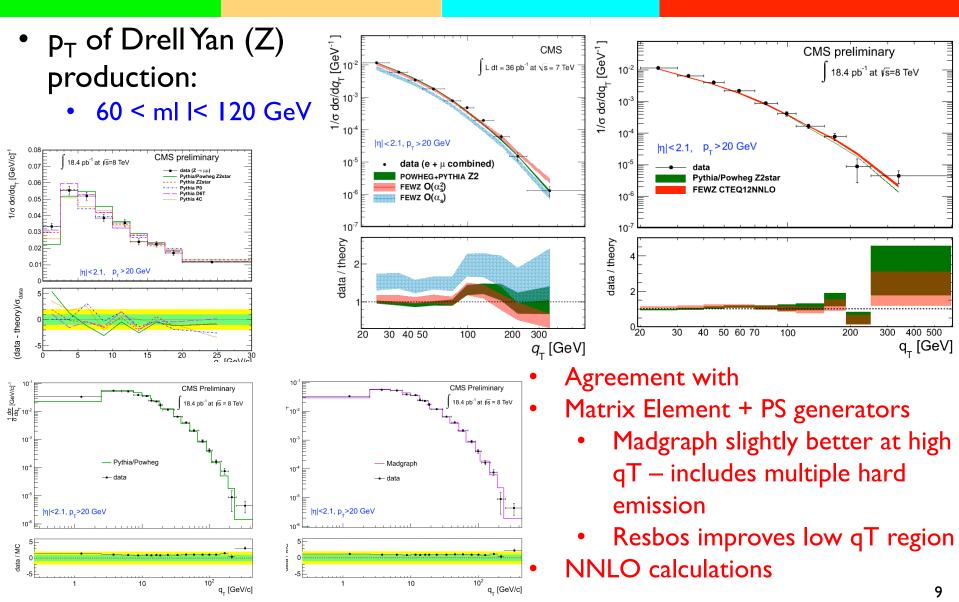


Drell-Yan Cross Sections

- Doubly differential in dσ/dM and rapidity in mass bins
 - dσ/dM from 15 to 1500 GeV
 - Rapidity from 0 to 2.4 in 6 mass bins

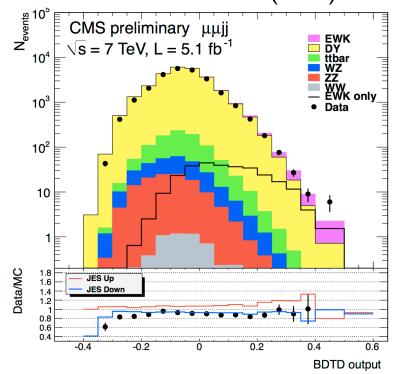
Comparisons with:

- FEWZ + MSTW08@NNLO
- POWHEG + CT10@NLO
- Agreement in do/dM Expect disagreement in y for low mass bins
- Low mass sensitive to PDF and integration issues.
- Expected to be improved in upcoming papers.


CMS PAS EWK-11-007

Matthew Herndon, Wisconsin

$Z p_T$ at 7 and 8 TeV CMS PAS SMP-12-025 Phys. Rev. D 85, 032002 (2012)

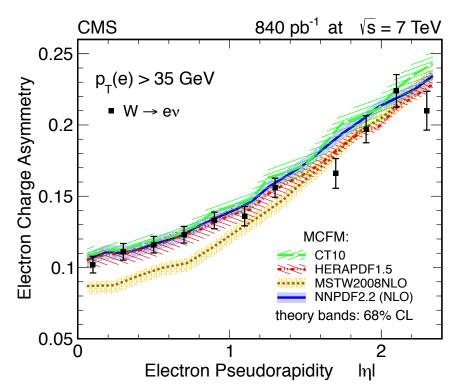


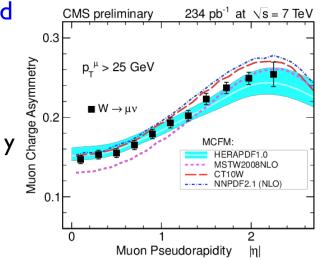
VBF Z Production

- Same topology as VBF Higgs and longitudinal vector boson scattering. Benchmark for EWSB studies
- Measures WWZTGC
- Dominant background from standard DY production
- Uses multivariate (BDT) discriminant to extract signal

uction ut signal W^+ μ^+ μ^- u d

CMS PAS FSQ-12-019


- σ(µµ+ee) = 154 ± 24 (stat.) ±
 46 (syst.) ± 27 (th.) ± 3 (lum.)fb
- VBFNLO 166 fb



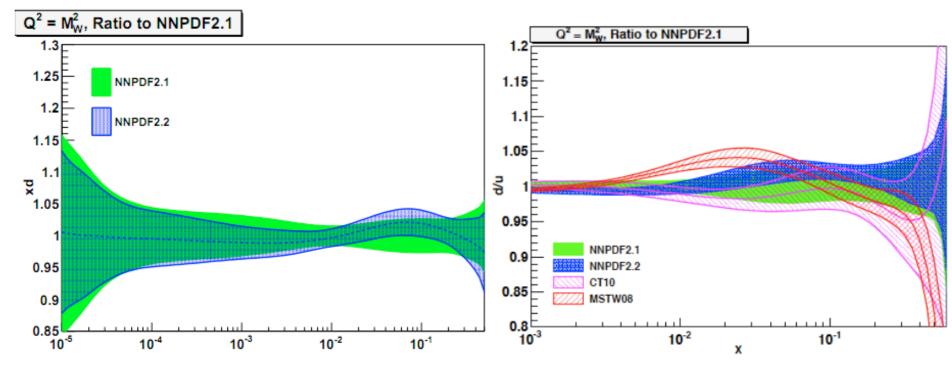
W Charge Asymmetry

- Study of ratios of kinematic variables between W+ and W- production
 - Cancellation of systematic uncertainties in the ratio maximizing sensitivity to PDF
 - Valance-sea interaction and asymmetry increase at high y
 - Provides significant constraint on the global PDF fit

Phys.Rev.Lett. 109 (2012) 111806

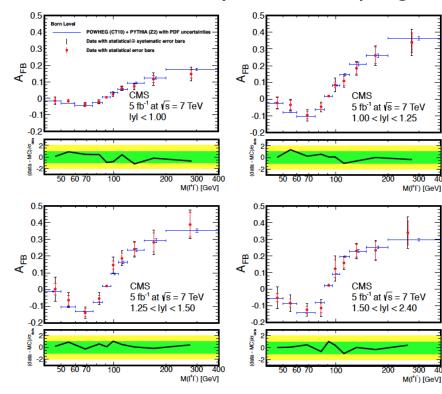
CMS PAS EWK-11-005

- Good agreement with several PDF sets excluding MSTW in both electrons and muons.
- New MSTW fit introduces new degrees of freedom for valance x distribution improving the agreement



W Charge Asymmetry

- W charge asymmetry results used to constrain PDFs
 - CMS and ATLAS results added in NNPDF2.2 reducing uncertainty.


Nucl.Phys. B855 (2012) 608-638 NNPDF Collaboration

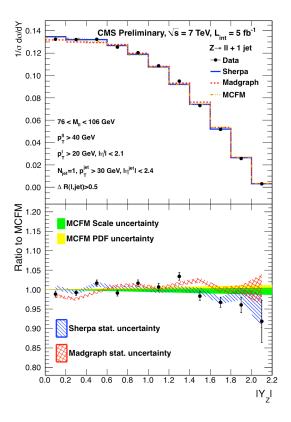
- Z forward Backward asymmetry
 - Measured as a function of mass in four rapidity bins
 - Sensitivity to new physics such as new neutral vector bosons which would modify vector coupling of the leptons at high mass

• Also sensitive the weak mixing angle.

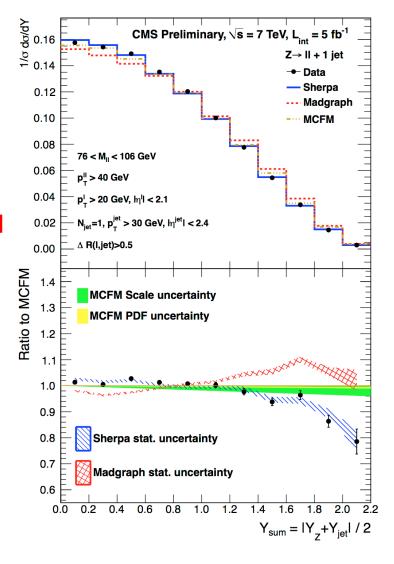
 $\sin^2\theta_{\rm eff} = 0.2287 \pm 0.0020 \,(\text{stat.}) \pm 0.0025 \,(\text{syst.}).$

• Good agreement with theory: POWHEG+CT10

Phys.Lett. B718 (2013) 752-772



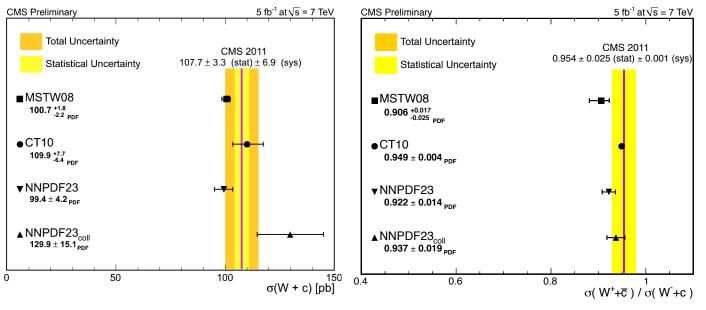
Z + Ij Rapidity


• Z + Ij

 Test of NLO theory and Matrix Element + parton show MCs

Z and jet rapidity distributions in good agreement. Combined distributions show deviations. Sherpa (employing CKKM matching) shows better agreement

CMS PAS SMP-12-004



W+c-jet production

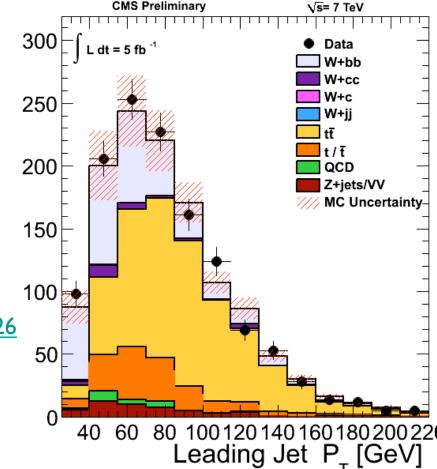
- Sensitive to strange PDF of the proton.
- W charge the same as initial s quark
- Strange anti-strange PDF should be ~symmetric
- Analysis uses charm hadron reconstruction to identify charm jets.
 <u>CMS PAS SMP-12-002</u>

- Fair agreement with PDF fits
- Competitive sensitivity to strange PDF compared to neutrino scattering experiments

Matthew Herndon, Wisconsin

LISHEP 2013

W + 2b-Jets

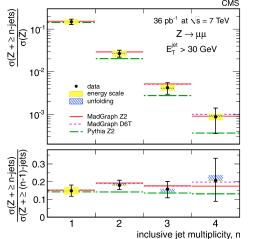

GeV

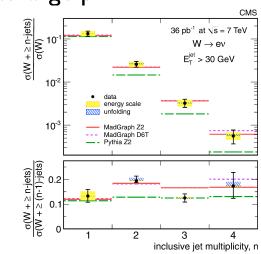
/ 15

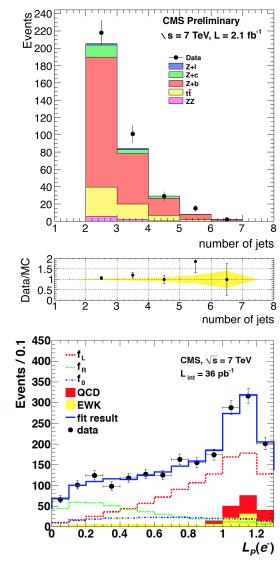
- Production of W + 2 central b jets
 - History of disagreement between experiment and data
 - Critical background for searches
- Events / Analysis double tags events to remove W+c and constrains top contribution from high jet multiplicity region. CMS PAS SMP-12-026
- Good agreement with predicted cross section

MCFM 0.52 ± 0.03 [pb] (MSTW08NNLO)

 $\sigma(pp \rightarrow W + b\overline{b}, p_T^b > 25 \text{ GeV}, |\eta^b| < 2.4) \times \mathcal{B}(W \rightarrow \mu\nu, p_T^\mu > 25 \text{ GeV}, |\eta^\mu| < 2.1) =$ $= 0.53 \pm 0.05 (\text{stat.}) \pm 0.09 (\text{syst.}) \pm 0.06 (\text{theo.}) \pm 0.01 (\text{lum.}) \text{ pb.}$

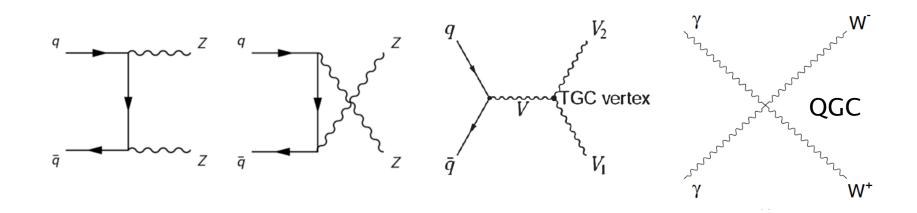



Other V (+ jets) Results

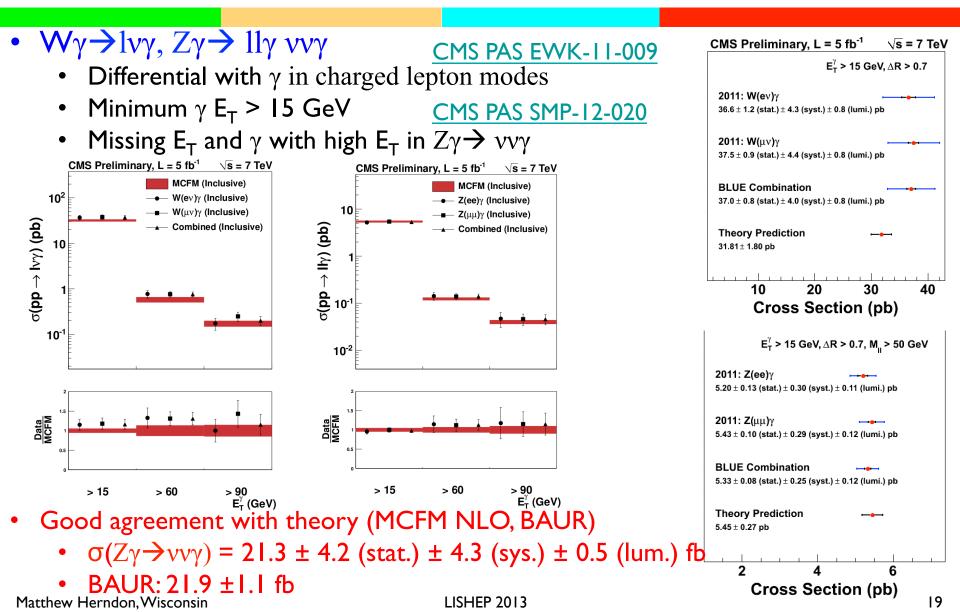


• Active program in V (+jets) (not shown here)

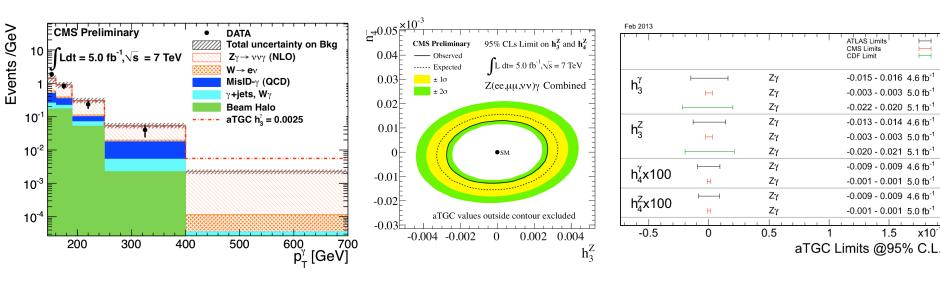
- Z + jets azimuthal correlations
- Z + b jets cross sections
- Z + b jets b hadron angular correlations
- Z differential vs. n jet cross section
- $Z \rightarrow$ tautau
- W differential vs. n jet cross section
- W polarization at large pT



Diboson Production


- Fundamental test of Standard Model
 - Test of gauge structure of the Standard Model
- Probe for new physics
 - Indirect search for tree or loop effects of massive new particles in Anomalous Triple Gauge Couplings (TGC) and Quartic Gauge Couplings (QGC)
 - Search for Resonances

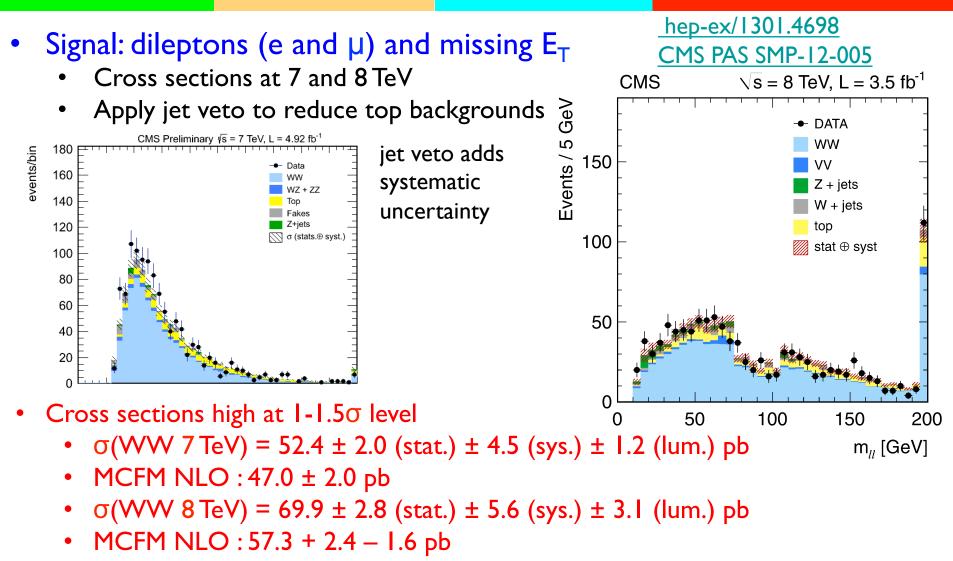
Wy, Zy Production



 $W\gamma$, $Z\gamma$ aTGC

- aTGC searches
 - Exploit expected high transverse momentum of vector boson if there is aTGC using γ Et distribution
 - Good sensitivity due to higher branching ratios in in $Z\gamma \rightarrow \nu\nu\gamma$
 - $Z\gamma \rightarrow vv\gamma$ dominates sensitivity.

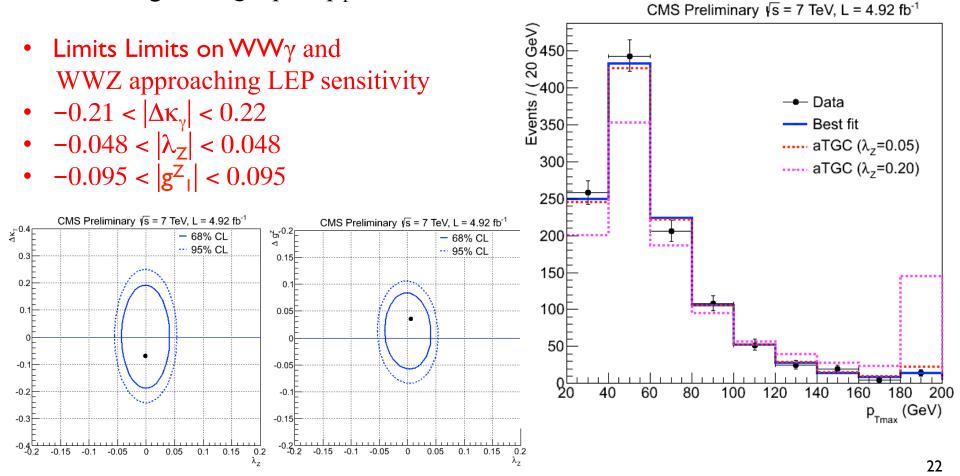
- aTGC limits on ZZ γ and Z $\gamma\gamma$ are worlds best
- Limits on WW γ approaching LEP sensitivity
- $-0.38 < |\Delta \kappa_{\gamma}| < 0.29$ and $-0.050 < |\lambda_{\gamma}| < 0.037$


CMS PAS EWK-11-009

CMS PAS SMP-12-020

WW Production

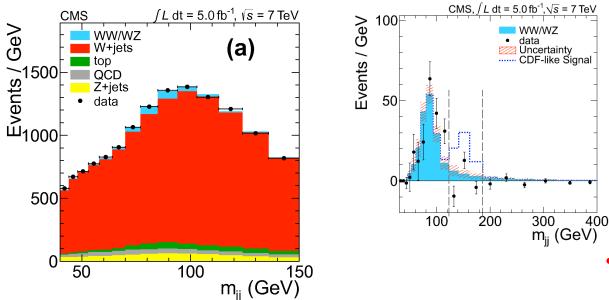
• Expect contributions at 5% level from $H \rightarrow WW$ and other processes

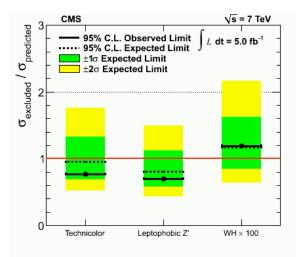


• aTGC search

CMS PAS SMP-12-005

• Exploit expected high transvers momentum of vector boson using leading lepton p_T distribution



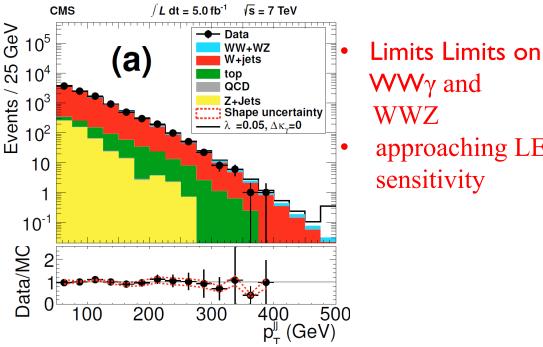


WW+WZ Production

- WW + WZ production in semileptonic decays
 - Signal: leptons (e and μ) and missing E_T and two jets consistent with a W or Z
 - Cross sections at 7 Eur. Phys. J. C 73 (2013) 2283 Phys. Rev. Lett. 109 (2012) 251801
 - Apply jet veto to reduce top backgrounds

- First observation of WW+WZ: 2700 candidates
- Cross section in agreement with theory
 - σ (WV 7 TeV) = 68.89 ± 8.71 (stat) ± 9.70 (syst) ± 1.52 (lumi) pb
 - MCFM NLO : 65.6 ± 2.2 pb

- Also used to search for higher mass resonance produced in associated with a W boson
- No evidence of a resonance and limits placed on several models



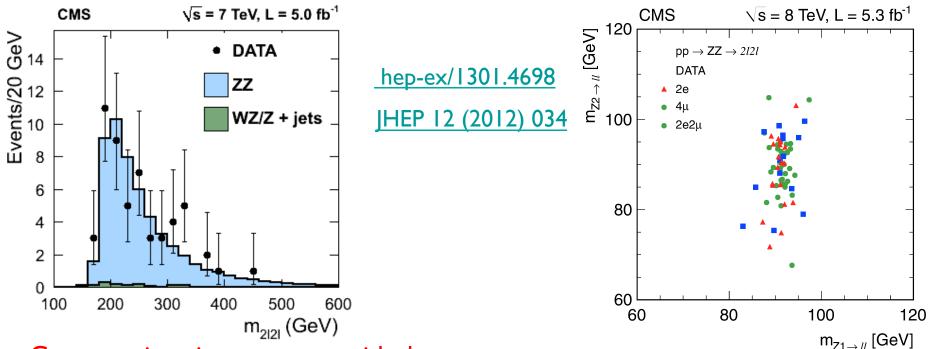
WW+WZ aTGC

• aTGC search <u>Eur. Phys. J. C 73 (2013) 2283</u>

- Exploit expected high transverse momentum of vector boson using hadronically decaying vector boson p_T distribution
- No sensitivity to gZ1. Set to SM value.

Ι			ATLAS Limits CMS Limits D0 Limit LEP Limit	
$\Delta \kappa_{\gamma}$		— Wγ	-0.410 - 0.460	4.6 fb ⁻
		Wγ	-0.380 - 0.290	5.0 fb ⁻
	⊢−−−−−	WW	-0.210 - 0.220	4.9 fb ⁻
	⊢−−−−	WV	-0.110 - 0.140	5.0 fb ⁻
	⊢	D0 Combina	tion -0.158 - 0.255	8.6 fb ⁻
	⊢●	LEP Combin	ation -0.099 - 0.066	0.7 fb ⁻
λ_{γ}	\vdash	Wγ	-0.065 - 0.061	4.6 fb ⁻¹
	H	Wγ	-0.050 - 0.037	5.0 fb ⁻¹
	H	WW	-0.048 - 0.048	4.9 fb ⁻¹
	H	WV	-0.038 - 0.030	5.0 fb ⁻¹
	ю	D0 Combina	tion -0.036 - 0.044	8.6 fb ⁻
	H	LEP Combin	ation -0.059 - 0.017	0.7 fb ⁻¹
-0.5	0	0.5	1 1.5	
-0.0	U		C Limits @95	% C.I

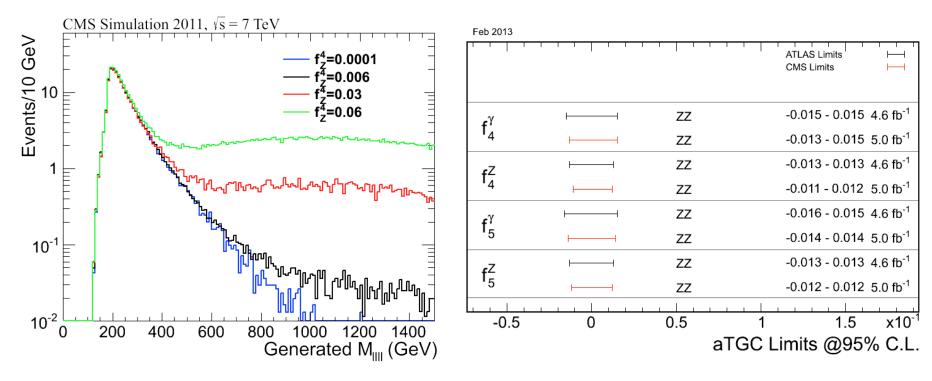
	Feb 2013				
				ATLAS Limits CMS Limits D0 Limit LEP Limit	
	Arc	H	WW	-0.043 - 0.043	4.6 fb ⁻¹
	$\Delta \kappa_{Z}$	H	WV	-0.043 - 0.033	5.0 fb ⁻¹
		⊢● -	LEP Combination	-0.074 - 0.051	0.7 fb ⁻¹
FD	λ	⊢	WW	-0.062 - 0.059	4.6 fb ⁻¹
	Λz	⊢ ⊣	WW	-0.048 - 0.048	4.9 fb ⁻¹
		\vdash	WZ	-0.046 - 0.047	4.6 fb ⁻¹
		H	WV	-0.038 - 0.030	5.0 fb ⁻¹
		юн	D0 Combination	-0.036 - 0.044	8.6 fb ⁻¹
		H•H	LEP Combination	-0.059 - 0.017	0.7 fb ⁻¹
	۸az	H	WW	-0.039 - 0.052	
	<u> </u>	⊢−−−−− I	WW	-0.095 - 0.095	4.9 fb ⁻¹
		⊢ −−−1	WZ	-0.057 - 0.093	
		Ho-H	D0 Combination	-0.034 - 0.084	
		H•	LEP Combination	-0.054 - 0.021	0.7 fb ⁻¹
				4.5	
	-0.5	6 O C).5 1	1.5	
			aTGC L	imits @959	% C.L.



ZZ Production

ZZ production in charged leptonic decays (e, µ and tau)

Cross sections at 7 and 8 TeV


- Cross sections in agreement with theory
 - $\sigma(ZZ 7 \text{ TeV}) = 6.2 \pm 0.8 \text{ (stat.)} \pm 0.4 \text{ (sys.)} \pm 0.1 \text{ (lum.) pb}$
 - MCFM NL) : 6.3 ± 0.4 pb
 - $\sigma(ZZ \ 8 \text{ TeV}) = 8.4 \pm 1.0 \text{ (stat.)} \pm 0.7 \text{ (sys.)} \pm 0.4 \text{ (lum.) pb}$
 - MCFM NLO : 7.7 ± 0.4 pb

ZZ aTGC

- aTGC search
 - Exploit expected high transvers momentum of vector bosons using the 4l mass.
- World leading sensitivity to $ZZ\gamma$ and ZZZ

Summary of Cross Sections

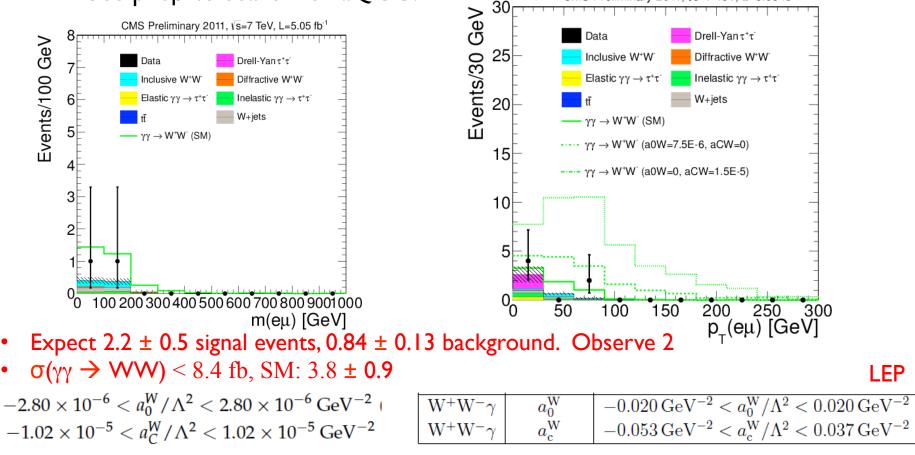
CMS Nov 2012 [dd] W 7 TeV CMS measurement (stat⊕syst) δ 8 TeV CMS measurement (stat⊕syst) 10⁵ Ζ Production Cross Section, σ_{tot} 7 TeV Theory prediction 8 TeV Theory prediction 10⁴ ≥1i ≥2j ≥2i 10³ ≥3j __<mark>⊽</mark>__ Wγ Zγ ≥3j ≥4i ww+wz WW 10² WZ ΖZ $E_{\tau}^{jet} > 30 \text{ GeV}$ E_{τ}^{γ} > 15 GeV 10 $|\eta^{jet}| < 2.4$ $\Delta R(\gamma, I) > 0.7$ 5.0 fb⁻¹ 4.9 fb⁻¹ 4.9 fb 1.1 fb⁻¹ 36, 19 pb⁻¹ 5.0 fb⁻¹ 3.5 fb⁻¹ 5.3 fb JHEP10(2011)132 CMS-PAS-EWK-11-010 (WZ) CMS EWK-11-009 JHEP01(2012)010 CMS-PAS-SMP-12-005 (WW7), CMS-PAS-SMP-12-011 (W/Z 8 TeV) 007(ZZ7), 013(WW8), 014(ZZ8), 015(WV)

Matthew Herndon, Wisconsin

THE UNIVERSITY

MADISON

LISHEP 2013



Search for $\gamma\gamma \rightarrow WW$ and aQGC

CMS Preliminary 2011, (s=7 TeV, L=5.05 fb⁻¹

- Signal: dileptons (eµ) and missing E_T with central track veto
- Use pTeµ to search for aQGC.

- Impressive number of EWK results from the CMS
 - Precise tests of the Standard Model at TeV scale
 - Agreement with theory in most cases
 - Starting to set serious constraints on electroweak parameters and PDFs
 - Measurements are challenging NLO and NNLO predictions
- Still much of the LHC data at 8 TeV to be analyzed
 - More results with improved precision and new topics expected soon, stay tuned!