New probes for QGP: quarkonium polarisation at LHC

- A long standing puzzle
- General remarks on the measurement procedure
- A rotation-invariant formalism to measure vector polarizations
- Quarkonium polarization measurements
- Heavy Ion applications

in collaboration with Pietro Faccioli, Carlos Lourenço, Hermine Wöhri LISHEP, Rio de Janeiro, 17-23 March 2013

INSTITUTO SUPERIOR TÉCNICO

A long standing problem

One assumes that the production of **quark-antiquark states** can be described using **perturbative QCD**, as long as we "**factor out**" long-distance bound-state effects

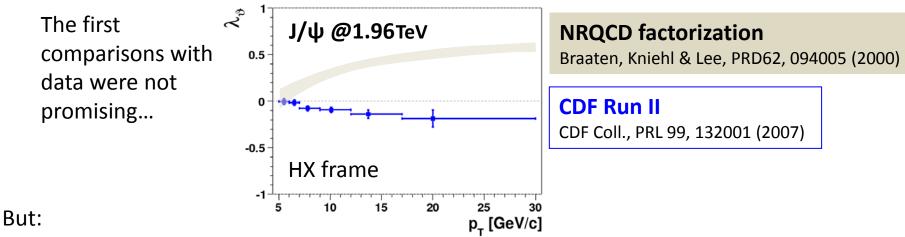
An inescapable prediction of the semi-perturbative approach (NRQCD) is that "high" p_T quarkonia come from fragmenting gluons and are fully tranversely polarized

NRQCD CSM Despite good 10 100 ψ(2S) production LO $BR(J/\psi \rightarrow \mu^{+}\mu^{-}) d\sigma(p\bar{p} \rightarrow J/\psi + X)/dp_{T} (nb/GeV)$ do /dP_Tl_{lyl⊲0.6} x Br (nb/GeV) success in at sqrt(s)=1.96 TeV 10 NLO $\sqrt{s} = 1.8 \text{ TeV}; |\eta| < 0.6$ NNLO* describing cross 1 CDF data colour-octet S₀ + P₁ scale and mass uncertainties 0.1 :olour-actet sections... combined in guadrature LO colour-singlet colour-singlet frag. 0.01 10 CDF 0.001 0.0001 10 CSM 1e-05 @LO NRQCD for NNLO* curves: $m_c^2 < s_{ii}^{min} < 4 m_c^2$ (CSM + COM) 1e-06 10 0 10 15 20 25 30 5 10 5 15 *p*_T [GeV/c] P_T (GeV)

A long standing problem

One assumes that the production of **quark-antiquark states** can be described using **perturbative QCD**, as long as we "**factor out**" long-distance bound-state effects

An inescapable prediction of the semi-perturbative approach (NRQCD) is that "high" p_T quarkonia come from fragmenting gluons and are fully tranversely polarized



 the current experimental situation is contradictory and incomplete, as it was emphasized in Eur. Phys. J. C69, 657 (2010)

 \rightarrow improve drastically the quality of the experimental information

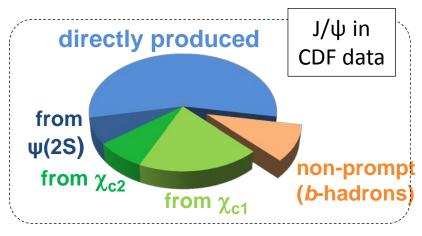
- maybe the theory is only valid at asymptotically high $p_T \rightarrow$ extend measurements to $p_T >> M$
- contributions of intermediate *P*-wave states have not been fully calculated yet and are still unknown experimentally
 - \rightarrow measure polarizations of *directly* produced states, ψ' and $\Upsilon(3S)$
 - \rightarrow measure polarizations of *P*-wave states, χ_c and χ_b , and their feeddown to *S* states

Strongly interrelated measurements

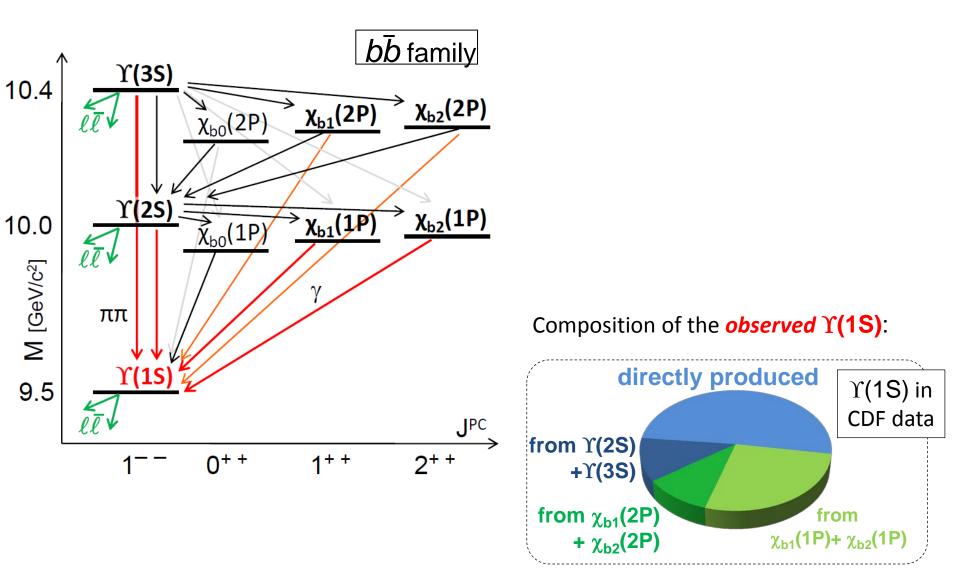


Measuring the properties of all family members is essential to fully understand quarkonium production

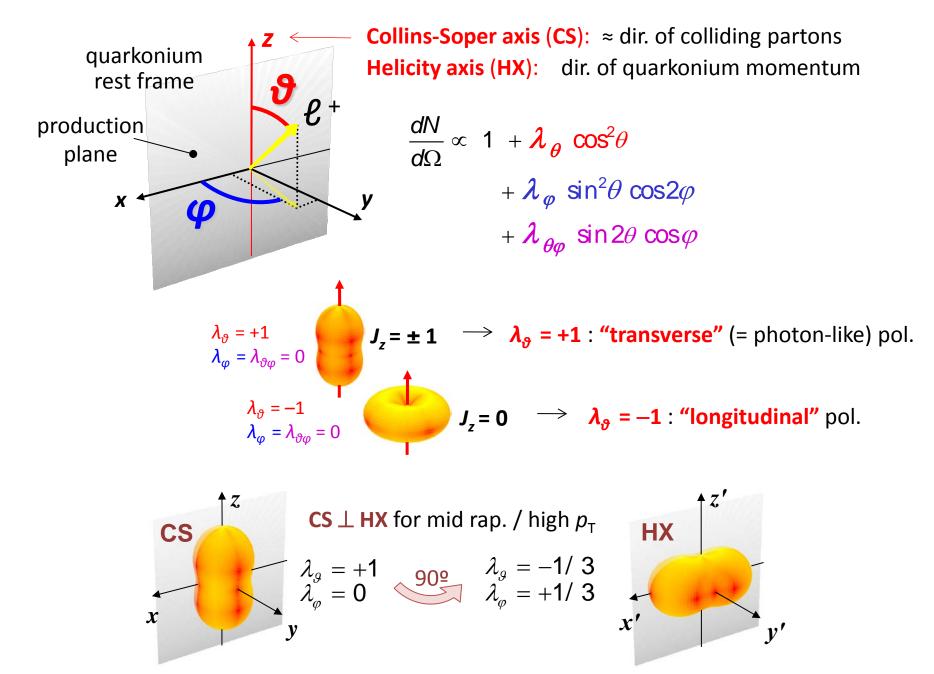
For example, the **observed prompt** J/ψ embodies production properties of all charmonium states in a global "average":



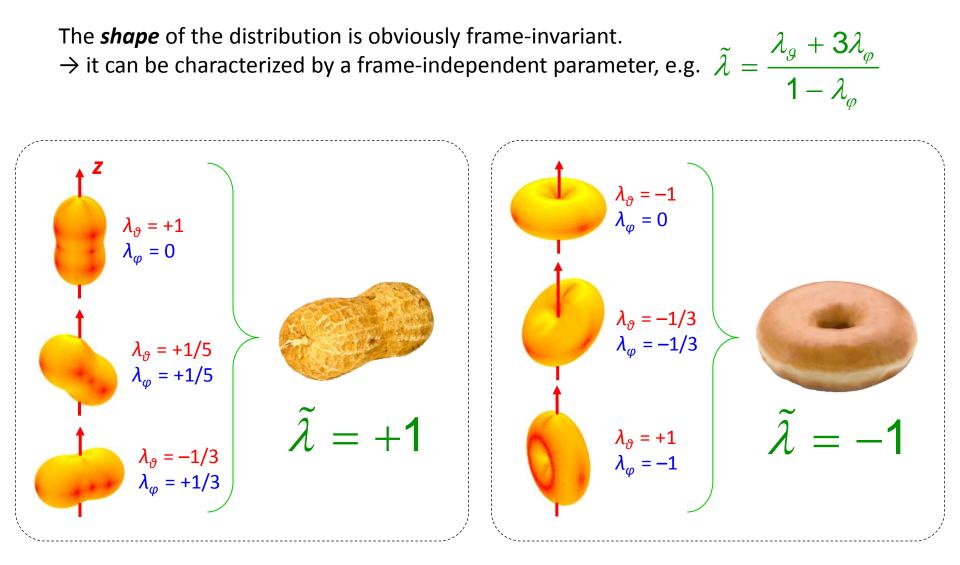
Strongly interrelated measurements



Frames and parameters



Frame-independent polarization



FLSW, PRL 105, 061601; PRD 82, 096002; PRD 83, 056008

J=1 states are intrinsically polarized

Single elementary subprocess: $\ket{\psi} = a_{-1} \ket{1, -1} + a_0 \ket{1, 0} + a_{+1} \ket{1, + 1}$

$$\frac{dN}{d\Omega} \propto 1 + \lambda_{\theta} \cos^{2}\theta + \lambda_{\varphi} \sin^{2}\theta \cos^{2}\varphi + \lambda_{\theta\varphi} \sin^{2}\theta \cos\varphi + \dots$$

$$\frac{1 - 3|a_{0}|^{2}}{1 + |a_{0}|^{2}} \qquad \frac{2\operatorname{Rea}_{+1}^{*}a_{-1}}{1 + |a_{0}|^{2}} \qquad \frac{\sqrt{2}\operatorname{Re}[a_{0}^{*}(a_{+1} - a_{-1})]}{1 + |a_{0}|^{2}}$$

There is no combination of a_0 , a_{+1} and a_{-1} such that $\lambda_{\vartheta} = \lambda_{\varphi} = \lambda_{\vartheta\varphi} = 0$ The angular distribution is <u>never intrinsically isotropic</u>

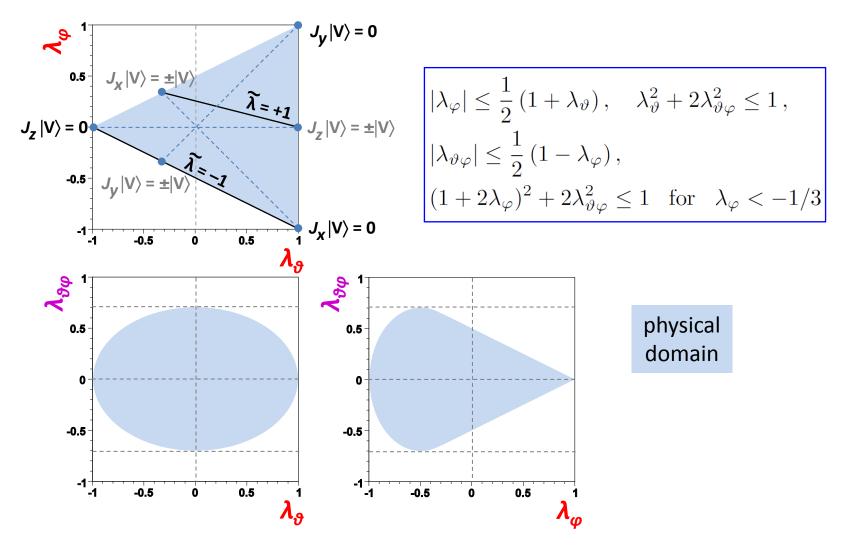
Only a "fortunate" *mixture of subprocesses* (or randomization effects) can lead to a cancellation of *all three* observed anisotropy parameters

To measure zero polarization would be (in fact, is) an exceptionally interesting result...

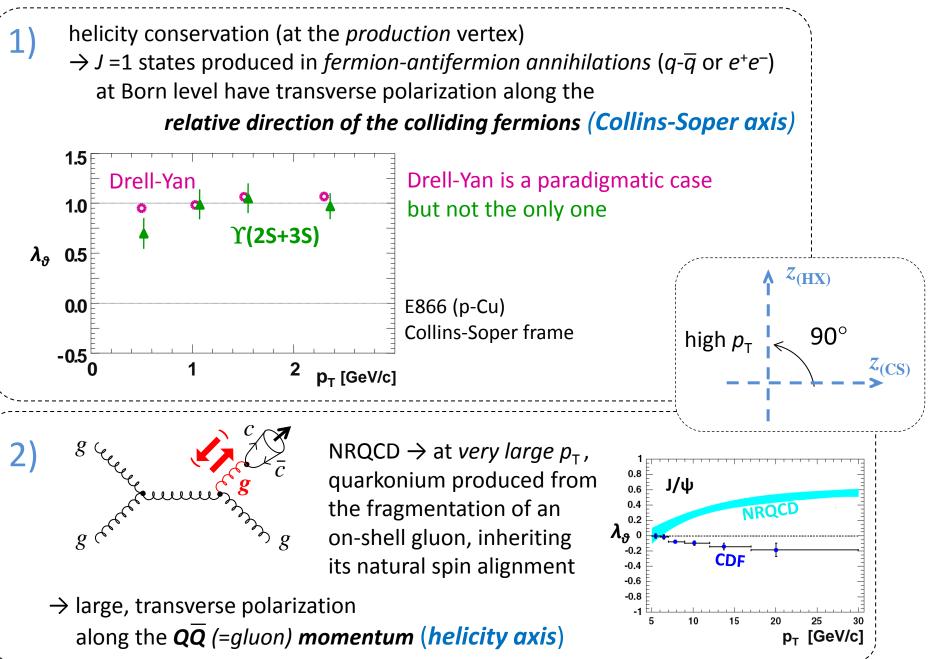
Positivity constraints for dilepton distributions

P. F., C.L., J.S., Phys. Rev. D 83, 056008 (2011)

• General and frame-independent constraints on the anisotropy parameters of vector particle decays



Which polarization axis?

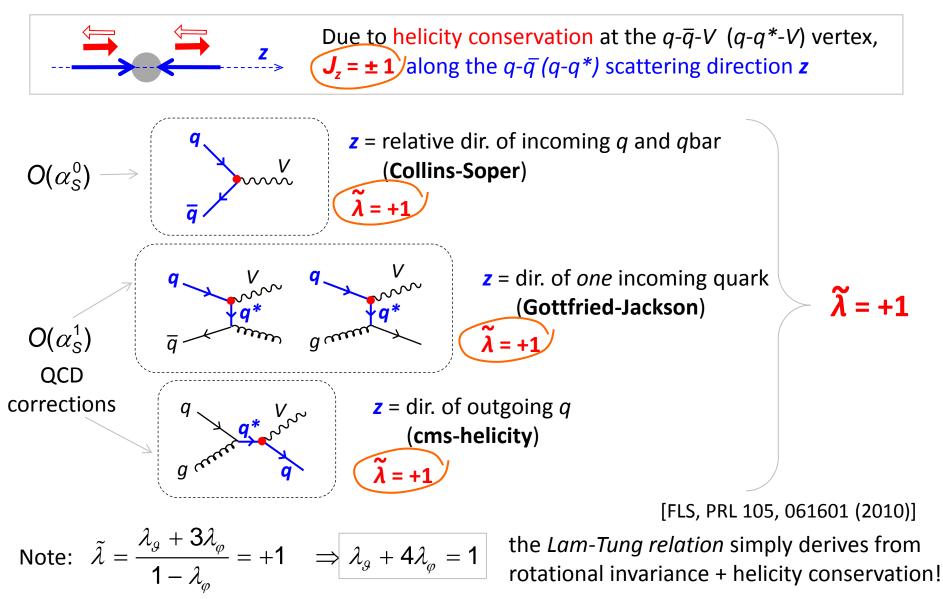


Example: Drell-Yan, Z and W polarization

• always fully transverse polarization

$$V = \gamma^*, Z, W$$

• but with respect to a *subprocess-dependent quantization axis*



Advantages of "frame-invariant" measurements

Gedankenscenario:

Consider this (purely hypothetic) mixture of subprocesses for Υ production:

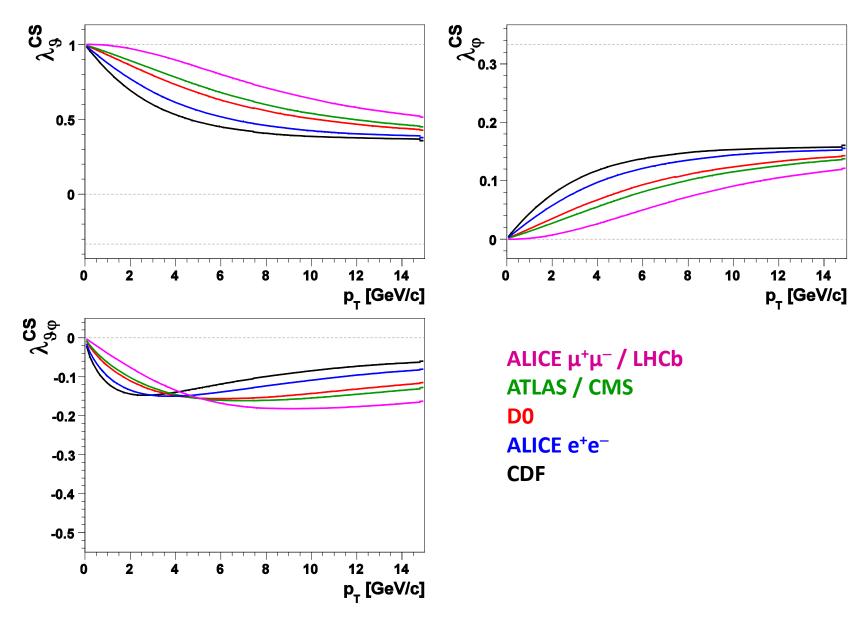
- 60% of the events have a natural transverse polarization in the CS frame
- 40% of the events have a natural transverse polarization in the HX frame

As before:

CDF	y < 0.6
D0	y < 1.8
ATLAS & CMS	y < 2.5
ALICE e ⁺ e ⁻	y < 0.9
ALICE μ⁺μ⁻	-4 < y < -2.5
LHCb	2 < y < 5

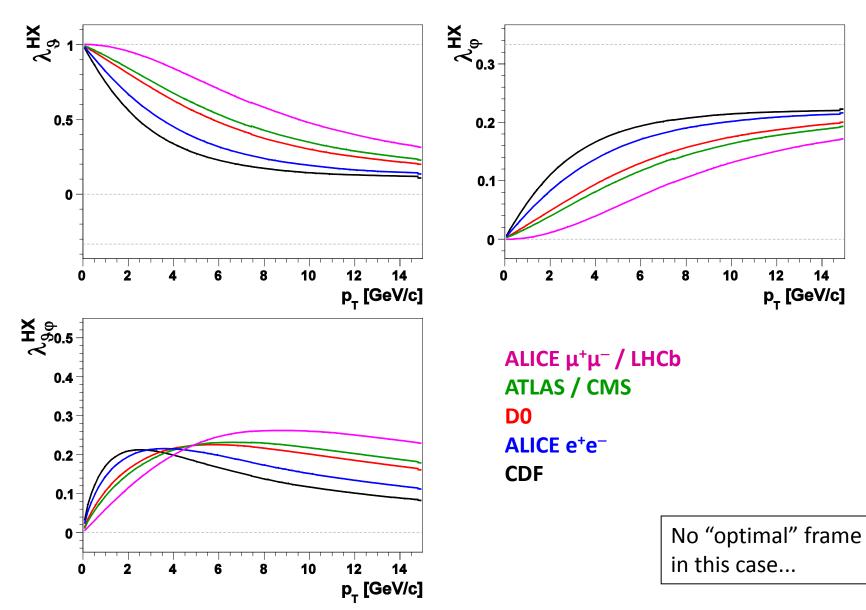
Frame choice 1

All experiments choose the CS frame

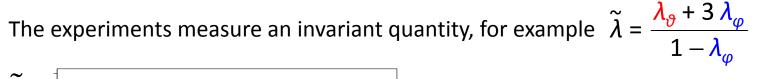


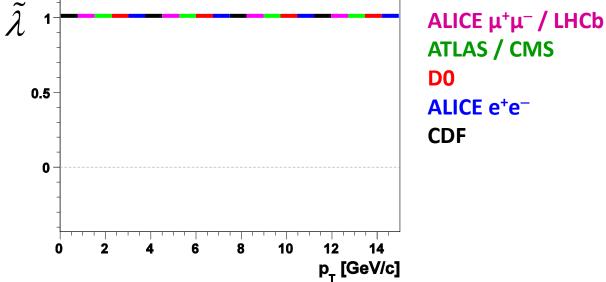
Frame choice 2

All experiments choose the HX frame



Any frame choice





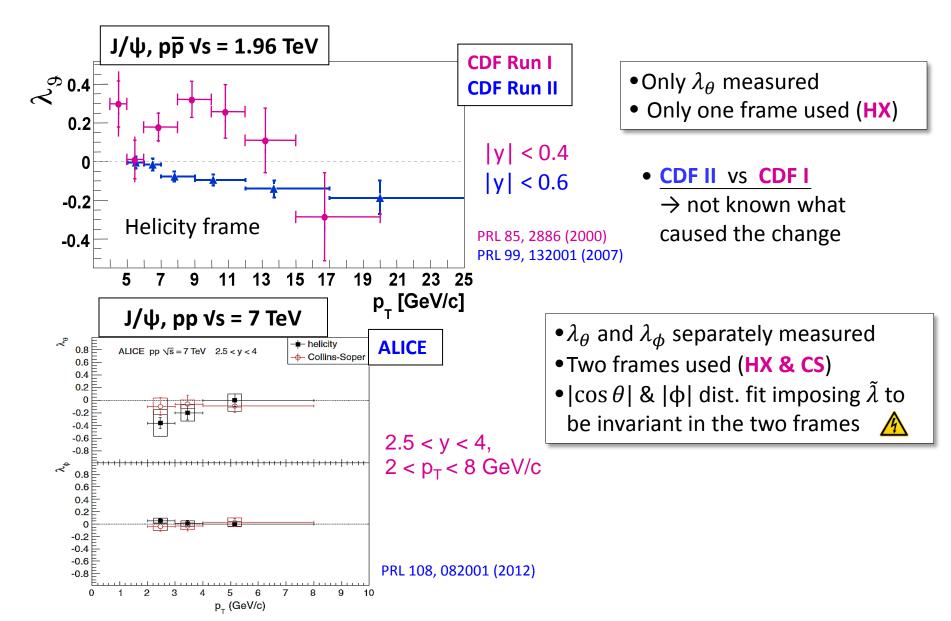
Using $\tilde{\lambda}$ we measure an "intrinsic quality" of the polarization (always transverse and kinematics-independent, in this case)

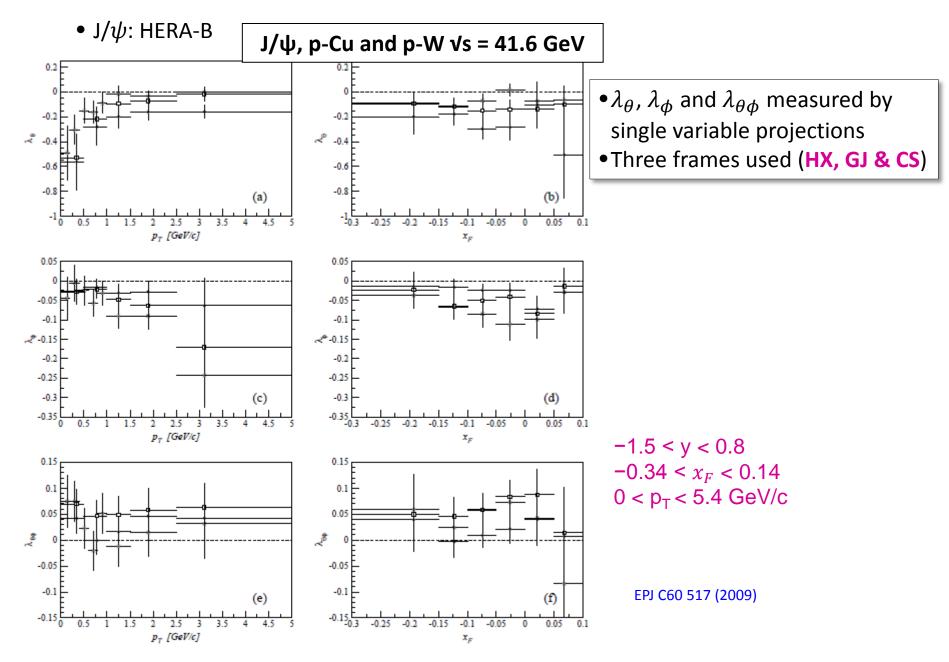
Frame-invariant quantities

- are immune to "extrinsic" kinematic dependencies
- minimize the acceptance-dependence of the measurement
- facilitate the comparison between experiments, and between data and theory
- can be used as a cross-check: is the measured λ identical in different frames? (not trivial: spurious anisotropies induced by the detector do not have the qualities of a J = 1 decay distribution)

[FLSW, PRD 81, 111502(R) (2010), EPJC 69, 657 (2010)]

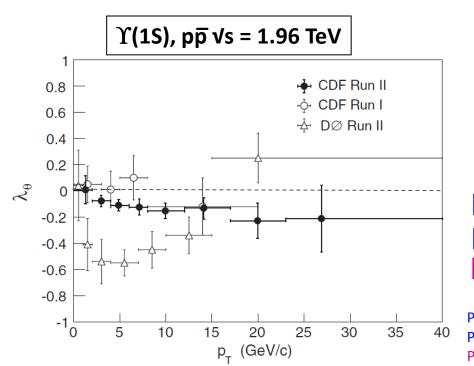
• J/ ψ : Measurements at Tevatron , LHC (ALICE)





17

• Y(nS): Measurements at Tevatron (2002-2012)



CDF+DØ (2002)

- •Only λ_{θ} measured
- Only one frame used (HX)

CDF (2012)

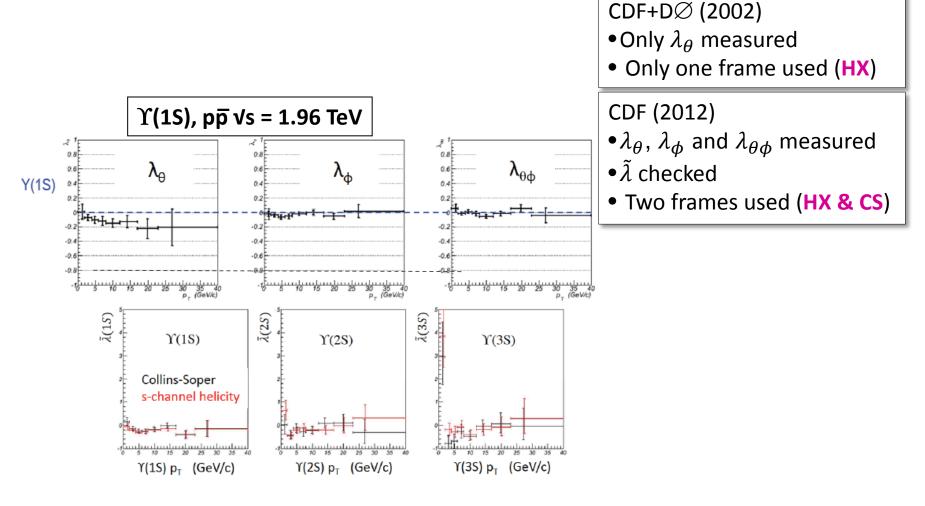
- • λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ measured
- • $\tilde{\lambda}$ checked
- Two frames used (HX & CS)

|y| < 0.4 **vs** = **1.8 TeV** (2002) |y| < 0.6 |y| < 1.8

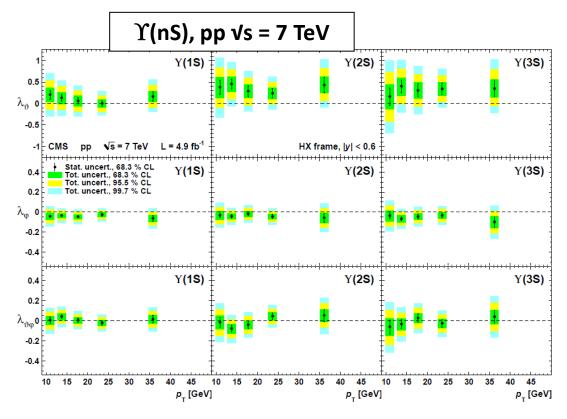
PRL 88, 161802 (2002) PRL 108, 151802 (2012) PRL 101, 182004 (2008)

CDF vs **D0**: Can a strong *rapidity dependence* justify the discrepancy?

• Y(nS): Measurements at Tevatron (2002-2012)



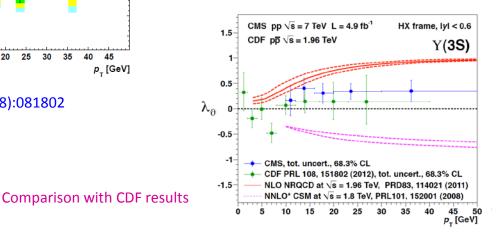
• Y(nS): Measurements at LHC (CMS)



Phys Rev Lett. 2013 110(8):081802

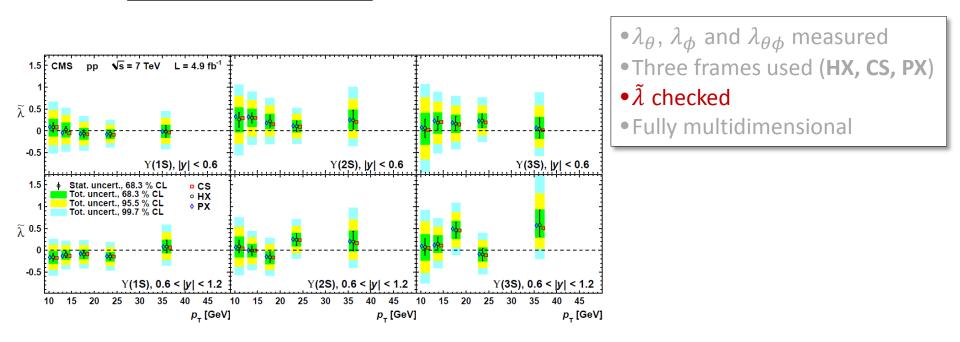
• λ_{θ} , λ_{ϕ} and $\lambda_{\theta\phi}$ measured •Three frames used (**HX**, **CS**, **PX**) • $\tilde{\lambda}$ checked •Fully multidimensional

|y| < 0.6 0.6<|y| < 1.2 10 < p_T < 40 GeV/c

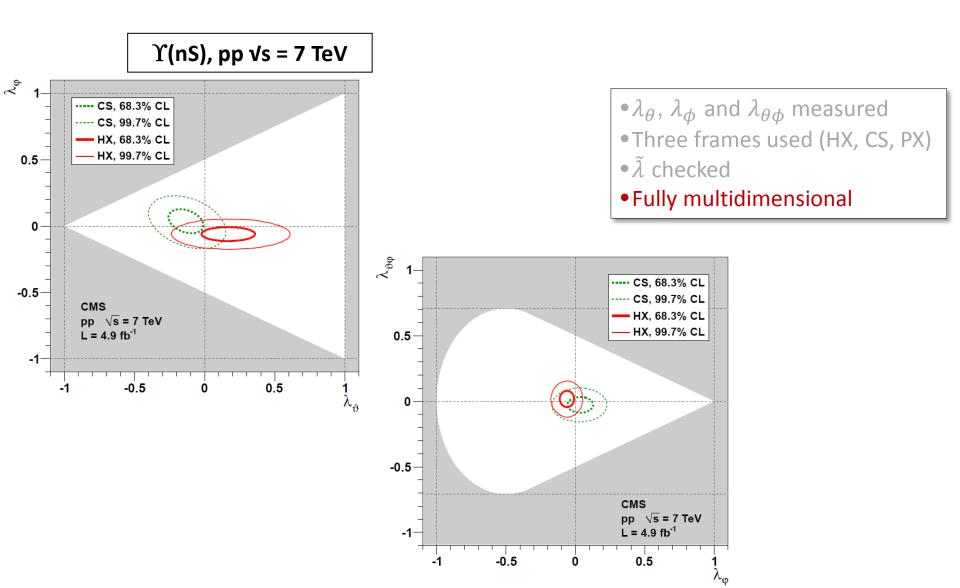


• Υ(nS): Measurements at LHC (CMS)

Ύ(nS), pp vs = 7 TeV



• Y(nS): Mesurements at LHC (CMS)



• **Y**(nS): E866/NuSea

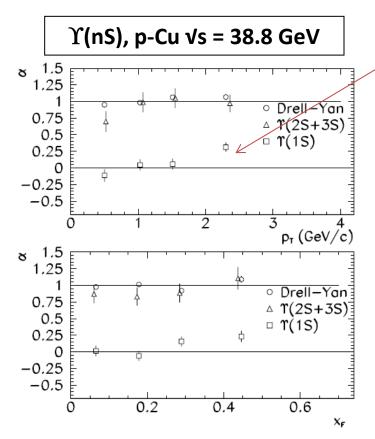
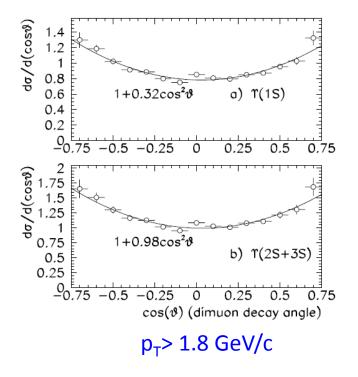


FIG. 4. (a) α versus p_T for the Drell-Yan sidebands (8.1 < $m_{\mu^+\mu^-}$ < 8.45 GeV and 11.1 < $m_{\mu^+\mu^-}$ < 15.0 GeV), Y(1S) (8.8 < $m_{\mu^+\mu^-}$ < 10.0 GeV), and Y(2S + 3S) (10.0 < $m_{\mu^+\mu^-}$ < 11.1 GeV). (b) α versus x_F for the same mass regions. The errors shown are statistical; there is an additional systematic error not shown of 0.02 in α for Drell-Yan polarizations and 0.06 in α for onium polarizations.

Most reasonable explanation is that most $\Upsilon(1S)$ come from $\chi_{\rm b}$ and have very different polarization

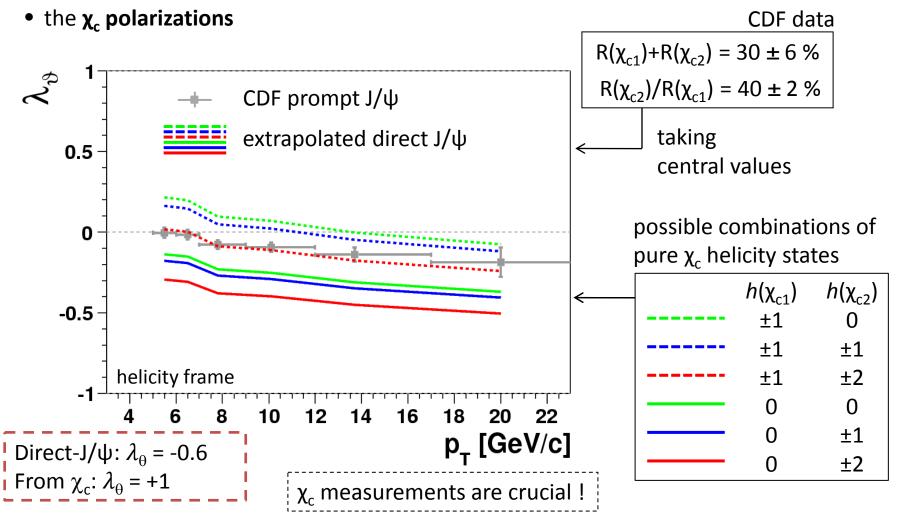
- Υ(nS) measured
- • $\lambda_{ heta}$ measured
- One frame used (CS)



Direct vs. prompt J/ ψ

The <u>direct</u>-J/ ψ polarization (cleanest theory prediction) can be derived from the <u>prompt</u>-J/ ψ polarization measurement of CDF knowing

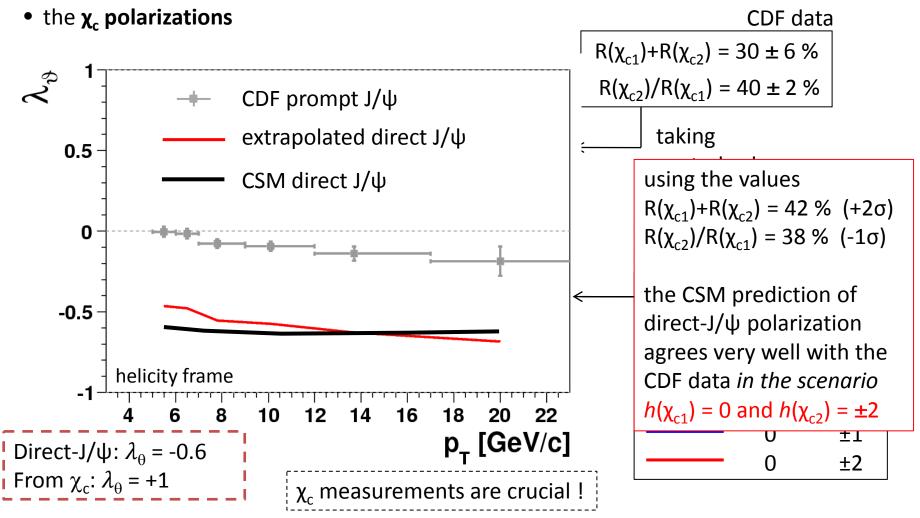
• the χ_c -to-J/ ψ feed-down fractions



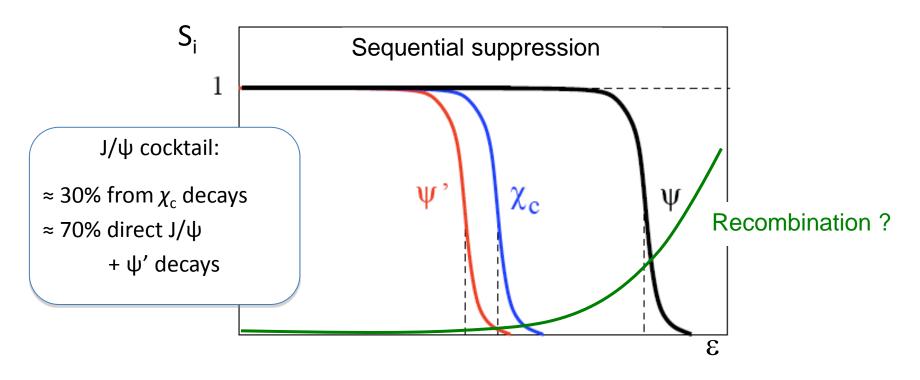
Direct vs. prompt J/ψ

The <u>direct</u>-J/ ψ polarization (cleanest theory prediction) can be derived from the <u>prompt</u>-J/ ψ polarization measurement of CDF knowing

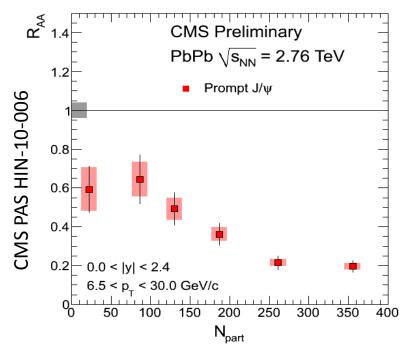
• the χ_c -to-J/ ψ feed-down fractions



J/ψ polarization as a signal of colour deconfinement?



• As the χ_c (and ψ') mesons get dissolved by the QGP, λ_{ϑ} should *change to its direct value*



P. Faccioli, JS, PRD 85, 074005 (2012)

CMS data:

- up to 80% of J/ ψ 's disappear from pp to Pb-Pb
- more than 50%
 (≥ fraction of J/ψ's from ψ' and χ_c)
 disappear from peripheral to central collisions
- → sequential suppression gedankenscenario: in central events ψ' and χ_c are fully suppressed and all J/ ψ 's are *direct*

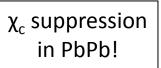
It may be impossible to test this directly:

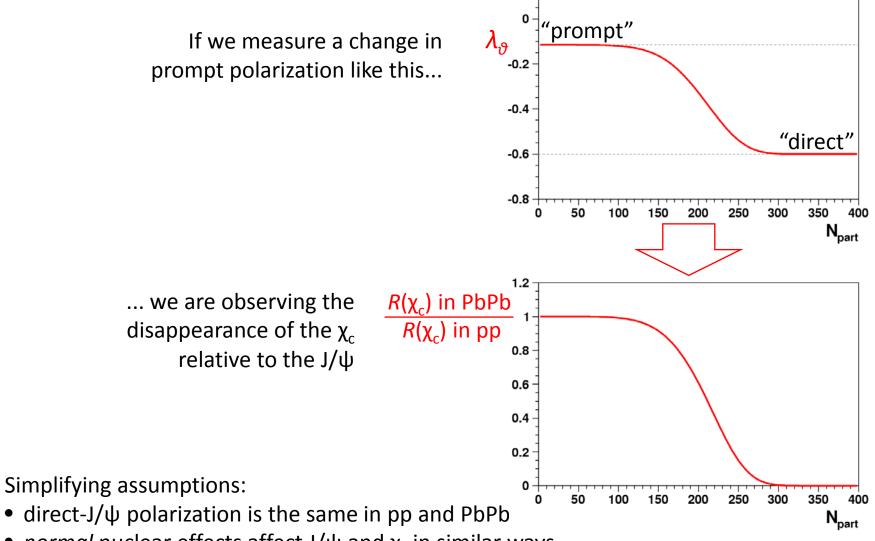
measuring the χ_c yield (reconstructing χ_c radiative decays) in PbPb collisions is prohibitively difficult due to the huge number of photons

However, a change of prompt-J/ polarization must occur from pp to central Pb-Pb!

Reasonable sequence of measurements:

- 1) prompt J/ ψ polarization in pp
- 2) χ_c -to-J/ ψ fractions in pp
- 3) χ_c polarizations in pp
- 4) prompt J/ ψ polarization in PbPb

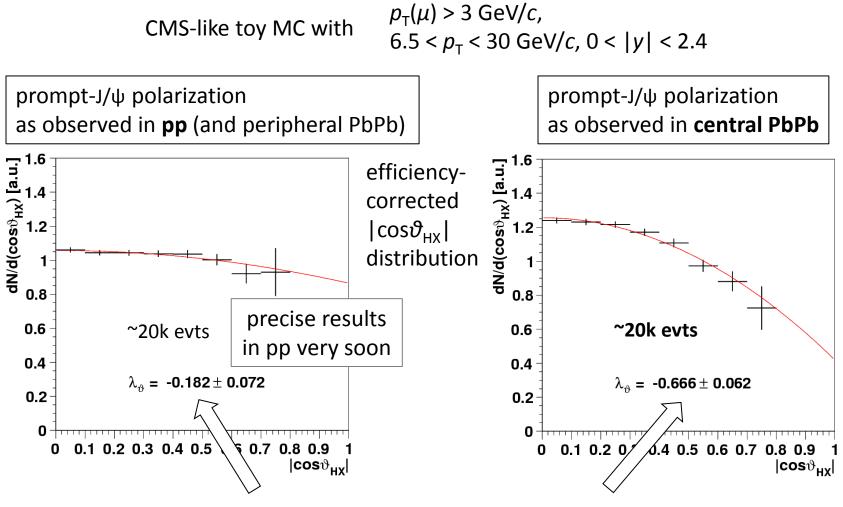




- normal nuclear effects affect J/ ψ and χ_c in similar ways
- χ_{c1} and χ_{c2} are equally suppressed in PbPb

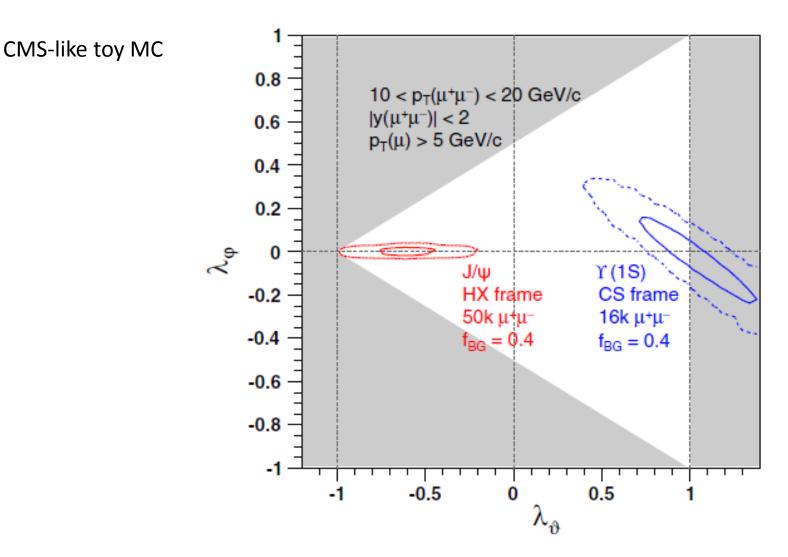
29

When will we be sensitive to an effect like this?



In this scenario, the χ_c disappearance is measurable at ~5 σ level with ~20k J/ ψ 's in central Pb-Pb collisions

When will we be sensitive to an effect like this?



Summary

• The new quarkonium polarization measurements have many improvements with respect to previous analyses

Will we are starting to (experimentally) solve an old puzzle

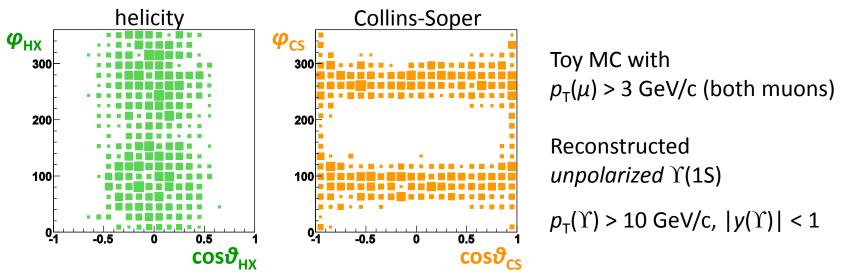
- General advice: do not throw away physical information! (azimuthal-angle distribution, rapidity dependance, ...)
- A new method based on rotation-invariant observables gives several advantages in the measurement of decay distributions and in the use of polarization information
- Quarkonium polarization can be used to probe QGP formation

Backup slides

Some remarks on methodology

• Measurements are challenging

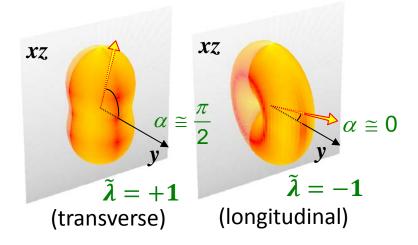
A typical collider experiment imposes p_T cuts on the single muons;
 this creates zero-acceptance domains in decay distributions from "low" masses:



• This spurious "polarization" must be accurately taken into account.

- Large holes strongly reduce the precision in the extracted parameters
- In the analyses we must avoid simplifications that make the present results sometimes difficult to be interpreted:
 - only λ_{θ} measured, azimuthal dependence ignored
 - one polarization frame "arbitrarily" chosen a priori
 - no rapidity dependence

Frame-independent angular distribution

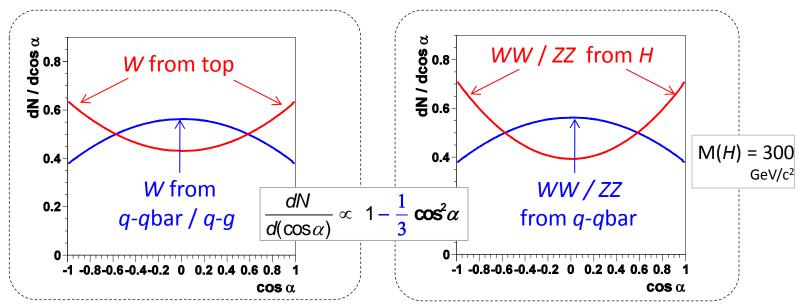


 $\tilde{\lambda}$ determines the event distribution of the angle α of the lepton w.r.t. the y axis of the polarization frame:

$$\frac{dN}{d(\cos\alpha)} \propto 1 - \frac{\tilde{\lambda}}{2 + \tilde{\lambda}} \cos^2 \alpha$$

Example:

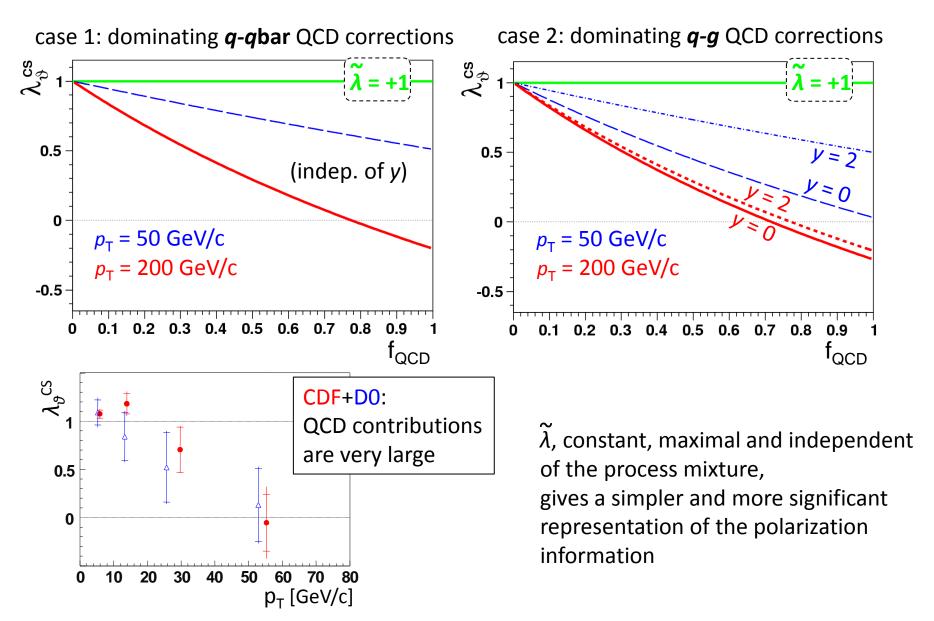
lepton emitted at small $\cos \alpha$ is more likely to come from directly produced W / Z



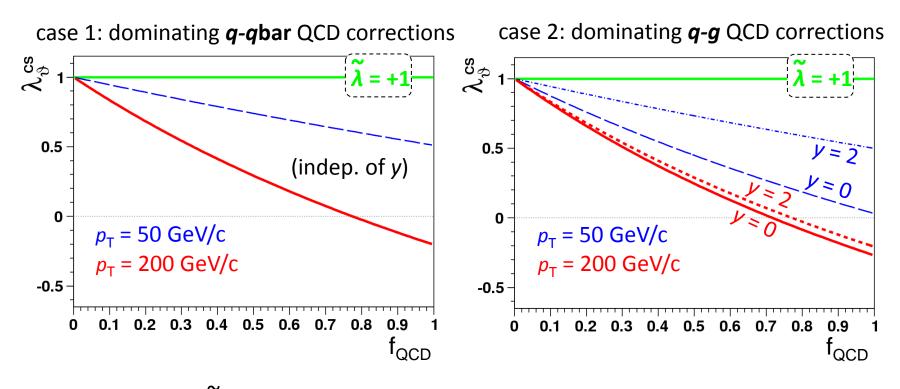
independent of W/Z kinematics

$\lambda_{\vartheta}(CS)$ vs $\widetilde{\lambda}$

Example: W polarization as a function of contribution of LO QCD corrections, p_T and y:



$\lambda_{\vartheta}(CS)$ vs $\widetilde{\lambda}$

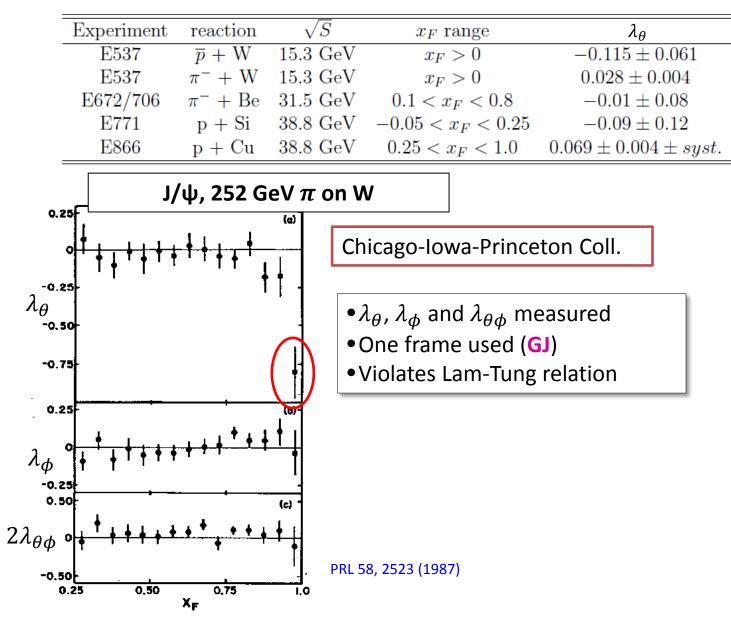


On the other hand, λ forgets about the direction of the quantization axis. In this case, this information is crucial if we want to disentangle the qg contribution, the only one giving maximum spin-alignment along the boson momentum, resulting in a rapidity-dependent λ_{ϑ}

Measuring $\lambda_{\vartheta}(CS)$ as a function of rapidity gives information on the gluon content of the proton!

Quarkonium polarization: a "puzzle"

• J/ ψ : Other fixed target experiments



Using polarization to identify processes

If the polarization depends on the specific production process (in a known way), it can be used to characterize "signal" and "background" processes.

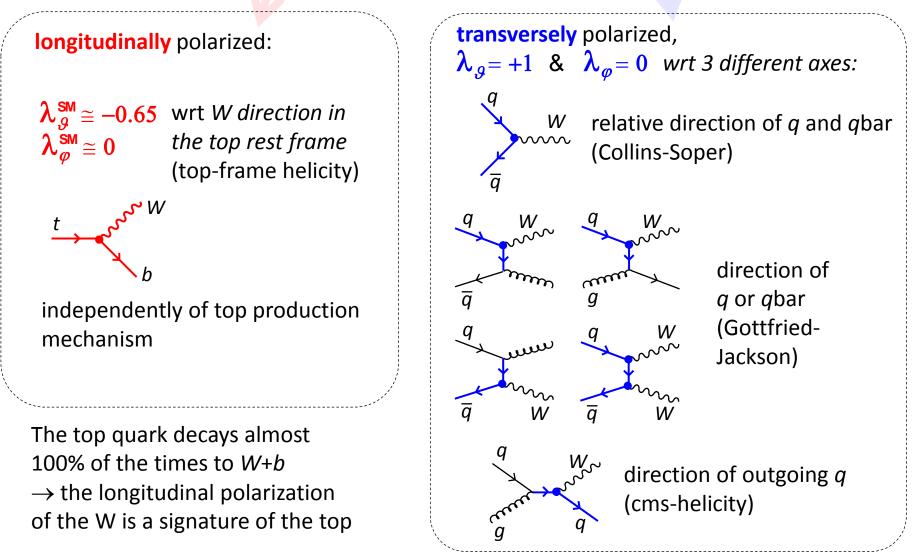
In certain situations the rotation-invariant formalism can allow us to

- estimate relative contributions of signal and background in the distribution of events
- attribute to each event a likelihood to be signal or background (work in progress)

Example n. 1: W from top \leftrightarrow W from q-qbar and q-g

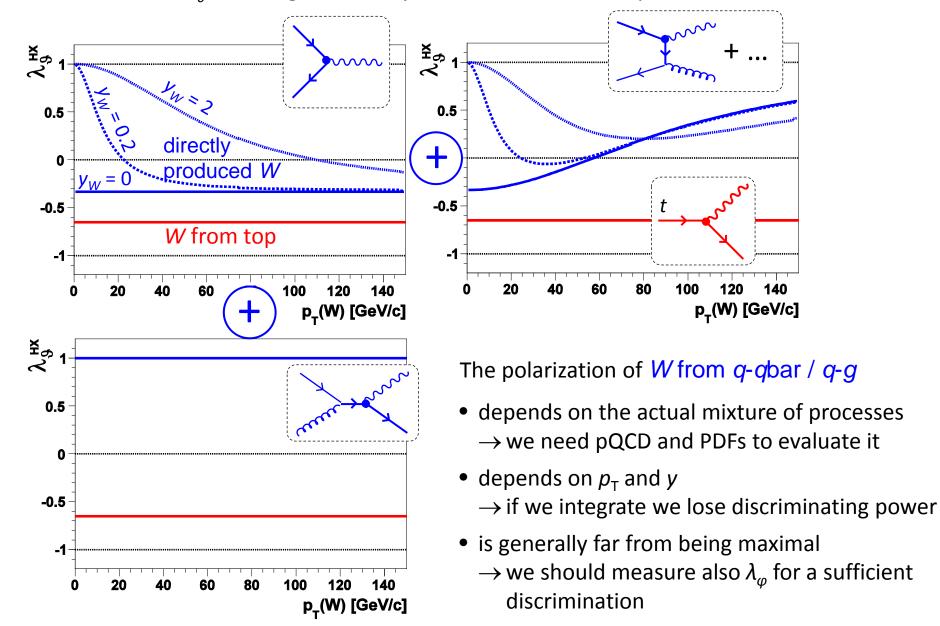
Hypothetical, illustrative experimental situation:

- selected W's come either from top decays or from direct production (+jets)
- we want to estimate the relative contribution of the two types of W, using polarization



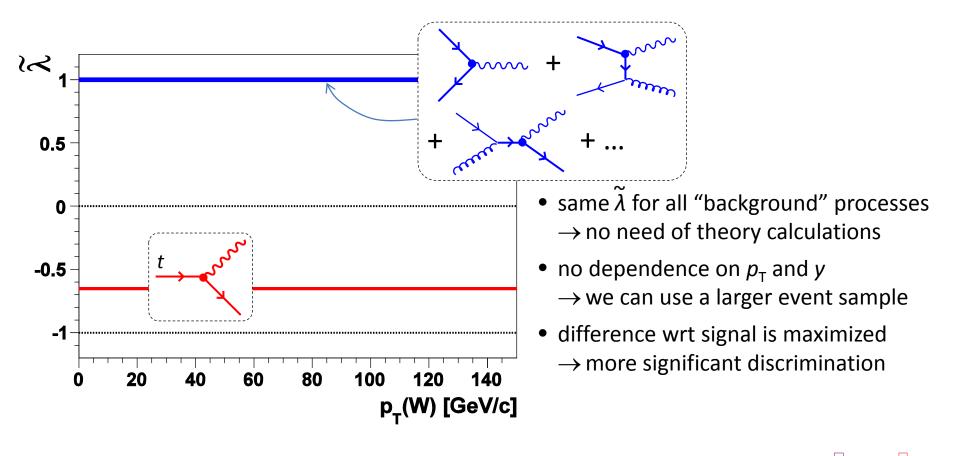
a) Frame-dependent approach

We measure λ_{β} choosing the helicity axis defined wrt the top rest frame



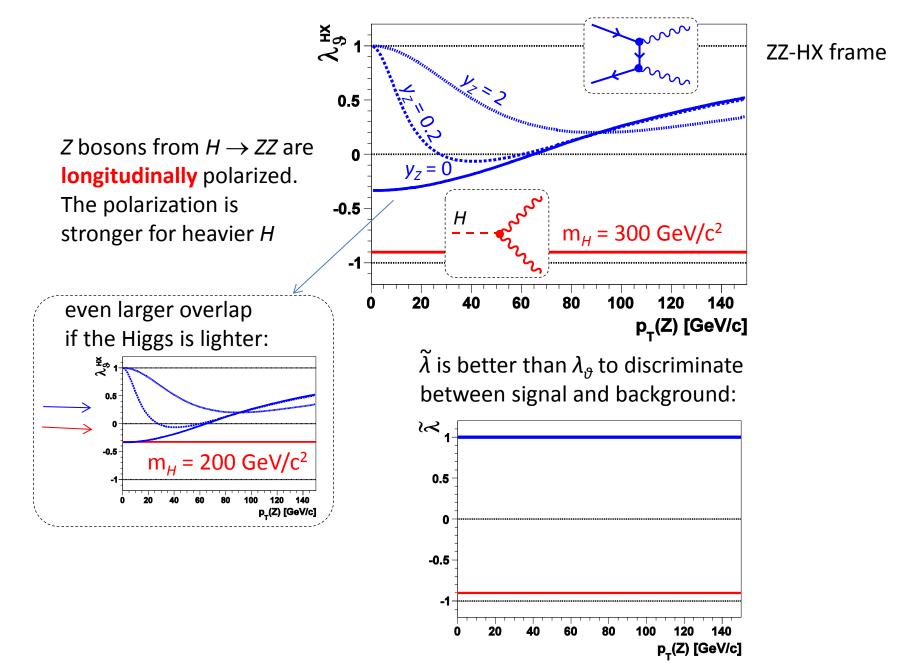
b) Rotation-invariant approach

We measure $\tilde{\lambda}$, choosing any frame defined using beam directions (cms-HX, CS, GJ...)



From the measured overall $\tilde{\lambda}$ we can deduce the fraction $f_{top} = \frac{N(W \text{ from } t)}{N_{tot}(W)} = \frac{1-\frac{1}{2}}{3+\frac{1}{2}} \frac{3+\frac{1}{2}t_{top}}{1-\frac{1}{2}t_{top}}$ E.g. $\lambda = 0.0 \pm 0.1 \stackrel{\text{(a)}}{\Rightarrow} f_t = (50 \pm 7)\%$

Example n. 2: Z (W) from Higgs \leftrightarrow Z (W) from q-qbar



Rotation-invariant parity asymmetry

parity-violating terms $\frac{dN}{d\Omega} \propto 1 + \dots + 2A_{\theta} \cos\theta + 2A_{\varphi} \sin\theta \cos\varphi + 2A_{\varphi}^{\perp} \sin\theta \sin\varphi$

$$\tilde{\mathcal{A}} = \frac{4}{3 + \lambda_{g}} \sqrt{A_{\theta}^{2} + A_{\varphi}^{2} + A_{\varphi}^{\perp 2}}$$

is invariant under *any* rotation

It represents the magnitude of the *maximum observable parity asymmetry*, i.e. of the *net* asymmetry as it can be measured along the polarization axis that maximizes it (which is the one minimizing the helicity-0 component)

$$V \rightarrow f\bar{f} \qquad \tilde{\mathcal{A}} = \max_{z} \frac{P(\pm 1, \pm 1) - P(\pm 1, \mp 1)}{P(\pm 1, \pm 1) + P(\pm 1, \mp 1)}$$

$$\tilde{\mathcal{A}} = \max_{z} \frac{P(\pm 1, \pm 1) - P(\pm 1, \mp 1)}{P(\pm 1, \pm 1) + P(\pm 1, \mp 1)}$$

[PRD 82, 096002 (2010)]

Frame-independent "forward-backward" asymmetry

The rotation invariant parity asymmetry can also be written as

$$\tilde{\mathcal{A}} = \frac{4}{3} \sqrt{\mathcal{A}_{\cos\theta}^2 + \mathcal{A}_{\cos\varphi}^2 + \mathcal{A}_{\sin\varphi}^{\perp 2}}$$

$$\mathcal{A}_{\cos\theta} = \frac{N(\cos\theta > 0) - N(\cos\theta < 0)}{N_{\text{tot}}} = \mathcal{A}_{\text{FB}} \leftarrow \mathcal{A}_{\cos\varphi} = \frac{N(\cos\varphi > 0) - N(\cos\varphi < 0)}{N_{\text{tot}}}$$
$$\mathcal{A}_{\sin\varphi} = \frac{N(\sin\varphi > 0) - N(\sin\varphi < 0)}{N_{\text{tot}}}$$

- Z "forward-backward asymmetry"
- (related to) W "charge asymmetry"

experiments usually measure these in the Collins-Soper frame

 $\mathcal{\tilde{A}}$ can provide a better measurement of parity violation:

- it is not reduced by a non-optimal frame choice
- it is free from extrinsic kinematic dependencies
- it can be checked in two "orthogonal" frames

$\mathcal{A}_{FB}(CS)$ vs $\tilde{\mathcal{A}}$

In general, we lose significance when measuring only the azimuthal "projection" of the asymmetry (\mathcal{A}_{FB}) wrt some chosen axis

This is especially relevant if we do not know a priori the optimal quantization axis

Example: imagine an unknown massive boson

70% polarized in the HX frame and 30% in the CS frame

By how much is $\mathcal{A}_{FB}(CS)$ smaller than $\tilde{\mathcal{A}}$ if we measure in the CS frame?



Larger loss of significance for smaller mass, higher p_T , mid-rapidity

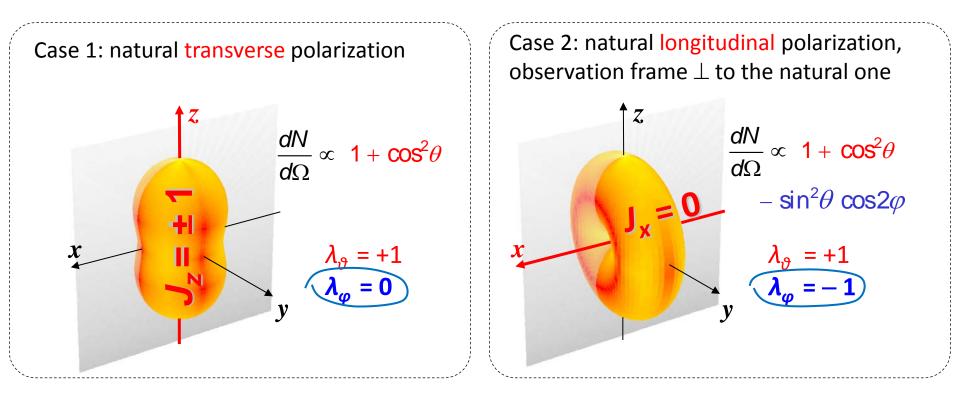
$\psi' \rightarrow J/\psi$ x-section ratio experimental parameters

Experiment	Collision system	$E_{\rm beam} [{\rm GeV}]$	Phase space	$\langle x_{\rm F} \rangle$
E331 [5]	p-C	225	$0 < x_{\rm F} < 0.7$	$\simeq 0.3$
E444 [6]	p-C	225	$0 < x_{\rm F} < 0.9$	$\simeq 0.35$
E705 [7]	p-Li	300	$-0.1 < x_{\rm F} < 0.5$	$\simeq 0.2$
E288 [8]	p-Be	400	$-0.6 < x_{\rm F} < 0.8$	$\simeq 0.1$
NA38 [9]	p-W/U	200	$-0.4 < y_{\rm cm} < 0.6$	$\simeq 0$
	p-C/Al/Cu/W	450	$-0.4 < g_{\rm cm} < 0.0$	
NA51 [10]	p-H/D	450	$-0.4 < y_{\rm cm} < 0.6$	$\simeq 0$
NA50 96/98 [11]	p-Be/Al/Cu/	450	$-0.5 < y_{\rm cm} < 0.5$	$\simeq 0$
	Ag/W	450	$-0.5 < g_{\rm cm} < 0.5$	
NA50 2000 [12]	p-Be/Al/Cu/	400	$-0.425 < y_{\rm cm} < 0.575$	$\simeq 0$
	Ag/W/Pb			
E771 [13]	p-Si	800	$-0.05 < x_{\rm F} < 0.25$	$\simeq 0.1$
E789 [14]	p-Au	800	$-0.03 < x_{\rm F} < 0.15$	$\simeq 0.06$
E866 [15]	p-Be/Fe/W	800	$-0.1 < x_{\rm F} < 0.8$	$\simeq 0.3$
HERA-B [16]	p-C/Ti/W	920	$-0.35 < x_{\rm F} < 0.1$	-0.065
WA39 [17]	π^{\pm} -W	39.5	$-0.5 < x_{\rm F} < 0.8$	$\simeq 0.2$
E537 [18]	π^{-} -W	125	$0 < x_{\rm F} < 1$	$\simeq 0.3$
WA11 [19]	π^{-} -Be	150	$-0.4 < x_{\rm F} < 0.9$	$\simeq 0.3$
E331 [5]	π^+ -C	225	$0 < x_{\rm F} < 0.9$	$\simeq 0.35$
E444 [6]	π^{\pm} -C	225	$0 < x_{\rm F} < 1$	$\simeq 0.4$
E615 [20]	π^{-} -W	253	$0.3 < x_{\rm F} < 1$	$\simeq 0.6$
E705 [7]	π^{\pm} -Li	300	$-0.1 < x_{\rm F} < 0.5$	$\simeq 0.2$
E672-706 [21]	π^{-} -Be	515	$0.1 < x_{\rm F} < 0.8$	$\simeq 0.4$
Experiment	Collision system	\sqrt{s} [GeV]	Phase space	$\langle x_{\rm F} \rangle$
ISR [22]	pp	58 (avg.)	$y_{ m cm}\simeq 0$	0

$R(\chi_c)$ experimental parameters

Experiment	Collision system	$E_{\rm beam}$ [GeV]	Phase space	$\langle x_{\rm F} \rangle$
E369-610-673 [23]	p-Be	225 (avg.)	$0.1 < x_{\rm F} < 0.6$	0.32
E705 [24]	p-Li	300	$-0.1 < x_{\rm F} < 0.5$	$\simeq 0.2$
E771 [25]	p-Si	800	$-0.05 < x_{\rm F} < 0.25$	$\simeq 0.1$
HERA-B 2000 [26]	p-C/Ti	920	$-0.25 < x_{\rm F} < 0.15$	-0.035
HERA-B 2003 [27]	p-C/W	920	$-0.35 < x_{\rm F} < 0.15$	-0.065
SERPUKHOV-140 [28]	π^{-} -H	38	$0.3 < x_{\rm F} < 0.8$	$\simeq 0.5$
WA11 [29]	π^{-} -Be	185	$-0.4 < x_{\rm F} < 0.9$	$\simeq 0.3$
E369-610-673 [23]	π^- -Be (mostly)	209 (avg.)	$0 < x_{\rm F} < 0.8$	0.43
E705 [24]	π^{\pm} -Li	300	$-0.1 < x_{\rm F} < 0.5$	$\simeq 0.2$
E672-706 [30]	π^{-} -Be	515	$0.1 < x_{\rm F} < 0.8$	$\simeq 0.4$
Experiment	Collision system	$\sqrt{s} [\text{GeV}]$	Phase space	$\langle x_{\rm F} \rangle$
ISR [22, 31]	pp	58 (avg.)	$y_{ m cm}\simeq 0$	0
CDF [32]	$p\bar{p}$	1800	$ y_{ m cm} < 0.6$	0

The azimuthal anisotropy is not a detail



- Two very different physical cases
- Indistinguishable if λ_{φ} is not measured (integration over φ)

Basic meaning of the frame-invariant quantities

Let us suppose that, in the collected events, *n* different elementary subprocesses yield angular momentum states of the kind

$$|\psi^{(i)}\rangle = a^{(i)}_{-1} |1, -1\rangle + a^{(i)}_{\circ} |1, 0\rangle + a^{(i)}_{+1} |1, +1\rangle, \quad i = 1, 2, \dots n$$

(wrt a given quantization axis), each one with probability $f^{(i)}$ ($\sum f^{(i)} = 1$).

The rotational properties of J=1 angular momentum states $\left[d_{+1,M}^{1}(\theta) + d_{-1,M}^{1}(\theta) = \delta_{|M|,1}\right]$ imply that

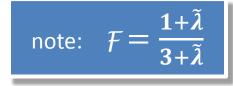
the combinations $\mathbf{a}_{+1}^{(i)} + \mathbf{a}_{-1}^{(i)}$ are independent of the choice of the quantization axis

The quantity

$$\mathcal{F} = \sum_{i=1}^{n} f^{(i)} \mathcal{F}^{(i)} = \frac{1}{2} \sum_{i=1}^{n} f^{(i)} \left| \mathbf{a}_{+1}^{(i)} + \mathbf{a}_{-1}^{(i)} \right|^{2} \quad (0 \le \mathcal{F} \le 1)$$

is therefore frame-independent. It can be shown to be equal to

$$\mathcal{F} = \frac{1 + \lambda_g + 2\lambda_{\varphi}}{3 + \lambda_g}$$



In other words, there always exists a calculable frame-invariant relation of the form

 $(1-\mathcal{F})\lambda_{g}+2\lambda_{\varphi}=3\mathcal{F}-1$

Simple derivation of the Lam-Tung relation

Another consequence of rotational properties of angular momentum eigenstates:

for each state $|\psi^{(i)}\rangle = a_0^{(i)} |0\rangle + a_{+1}^{(i)} |+1\rangle + a_{-1}^{(i)} |-1\rangle$ there exists a quantization axis $z^{(i)^*}$ wrt which $a_0^{(i)^*} = 0$

 \rightarrow dileptons produced in each single elementary subprocess have a distribution of the type

$$\lambda_{g}^{(i)^{*}} = +1, \quad \lambda_{\varphi}^{(i)^{*}} = 2\overline{F}^{(i)} - 1, \quad \lambda_{g\varphi}^{(i)^{*}} = 0 \quad \text{wrt its specific } "a_{0}^{(i)^{*}} = 0" \text{ axis.}$$

$$DY: \underbrace{\left[\begin{array}{c} O(\alpha_{S}^{0}) \\ z^{(i)^{*}} = z_{CS} \end{array}}_{\overline{q}} q^{\gamma} \underbrace{\left[\begin{array}{c} O(\alpha_{S}^{1}) \\ z^{(i)^{*}} = z_{GJ} \end{array}}_{\overline{q}} q^{\gamma} \underbrace{q^{*}}_{q^{*}} q^{\gamma} \underbrace{q^{*}}_{q^{*}} \underbrace{\left[\begin{array}{c} O(\alpha_{S}^{1}) \\ z^{(i)^{*}} = z_{HX} \end{array}}_{\overline{q}} q^{\gamma} \underbrace{q^{*}}_{q^{*}} \underbrace{z^{(i)^{*}} = z_{HX}}_{\overline{q}} q^{\gamma} \underbrace{q^{*}}_{q^{*}} \underbrace{z^{(i)^{*}}}_{\overline{q}} = z_{HX} \underbrace{q^{*}}_{q^{*}} \underbrace{z^{(i)^{*}}}_{q^{*}} = z_{HX} \underbrace{z^{(i)^{*}}}_{q^{*}} z^{(i)^{*}} = z_{HX} \underbrace{z^{(i)^{*}}}_{q^{*}} z^{(i)^{*}} = z_{HX} \underbrace{z^{(i)^{*}}}_{q^{*}} z^{(i)^{*}} = z_{HX} \underbrace{z^{(i)^{*}}}_{q^{*}} z^{(i)^{*}} z^{(i)^{*}} = z_{HX} \underbrace{z^{(i)^{*}}}_{q^{*}} z^{(i)^{*}} z^{($$

Essence of the LT relation

- 1. The *existence* (*and frame-independence*) of the LT relation is the *kinematic* consequence of the rotational properties of J = 1 angular momentum eigenstates
- 2. Its *form* derives from the *dynamical* input that all contributing processes produce a *transversely* polarized ($J_z = \pm 1$) state (wrt whatever axis)

More generally:

 Corrections to the Lam-Tung relation (parton-k_T, higher-twist effects) should continue to yield *invariant* relations.

In the literature, deviations are often searched in the form

$$\lambda_{g} + 4\lambda_{\varphi} = 1 - \Delta$$

But this is not a frame-independent relation. Rather, corrections should be searched in the invariant form

$$\mathcal{F} = 1/2(1 - \Delta_{inv}) \quad \rightarrow \quad \lambda_{g}(1 + \Delta_{inv}) + 4\lambda_{\varphi} = 1 - 3\Delta_{inv}$$

 For any superposition of processes, concerning any J = 1 particle (even in parity-violating cases: W, Z), we can always calculate a *frame-invariant* relation analogous to the LT relation.

A lot of measurements to do...

55

- Measurement of $\chi_{c0}(1P)$, $\chi_{c1}(1P)$ and $\chi_{c2}(1P)$ production cross sections
- Measurement of χ_b (1P), χ_b (2P) and χ_b (3P) production cross sections;
- Measurement of the relative production yields of J = 1 and J = 2 χ_b states
- Measurement of the χ_{c1} (1P) and χ_{c2} (1P) polarizations versus p_{T} and rapidity
- Measurement of the χ_b (1P) and χ_b (2P) polarizations