

CP violation in charmless hadronic B decays at LHCb

Fernando Rodrigues on behalf of the LHCb Collaboration (Centro Brasileiro de Pesquisas Físicas, Brazil)

LISHEP 2013
$17^{\text {th }}-24^{\text {th }}$ March, $2013 \mid$ Rio de Janeiro, Brazil

- Integrated luminosity: $37 \mathrm{pb}^{-1}$ (2010), $1.0 \mathrm{fb}^{-1}$ (2011), $2 \mathrm{fb}^{-1}$ (2012)
- Efficient trigger for many B-decay topologies
- Excellent particle identification for $\pi-K$ separation in a wide momentum range
- Good decay-time resolution in particular to resolve fast B_{S} oscillations
- Good mass resolution to efficiently suppress background
- Proceeds via a gluonic $b \rightarrow s \bar{s} s$ hadronic penguin
- Forbidden at tree level in Standard Model
- SM expectation of ϕ_{s} is zero
- Excellent probe of new heavy particles entering the penguin quantum loops
- 880 ± 31 events observed in KKKK final state $\left[1.0\right.$ fo ${ }^{-1}$ data $]$
- Results presented based on time-dependent tagged angular analysis

Interference of mixing \& decay:

$$
\text { GPphase } \phi_{S}=\phi_{M}+2 \phi_{D}
$$

Analysis method

- Final state a mixture of CP-even and CP-odd eigenstates \rightarrow full angular analysis in helicity basis is employed
- Unbinned maximum likelihood fit is performed to the decay time, \mathbf{t}, and the three angles in helicity bases, $\Omega=\left\{\cos \theta_{1}, \cos \theta_{2}, \Phi\right\}$
- Time resolution accounted for with single Gaussian convolution (39.7 fs resolution from simulation)
- Use of opposite side and same side flavour tagging (see Bruno and Alberto slides)

Acceptances

- Magnetic field causes low p_{T} kaons to be swept out of detector acceptance \rightarrow causes efficiency drop as $\cos \theta_{i} \rightarrow \pm 1$
- Due to KKKK final state, time biasing criteria are unavoidable to select from background, e.g. impact parameter of kaon tracks w.r.t. PV
- These angular and time acceptances are taken from simulation

- Γ_{S} and $\Delta \Gamma_{S}$ are constrained to $B_{S} \rightarrow J / \psi \phi$ measured values $\Gamma_{S}=0.663 \pm 0.008 \mathrm{ps}^{-1}$ and $\Delta \Gamma_{S}=0.100 \pm 0.017 \mathrm{ps}^{-1}$ [LHCb-PAPER-2013-002]
- B_{S} oscillation frequency constrained to the value of $17.73 \pm 0.05 \mathrm{ps}^{-1}$ [LHCb-CONF-2011-050]

- The dominant systematic uncertainties arise from:
- the description of the decay time acceptance;
- the knowledge of the S-wave contamination from $B_{S}^{0} \rightarrow f_{0} \phi$ and $B_{S}^{0} \rightarrow f_{0} f_{0}$
- First time-dependent tagged analysis of $\mathscr{G P}$ in the interference between mixing and decay for the $B_{s}^{0} \rightarrow \phi \phi$.

PRL 108, 201601 (2012)
Previous results

- $\mathcal{A}_{C P}\left(B^{0} \rightarrow K \pi\right)=-0.097 \pm 0.012$ [PDG]
$\rightarrow \mathcal{A}_{C P}\left(B_{S}^{0} \rightarrow K \pi\right)=0.39 \pm 0.17$ [PDG] CDF(PRL106(2011)181802)
Analysis
- Very efficient hadronic trigger \rightarrow one high p_{T} track
- $B_{S}^{0} \rightarrow K \pi \sim 14 \times$ lower decay rate and $\sim 4 \times$ lower production than $B^{0} \rightarrow K \pi$. Applied a tighter selection for B_{S}^{0}.
- Magnet field polarity reversion \rightarrow minimizes instrumental charge asymmetry
- Inclusive hh selection under $\pi \pi$ mass hypothesis within $4.7-5.9 \mathrm{GeV} / c^{2}$
- Unbinned maximum likelihood fit:

$$
N\left(B^{0} \rightarrow K \pi\right)=13250 \pm 150 \quad N\left(B_{S}^{0} \rightarrow K \pi\right)=314 \pm 27
$$

- $\mathcal{A}_{C P}=\mathcal{A}_{C P}^{R A W} \pm \mathcal{A}_{D}(K \pi)-k_{d(s)} \mathcal{A}_{P}\left(B_{(S)}^{0}\right)$
- instrumental asymmetry $\left(\mathcal{A}_{D}\right)$ from D^{*}
- production asymmetry (\mathcal{A}_{P}) from $B^{0} \rightarrow J / \psi K^{* 0}$
$\Rightarrow k_{d(s)}$ describes dilution of \mathcal{A}_{P} due to $B_{(s)}^{0}-{\overline{B^{0}}}_{(s)}$ mixing

$$
\begin{aligned}
\mathcal{A}_{D} & =-0.010 \pm 0.02 \\
\mathcal{A}_{P} & =+0.010 \pm 0.013 \\
k_{d} & =+0.303 \pm 0.005 \\
k_{s} & =-0.033 \pm 0.003
\end{aligned}
$$

LHCb
IHE
PRL 108, 201601 (2012)

- First evidence for CP $^{\text {P }}$ in B_{S}.
- $\mathcal{A}_{C P}\left(B_{S}^{0} \rightarrow K \pi\right)=0.27 \pm 0.08$ (stat) ± 0.02 (syst), $\quad 3.3 \sigma$
- $\mathcal{A}_{C P}\left(B^{0} \rightarrow K \pi\right)=-0.088 \pm 0.011$ (stat) ± 0.008 (syst), $\quad>6 \sigma$

LHCb-CONF-2012-018 and LHCb-CONF-2012-028
b $B^{ \pm} \rightarrow h^{ \pm} h^{+} h^{-}$gives access to γ angle of the unitary triangle (see Alberto slides)

- $\gamma=\arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)$

- Two groups of two decays with:
- similar physics (see backup slide for the diagrams)

$$
\begin{aligned}
>B^{ \pm} & \rightarrow K^{ \pm} K^{+} K^{-} \text {and } B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-} \\
& \rightarrow \gamma \text { in tree diagram } \propto \lambda^{4} \text { and penguin diagram } \propto \lambda^{2} \quad\left(\lambda \equiv \sin \theta_{C} \equiv\left|V_{u s}\right| \approx 0.22\right) \\
>B^{ \pm} & \rightarrow K^{+} K^{-} \pi^{ \pm} \text {and } B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-} \\
& \rightarrow \gamma \text { in tree diagram } \propto \lambda^{3} \text { and penguin diagram } \propto \lambda^{3}
\end{aligned}
$$

- CPT connection (related final state through scattering $K K \rightarrow \pi \pi$)
- similar statistics
- same selection except for particle ID and background vetoes
- similar challenges (both use $B^{ \pm} \rightarrow J / \psi K^{ \pm}$as control channel)
$\mathcal{A}_{C P}^{R A W}(J / \psi K)-\mathcal{A}_{C P}(J / \psi K)=B^{-} / B^{+}$production and K instrumental asymmetries
- $B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$and $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$physical $G P^{\prime}$

- $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$physical ©P

$B^{ \pm} \rightarrow h^{ \pm} h^{+} h^{-}$

LHCb-CONF-2012-018 and LHCb-CONF-2012-028

LHCb-CONF-2012-018
Preliminary $\mathcal{A}_{C P}(K \pi \pi)=+0.034 \pm 0.009_{\text {(stat) }} \pm 0.004_{\text {(syst) }} \pm 0.007_{(\mathrm{J} / \psi \mathrm{K})}, 2.8 \sigma$
Preliminary $\mathcal{A}_{C P}(K K K)=-0.046 \pm 0.009_{\text {(stat) }} \pm 0.005_{\text {(syst) }} \pm 0.007_{\text {(J/ } / \mathrm{k})}, 3.7 \sigma$

LHCb-CONF-2012-028
Preliminary $\mathcal{A}_{C P}(\pi \pi \pi)=+0.120 \pm 0.020_{\text {(stat) }} \pm 0.019_{\text {(syst) }} \pm 0.007_{(\mathrm{J} / \mathrm{k} \mathrm{K})}, 4.2 \sigma$ reliminary $\mathcal{A}_{C P}(K K \pi)=-0.153 \pm 0.046_{\text {(stat) }} \pm 0.019_{\text {(syst) }} \pm 0.007_{\text {(J/ } / \text { K) }}, 3.0 \sigma$

How to get fish that we do not know?
Fishing net. Attacking a large space with an idea of the kind of fish expected there.

Inspecting the phase space

Search for GP in three body decays

- Each intermediary state is included in a coherent sum for the total decay.
- Resonance interference (parallel or crossing) \rightarrow probe for GP

LHCb-CONF-2012-018

Illustrative view 2: the mass projections are divided into bins with sufficient events to perform a simplified mass fit

LISHEP 2013 - March 17-24, 2013

CP in phase space: $B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$

LHCb-CONF-2012-018

Illustrative view 2: the mass projections are divided into bins with sufficient events to perform a simplified mass fit

LHCb-CONF-2012-028

Illustrative view 2: the mass projections are divided into bins with sufficient events to perform a simplified mass fit

LHCb-CONF-2012-028

- Very large CF in a region of the phase space not associated to a resonance.

$\mathcal{A}_{C P}\left(K^{+} K^{-} \pi^{ \pm}\right.$region $)=-0.671 \pm 0.067_{\text {(stat) }} \pm 0.028_{(\text {syst) }} \pm 0.007_{\left(J / \psi K^{ \pm}\right)}$

CP in phase space: $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$

LHCb-CONF-2012-028

Illustrative view 1 : entries asymmetry

Illustrative view 2: the mass projections are divided into bins with sufficient events to perform a simplified mass fit

Conclusions

meb

- A first measuremente of ϕ_{S} using the time-dependent tagged analysis of G戸 in hadronic $B_{s}^{0} \rightarrow \phi \phi$ decays yields a 68% C.L. of $[-2.46,-0.76]$ rad.
- First evidence of direct $E P$ in $B_{S}^{0} \rightarrow K^{-} \pi^{+}$and precision at $B^{0} \rightarrow K^{+} \pi^{-}$ $\mathcal{A}_{C P}\left(B^{0} \rightarrow K \pi\right)=-0.088 \pm 0.01$ (stat) ± 0.008 (syst) , $[>6 \sigma]$ $\mathcal{A}_{C P}\left(B_{S}^{0} \rightarrow K \pi\right)=+0.27 \pm 0.08$ (stat) ± 0.02 (syst) , $[3.3 \sigma]$
- Evidence of direct $G \neq$ in $B^{ \pm} \rightarrow K^{ \pm} \pi^{+} \pi^{-}$and $B^{ \pm} \rightarrow K^{ \pm} K^{+} K^{-}$ $\mathcal{A}_{C P}(K \pi \pi)=+0.034 \pm 0.009$ (stat) ± 0.004 (syst) $\pm 0.007(\mathrm{~J} / \psi \mathrm{K}),[2.8 \sigma]$ $\mathcal{A}_{C P}(K K K)=-0.046 \pm 0.009$ (stat) ± 0.00 (syst) $_{\text {(st }} \pm 0.007(\mathrm{~J} / \psi \mathrm{K}),[3.7 \sigma]$
- Evidence of direct $G \neq$ in $B^{ \pm} \rightarrow K^{+} K^{-} \pi^{ \pm}$and $B^{ \pm} \rightarrow \pi^{ \pm} \pi^{+} \pi^{-}$ $\mathcal{A}_{C P}(\pi \pi \pi)=+0.120 \pm 0.020$ (stat) ± 0.019 (syst) $\pm 0.007(\mathrm{~J} / \psi \mathrm{K}),[4.2 \sigma]$ $\mathcal{A}_{C P}(K K \pi)=-0.153 \pm 0.046$ (stat) ± 0.019 (syst) $\pm 0.007(\mathrm{~J} / \psi \mathrm{K}),[3.0 \sigma]$
- Large Gథ in regions of dalitz plot in charmless 3-body B-decays $\mathcal{A}_{C P}(K K \pi$ region $)=-0.671 \pm 0.067$ (stat) ± 0.028 (syst) ± 0.007 ($\left.\mathrm{J} / \psi \mathrm{K}\right),[9.2 \sigma]$ $\mathcal{A}_{C P}(\pi \pi \pi$ region $)=+0.622 \pm 0.075$ (stat) ± 0.032 (syst) $\pm 0.007(\mathrm{~J} / \psi \mathrm{K}),[7.6 \sigma]$
- All measurements use only $1.0 \mathrm{fb}^{-1}$ of data (2011). Additional $2 \mathrm{fb}^{-1}$ from 2012 is being analyzed now.

