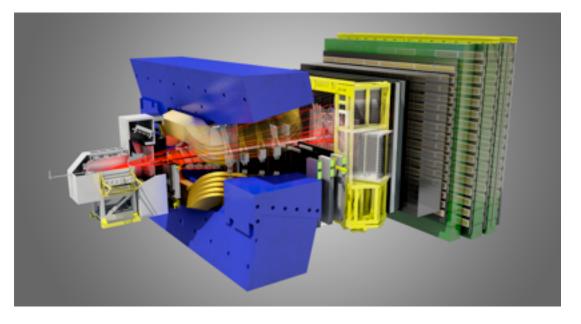


Mixing and CP violation in charm decays

Matthew Coombes

on behalf of the LHCb collaboration

19th March 2013 LISHEP, Rio de Janeiro, Brazil

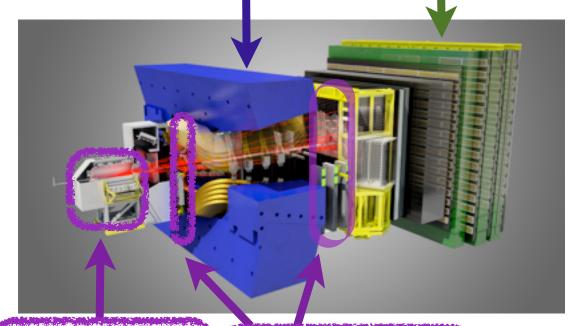


Introduction

- The LHCb experiment was introduced in Monday's session
- LHCb has **huge charm samples.** Charm cross section \approx **20** x **b** cross section within the LHCb acceptance:
 - $\sigma(cc)$ LHCb = 1419 ± 133 µb (arXiv:1302.2864)
 - $\sigma(bb)LHCb = 75.3 \pm 14.1 \,\mu b$ (Phys.Lett.B 694, 209)

- In 1.0fb⁻¹ (2011 dataset) roughly $\mathbf{10^{12}}$ $\mathbf{c}\overline{\mathbf{c}}$ and $\mathbf{10^{11}}$ $\mathbf{b}\overline{\mathbf{b}}$ produced!
- LHCb can make precision measurements in charm and study loop-sensitive processes.

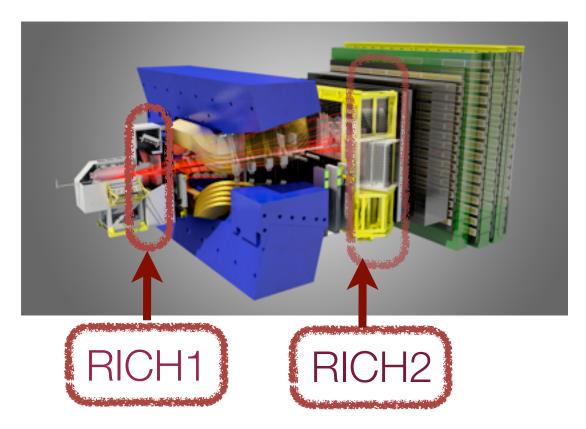
LHCb detector


• Forward detector

- Precision tracking
- Excellent vertex resolution
- Excellent K/π separation provided by two Ring Imaging Cherenkov detectors

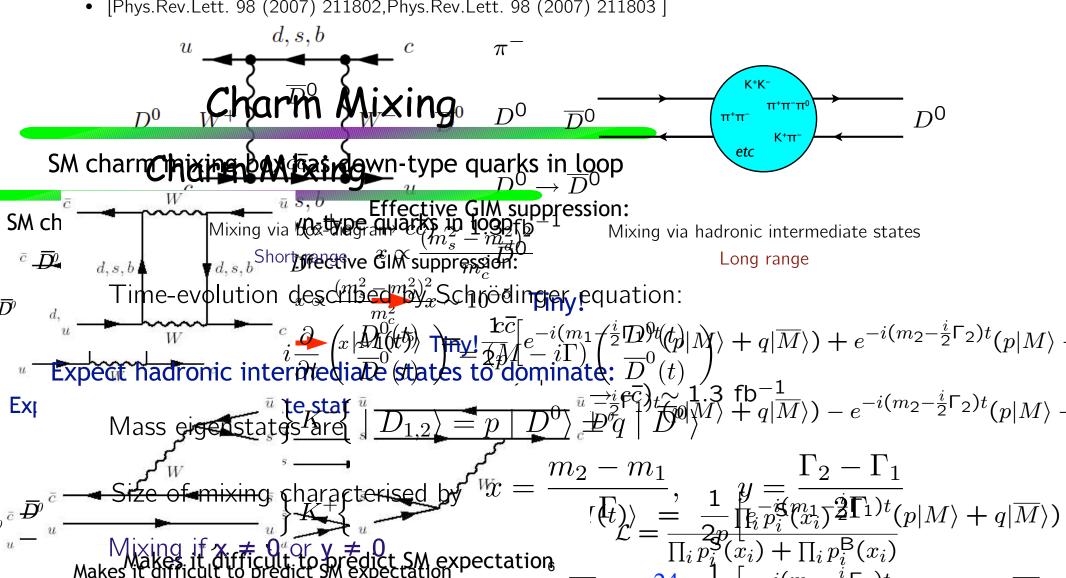
LHCb detector

Warm magnet can switch polarity


Muon system

Vertex Locator Tracking stations (VeLo)

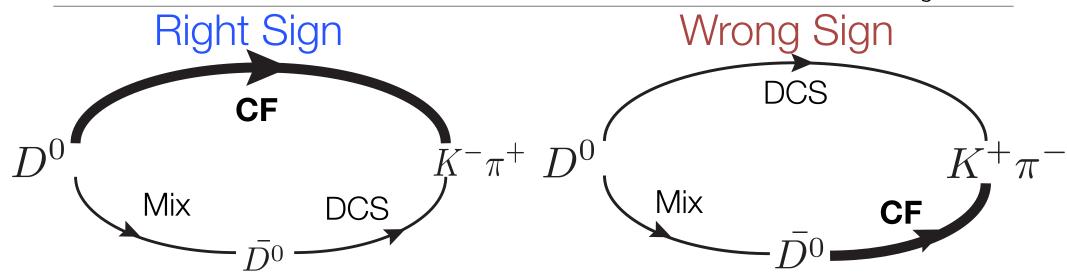
- Forward detector
- Precision tracking
- Excellent vertex resolution
- Excellent K/π separation provided by two Ring Imaging Cherenkov detectors

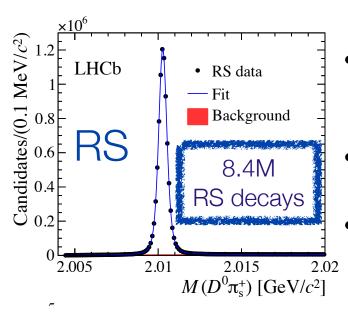

LHCb detector

- Forward detector
- Precision tracking
- Excellent vertex resolution
- Excellent K/π separation provided by two Ring Imaging Cherenkov detectors

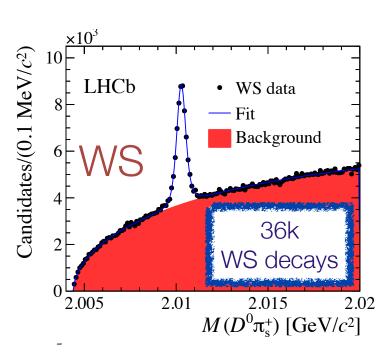
D⁰ mixing

- First evidence in 2007 by BaBar and Belle
 - [Phys.Rev.Lett. 98 (2007) 211802, Phys.Rev.Lett. 98 (2007) 211803]





D⁰ mixing at LHCb


Phys.Rev.Lett. 110, 101802 (2013)

1.0fb⁻¹ collected during 2011

- Use $D^{*+} \to D^0(f)\pi_s^+$ to tag the flavour of D⁰ before mixing
- 36k WS and 8.4M RS decays
 - Divide into 13 D⁰ decay time bins

D⁰ mixing at LHCb

Phys.Rev.Lett. 110, 101802 (2013)

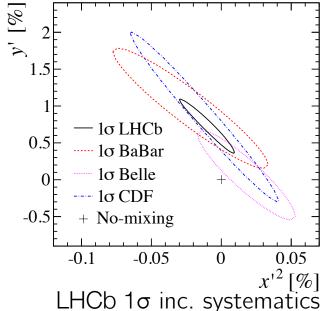
1.0fb⁻¹ collected during 2011

 Take the time-dependent ratio of wrong sign to right sign decays

$$R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} \simeq R_D + \sqrt{R_D}y't + \frac{x'^2 + y'^2}{4}t^2 \quad \text{for no CPV}$$

$$x' = x\cos(\delta) + y\sin(\delta)$$
 Require strong phase δ $y' = y\cos(\delta) - x\sin(\delta)$ Information so measure y' and x'2

Most systematics cancel in ratio


$$x'^2 = (-0.09 \pm 0.13) \times 10^{-3}$$

 $y' = (7.2 \pm 2.4) \times 10^{-3}$

no mixing hypotheses excluded at 9.1σ

systematics uncertainties 11% of $\sigma(x'^2)$, 10% of $\sigma(y')$

• First single measurement with $> 5\sigma$ significance

Search for direct CPV

Time-integrated CP asymmetry defined as:

$$A_{CP}(f) = rac{\Gamma(D o f) - \Gamma(\overline{D} o \overline{f})}{\Gamma(\overline{D} o f) + \Gamma(D o \overline{f})}$$

SM predictions do not rule out a few 10^{-3}

NP could enhance up to $\mathcal{O}(10^{-2})$

Phys.Rev. D75 (2007) 036008

Look to measure A_{CP} in:

$$\begin{array}{l} D^+ \to \varphi \pi^+ \\ D_{s}^+ \to K_s{}^0 \pi^+ \\ \\ \text{difference between } D^0 \!\!\to\! K^- \! K^+ - D^0 \!\!\to\! \pi^- \! \pi^+ \left(\Delta A_{CP} \right) \end{array}$$

Analysis techniques

- Magnetic field frequently flipped.
 - Using both 'magnet up' and 'magnet down' data cancels many asymmetries
- Kinematic areas with large detection asymmetries can be removed

1.0fb⁻¹ collected during 2011

CP violation in D+ \rightarrow $\phi\pi^+$ and D_s+ \rightarrow K_S⁰ π^+

• Define A_{CP} for $D^+ \to \varphi \pi^+$

$$A_{CP}(D^+ \to \phi \pi^+) = A_{\text{raw}}(D^+ \to \phi \pi^+) - A_{\text{raw}}(D^+ \to K_S^0 \pi^+) + A_{CP}(K^0/\overline{K}^0)$$

1.0fb⁻¹ collected during 2011

CP violation in D⁺ \rightarrow $\phi\pi^+$ and D_s⁺ \rightarrow K_S⁰ π^+

• Define A_{CP} for $D^+ \to \varphi \pi^+$

$$A_{CP}(D^+ \to \phi \pi^+) = A_{\text{raw}}(D^+ \to \phi \pi^+) - A_{\text{raw}}(D^+ \to K_S^0 \pi^+) + A_{CP}(K^0/\overline{K}^0)$$

$$A_{\rm raw} = \frac{N_{D^+} - N_{D^-}}{N_{D^+} + N_{D^-}}$$

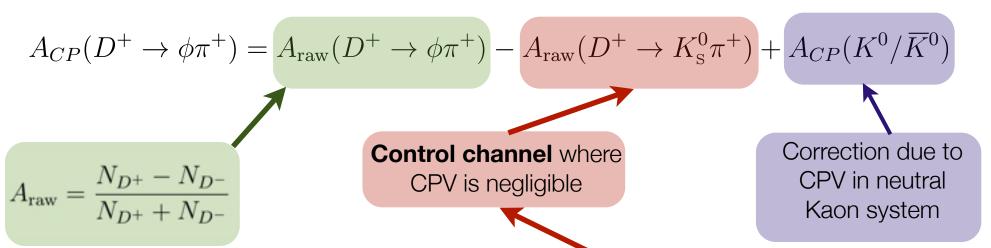
1.0fb⁻¹ collected during 2011

CP violation in D⁺ \rightarrow $\phi\pi^+$ and D_s⁺ \rightarrow K_S⁰ π^+

• Define A_{CP} for $D^+ \to \varphi \pi^+$

$$A_{CP}(D^+ \to \phi \pi^+) = A_{\text{raw}}(D^+ \to \phi \pi^+) - A_{\text{raw}}(D^+ \to K_s^0 \pi^+) + A_{CP}(K^0/\overline{K}^0)$$

$$A_{\text{raw}} = \frac{N_{D^+} - N_{D^-}}{N_{D^+} + N_{D^-}}$$

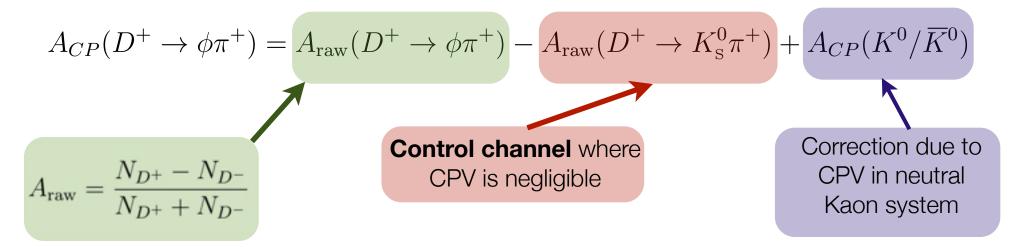

Control channel where CPV is negligible

Cancels detection/production asymmetries

1.0fb⁻¹ collected during 2011

CP violation in D⁺ \rightarrow $\phi\pi^+$ and D_s⁺ \rightarrow K_S⁰ π^+

• Define A_{CP} for $D^+ \to \Phi \pi^+$



Cancels detection/production asymmetries

1.0fb⁻¹ collected during 2011

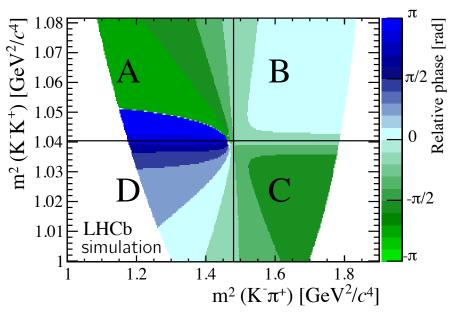
CP violation in D⁺ \rightarrow $\phi\pi^+$ and D_s⁺ \rightarrow K_S⁰ π^+

• Define A_{CP} for $D^+ \to \varphi \pi^+$

 \bullet Also for $D_{s}^{+} \to K_{S}{}^{0}\pi^{+}$

$$A_{CP}(D_s^+ \to K_s^0 \pi^+) = A_{\text{raw}}(D_s^+ \to K_s^0 \pi^+) + A_{CP}(K^0/\overline{K}^0) - A_{\text{raw}}(D_s^+ \to \phi \pi^+)$$

No mixing in D+ - any CPV signal = direct CPV


1.0fb⁻¹ collected during 2011

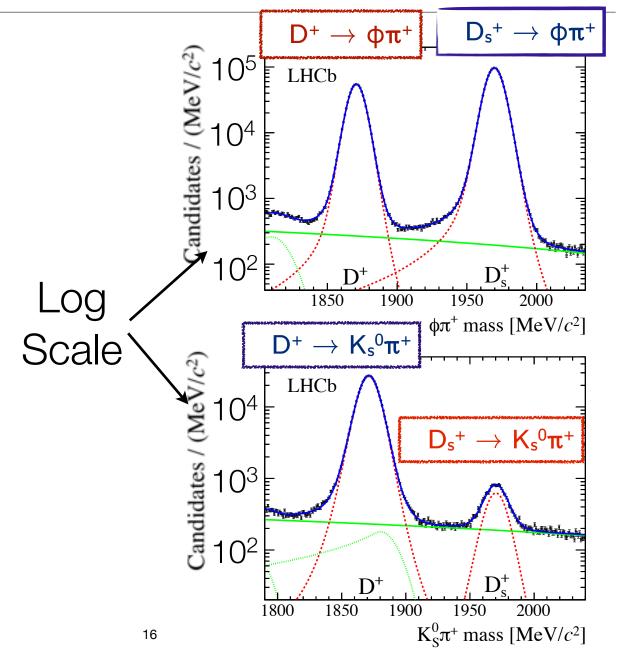
CP violation in D⁺ \rightarrow $\phi\pi^+$ and D_s⁺ \rightarrow K_S⁰ π^+

- Split up phase space across φ
 resonance into 4 bins
 - minimise the strong phase difference across each bin
 - can improve sensitivity to certain CPV
- Define a third variable

$$A_{CP}|_{S} = \frac{1}{2} \left(A_{\text{raw}}^{A} + A_{\text{raw}}^{C} - A_{\text{raw}}^{B} - A_{\text{raw}}^{D} \right)$$

LHCb simulation

used CLEO to model phase change across ϕ resonance


Phys. Rev. D78 (2008) 072003

1.0fb⁻¹ collected during 2011

CP violation in D⁺ \rightarrow $\phi\pi^+$ and D_s⁺ \rightarrow K_S⁰ π^+

- 1.6M D+ \rightarrow $\phi\pi^+$
- 3.6M D+ \rightarrow K_s $^{0}\pi^{+}$
- $\bullet \ 26K \ D_{s}{}^{\scriptscriptstyle +} \rightarrow K_{s}{}^{\scriptscriptstyle 0}\pi^{\scriptscriptstyle +}$
- 1.1M $D_{s^+} \to \varphi \pi^{\scriptscriptstyle +}$

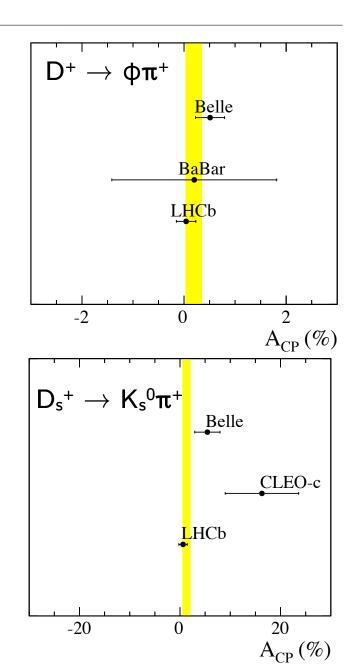
1.0fb⁻¹ collected during 2011

CP violation in D⁺ \rightarrow $\phi \pi^+$ and D_s⁺ \rightarrow K_S⁰ π^+

No evidence of CPV observed

$$A_{CP}(D^+ \to \phi \pi^+) = (-0.04 \pm 0.14 \pm 0.13)\%,$$

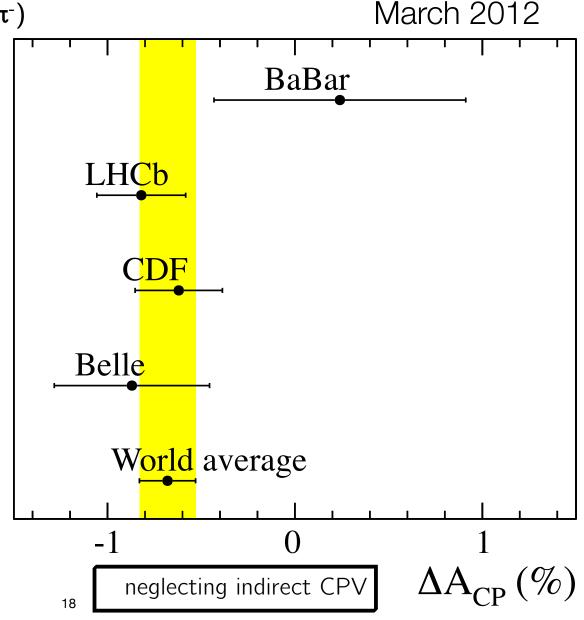
 $A_{CP}|_S = (-0.18 \pm 0.17 \pm 0.18)\%,$
 $A_{CP}(D_s^+ \to K_s^0 \pi^+) = (0.61 \pm 0.83 \pm 0.13)\%,$


• LHCb most precise measurement to date for both $D_{s}^{+}\to K_{s}^{0}\pi^{+}$ and $D^{+}\to \varphi\pi^{+}$

Previous measurements $D^+ \to \varphi \pi^+$

- Belle (Phys.Rev.Lett. 108 071801 (2012))
- BaBar (Phys. Rev. D 71, 091101(R) (2005))

Previous measurements $D_s^+ \to K_s^0 \pi^+$


- Belle (Phys. Rev. Lett. 104, 181602 (2010))
- CLEO-c (Phys. Rev. D 81, 052013 (2010))

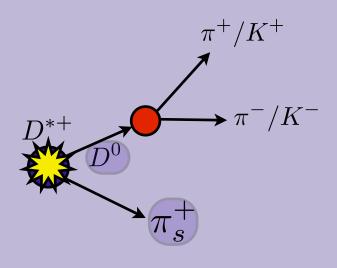
ΔA_{CP} status pre Moriond QCD

 $\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^+K^-) - A_{CP}(D^0 \rightarrow \pi^+\pi^-)$

- ΔA_{CP} measured by
 - BaBar (Phys. Rev. Lett. 100 (2008)))
 - Belle (arXiv:1212.5320)
 - LHCb (Phys. Rev. Lett. 108 (2012))
 - CDF (Phys. Rev. Lett. 109 (2012))
- Latest world average 4.6σ deviation from zero
- Level of CP violation potentially accommodated within SM (arXiv:1202.3795, many more)
- Can also be explained by NP (arXiv:1202.2866, many more)
- Lively debate amongst theorists.

△A_{CP} Tagging

LHCb uses two methods to tag the D⁰ flavour

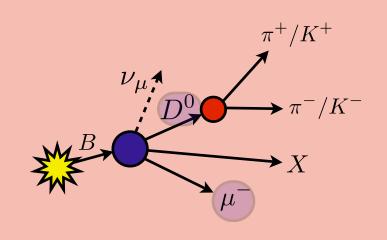

Update

D* decays (Prompt)

Use slow pion from D* decays to tag

D flavour
$$D^{*+} \to D^0 \pi_s^+$$
 or

$$D^{*-} \to \bar{D^0} \pi_s^-$$


Semileptonic B decay(Secondary)

New

Use muon charge to tag D flavour

$$B o \bar{D^0} \mu^+ \nu_\mu X$$
 or

$$B \to D^0 \mu^- \nu_\mu X$$

- Update of analysis from 2011 $0.6fb^{-1} \rightarrow 1.0fb^{-1}$ (full 2011 dataset)
- Update includes new reconstruction
 - Improved tracking alignment
 - **Improved particle identification** from RICH calibration.
- Constrain the D* vertex to the primary vertex
 - $\delta m \equiv m(h^+h^-\pi^+) m(h^+h^-) m(\pi^+)$.
 - Improves δm resolution by factor ~ 2.5 .
- Kinematic re-weighting of D* (ensures D⁰ \to KK and D⁰ \to $\pi\pi$ have the same kinematics)

1.0fb⁻¹ collected during 2011

ΔA_{CP} from D* decays

$$A_{RAW}(f) \simeq A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}^{+}) + A_{p}(D^{*+})$$

want

f's detection asymmetry

 π_s detection asymmetry

Production asymmetry

$$A_{RAW}(f) \simeq A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}^{+}) + A_{p}(D^{*+})$$

want

f's detection asymmetry

 π_s detection asymmetry

Production asymmetry

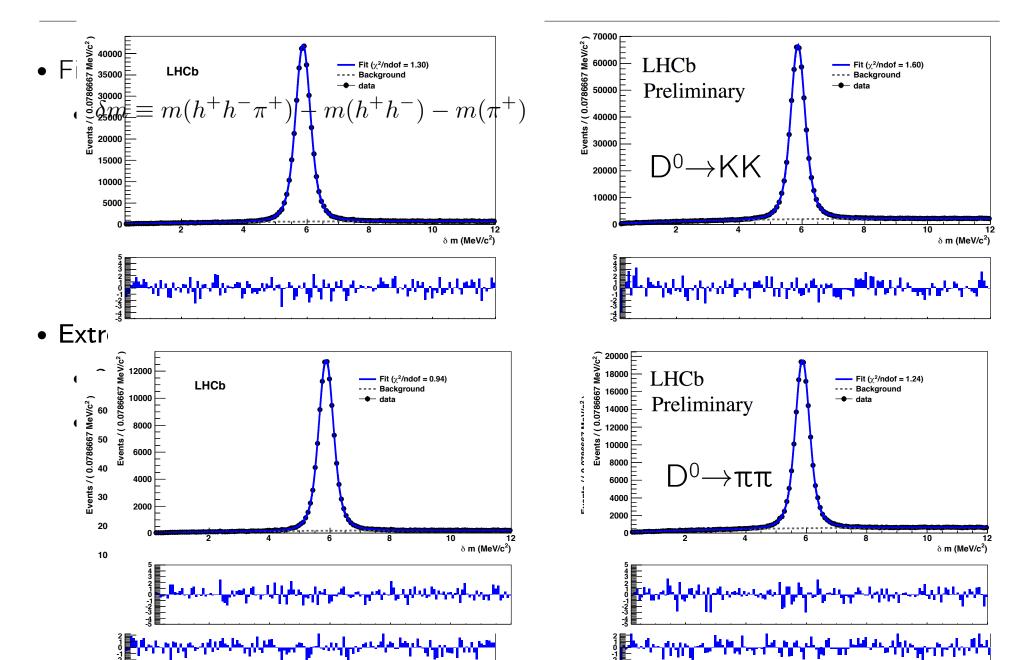
Zero for selfconjugate final states $(K^+K^-/\pi^+\pi^-)$

ΔA_{CP} from D* decays

$$A_{RAW}(f) \simeq A_{CP}(f) + A_{D}(f) + A_{D}(\pi_{s}^{+}) + A_{p}(D^{*+})$$

 π_s detection asymmetry

Production asymmetry


Taking $A_{RAW}(f) - A_{RAW}(f')$ the production and slow pion detection asymmetries will cancel

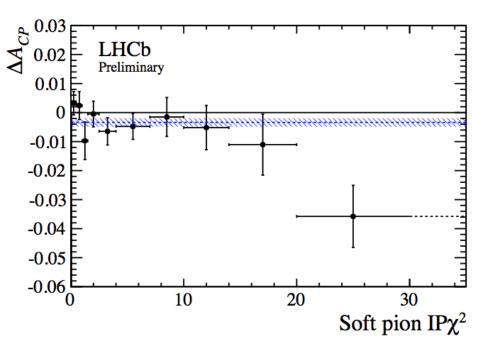
$$A_{RAW}(K^-K^+) - A_{RAW}(\pi^-\pi^+) = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \equiv \Delta A_{CP}$$

Indirect and direct CPV can contribute

Phys.Rev. D80 (2009) 076008

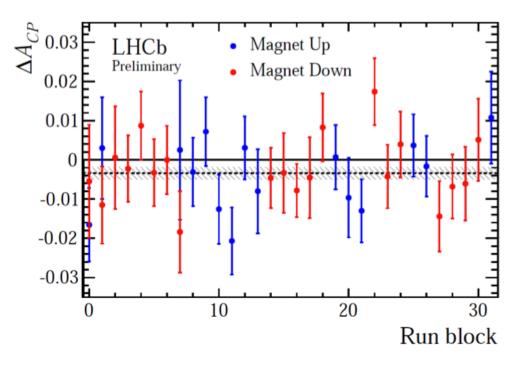
- Indirect CPV is ~universal
 - Indirect CPV cancels in $A(K^+K^-)-A(\pi^+\pi^-)$ if lifetime acceptance same for KK and $\pi\pi$
 - If not contribution $A^{ind}[\langle t_{KK} \rangle_{acc} \langle t_{\pi\pi} \rangle_{acc}]/\tau_0$

• Preliminary result


$$\Delta A_{CP} = (-0.34 \pm 0.15 \,(\text{stat.}) \pm 0.10 \,(\text{syst.}))\%$$

- Considerably closer to zero than previous result
 - Larger data set
 - Improved detector alignment and calibration
 - Changes in analysis technique
 - Kinematic re-weighting (ensures $D^0 \rightarrow KK$ and $D^0 \rightarrow \pi\pi$ have same kinematics)
 - Improve mass resolution by constraining D* decay vertex to the primary vertex

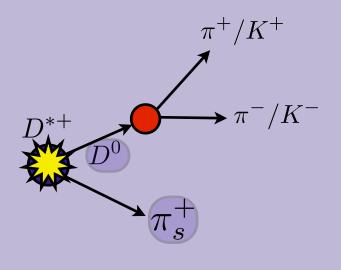
Preliminary result


$$\Delta A_{CP} = (-0.34 \pm 0.15 \,(\text{stat.}) \pm 0.10 \,(\text{syst.}))\%$$

- Source of systematic uncertainties
 - Soft pions with large IP χ^2 for pointing to PV
 - Effect due to multiple scattering
 - Results in poor mass distribution
 - Should not depend on D⁰ decay mode
 - Raw asymmetry observed in these candidates
 - Analysis repeated with these candidates removed
 - Dominant systematic 0.08%

ΔA_{CP} from D* decays : Cross checks

- △A_{CP} stability checked
 - Against time at which data was taken
 - Various reconstructed quantities:
 - D⁰ p_T
 - D⁰ η
 - D⁰ p
 - D⁰ decay time
- Analysis performed on large Monte Carlo samples to check for bias
- Many more

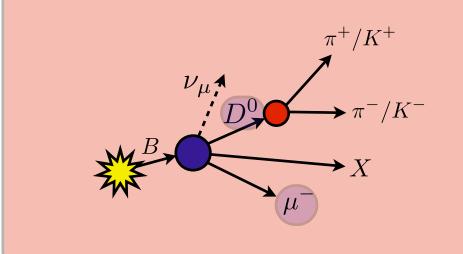

ΔA_{CP} Tagging

LHCb uses two methods to tag the D⁰ flavour

D* decays (Prompt)

Use slow pion from D* decays to tag D flavour $D^{*+} \to D^0 \pi_s^+$ or

$$D^{*-} \to \bar{D^0} \pi_s^-$$



Semileptonic B decay(Secondary)

Use muon charge to tag D flavour

$$B o \bar{D^0} \mu^+ \nu_\mu X$$
 or

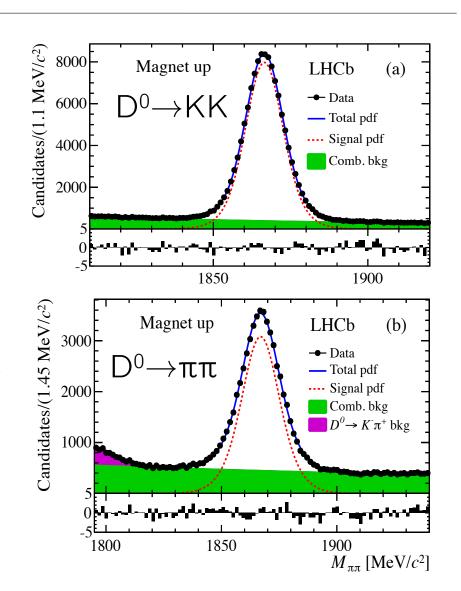
$$B \to D^0 \mu^- \nu_\mu X$$

ΔA_{CP} from semileptonic B decays

$$A_{RAW}(f) = A_{CP}(f) + A_D(f) + A_D(\mu^+) + A_P(B)$$

Detection and production asymmetries independent from D* analysis

μ detection asymmetry b-hadron production asymmetry

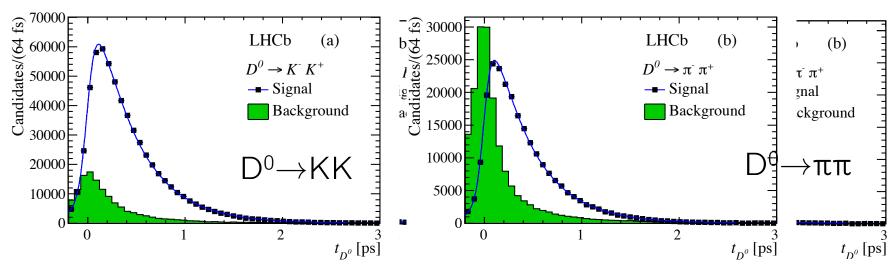

Taking $A_{RAW}(f)-A_{RAW}(f')$ the production and muon detection asymmetries will cancel if kinematics of muon and B meson are the same for both $D^0 \to K^+K^-$ and $D^0 \to \pi^+\pi^-$

$$A_{RAW}(K^-K^+) - A_{RAW}(\pi^-\pi^+) = A_{CP}(K^-K^+) - A_{CP}(\pi^-\pi^+) \equiv \Delta A_{CP}$$

ΔA_{CP} from semileptonic B decays

- Clean signal
 - 0.6M D→K+K⁻ candidates
 - 0.2M D $\rightarrow \pi^+\pi^-$ candidates

• ΔA_{CP} calculated separately for magnet up and magnet down data



ΔA_{CP} from semileptonic B decays

• Result

$$\Delta A_{CP} = (0.49 \pm 0.30 \text{ (stat)} \pm 0.14 \text{ (syst)})\%$$
.

- Main source of systematic from low lifetime background in $D^0 \rightarrow \pi^+\pi^-$ decays
 - More low lifetime background in $D^0 \rightarrow \pi^+\pi^-$ than $D^0 \rightarrow K^+K^-$
 - Cut applied at zero decay time in analysis
 - Analysis repeated including negative decay times
 - Systematic uncertainty of 0.11%

Cross checks

- Many cross checks carried out
- ΔA_{CP} stable with
 - reconstructed quantities:
 - D⁰ decay time
 - B flight distance
 - reconstructed D⁰-μ mass
 - angle between μ and D⁰ daughters
 - p_T of D^0 and μ
 - η of D⁰ and μ
 - data taking period
 - many more

arXiv:1303.2614

LHCB-CONF-2013-003

Comparison with D* and semileptonic ΔA_{CP}

D* decays (Prompt) Preliminary

$$\Delta A_{CP} = (-0.34 \pm 0.15 \,(\text{stat.}) \pm 0.10 \,(\text{syst.}))\%$$

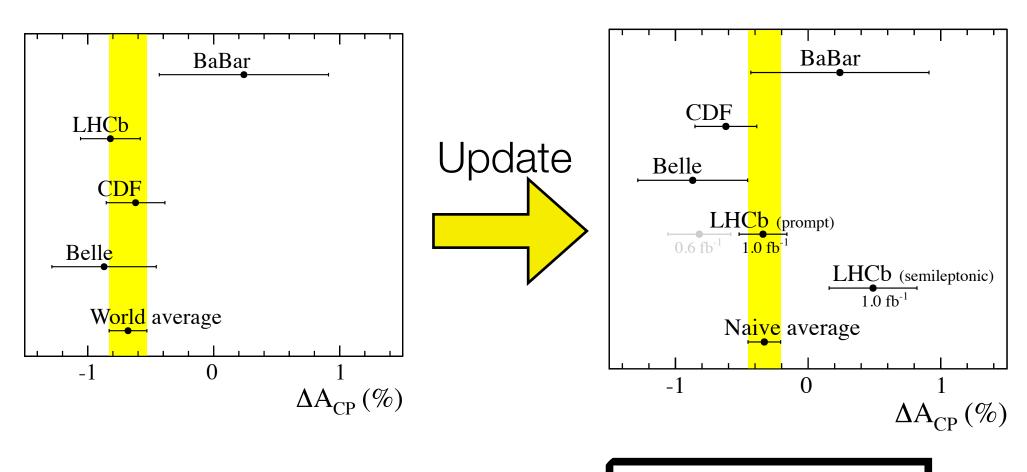
Semileptonic

$$\Delta A_{CP} = (0.49 \pm 0.30 \, (\text{stat}) \pm 0.14 \, (\text{syst}))\%$$

- Two measurements compatible a 3% level ($\chi^2 = 4.85$)
- Statistical correlation between the two data samples is negligible
- Systematic uncertainties essentially uncorrelated

Preliminary combination:

$$\Delta A_{CP} = [-0.15 \pm 0.16] \%$$


neglects indirect CPV

arXiv:1303.2614

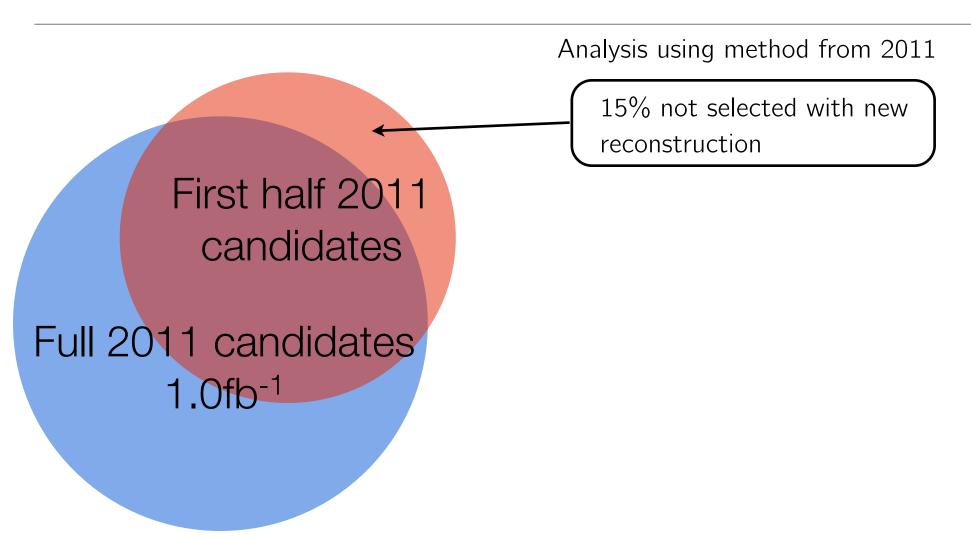
LHCB-CONF-2013-003

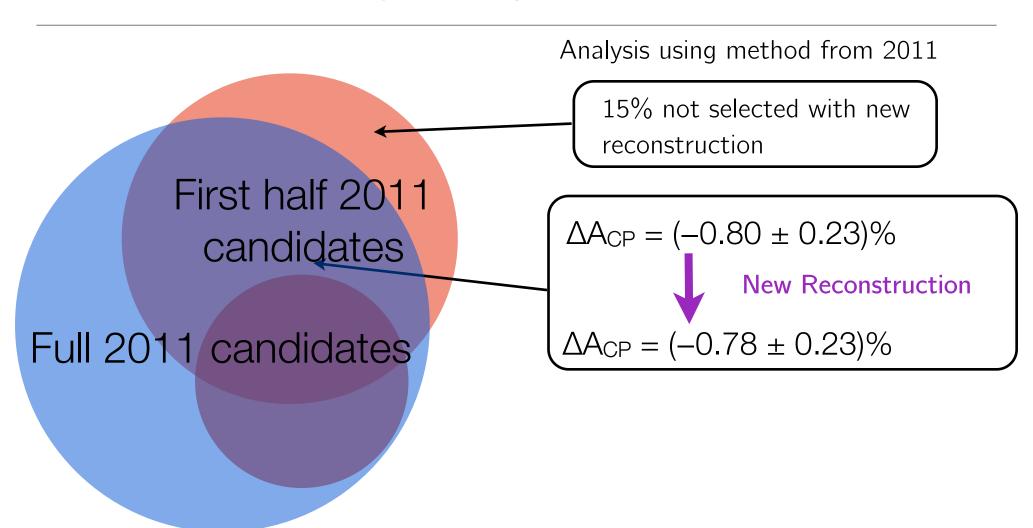
ΔA_{CP} Preliminary new world average

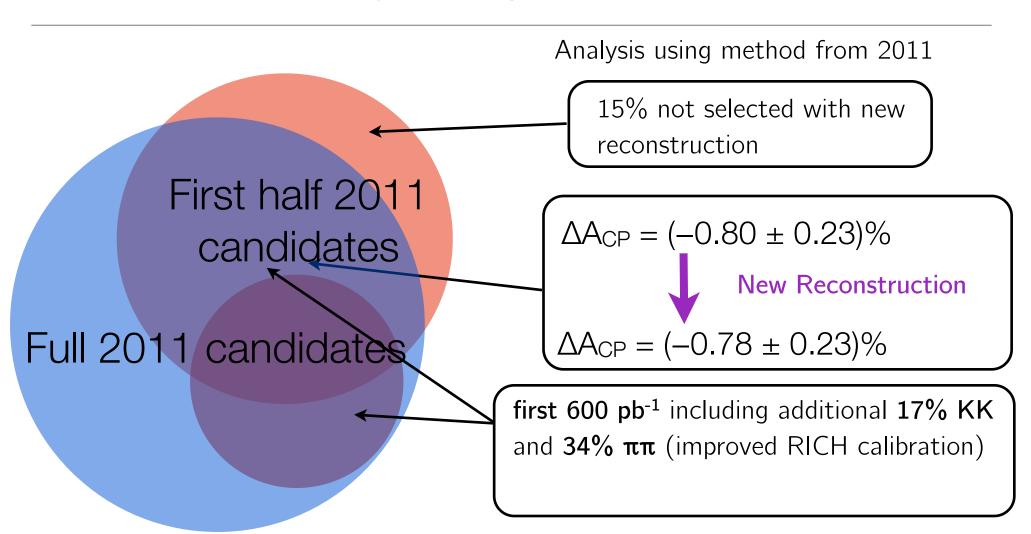
• New average includes BaBar, CDF, Belle and new LHCb results

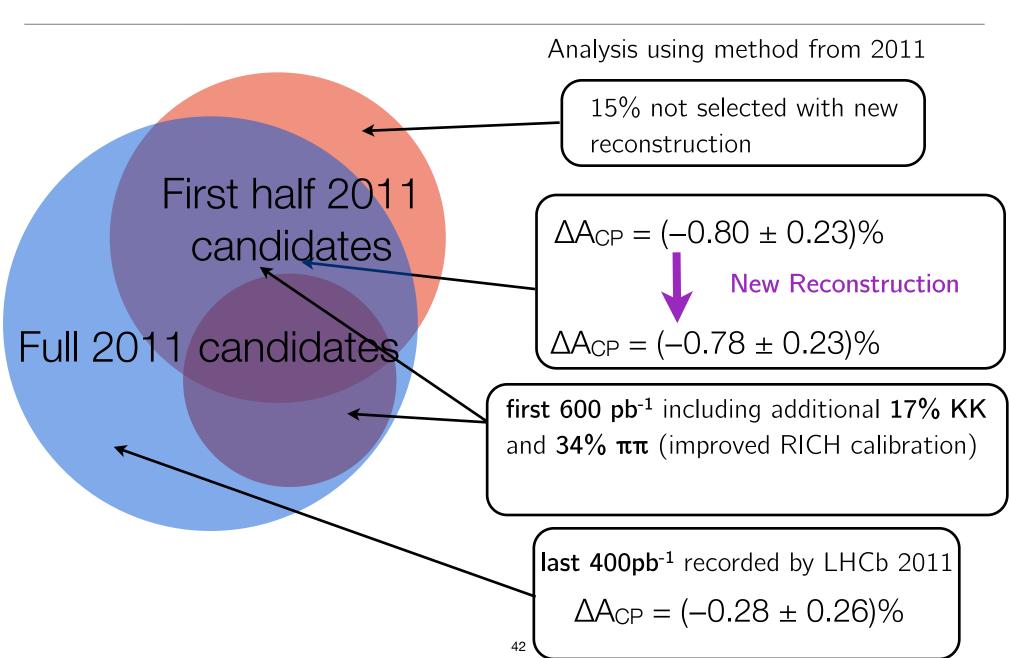
naive average neglecting indirect CPV

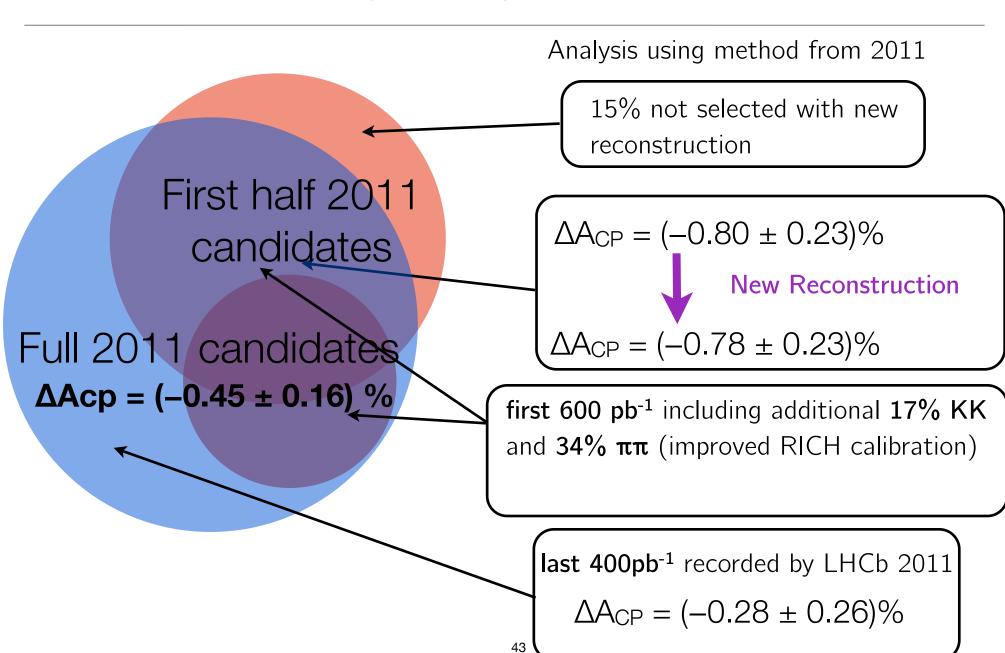
Summary

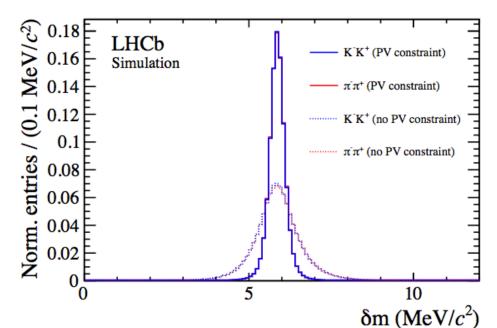

- D^0 mixing established at 9.1σ (Phys.Rev.Lett. 110, 101802 (2013))
- No CPV observed in D⁺ \to $\phi\pi^+$ and D_s⁺ \to K_s⁰ π^+ (LHCB-PAPER-2012-052)
- Measured from D⁰ from D* and D⁰ from B decays
 - $\Delta A_{CP} = (-0.34 \pm 0.15(stat.) \pm 0.10(syst.))\%$ preliminary for D* analysis (LHCB-CONF-2013-003)
 - $\Delta A_{CP} = (0.49 \pm 0.30(stat) \pm 0.14(syst))\%$ for semileptonic (arXiv:1303.2614)
 - Many cross checks performed
 - Preliminary combination $\Delta A_{CP} = [-0.15 \pm 0.16] \%$ (not including indirect CPV)
 - LHCb results does not confirm 3σ evidence of CP violation in Charm
- Analyses performed on 1.0fb⁻¹
 - 3fb⁻¹ of data recorded at LHCb
- Many more ongoing charm CP violation searches


Fim


ΔA_{CP} D* comparison to 2011 result


Analysis using method from 2011


First half 2011 candidates (600pb⁻¹)

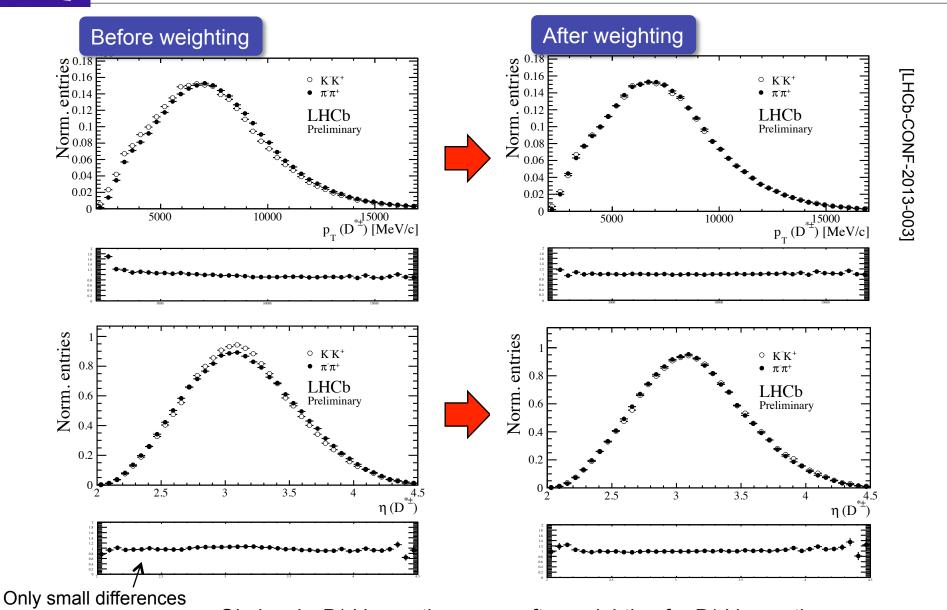


kinematic re-weighting

$$\Delta Acp = (-0.45 \pm 0.16) \%$$
 $\Delta Acp = (-0.45 \pm 0.17) \%$

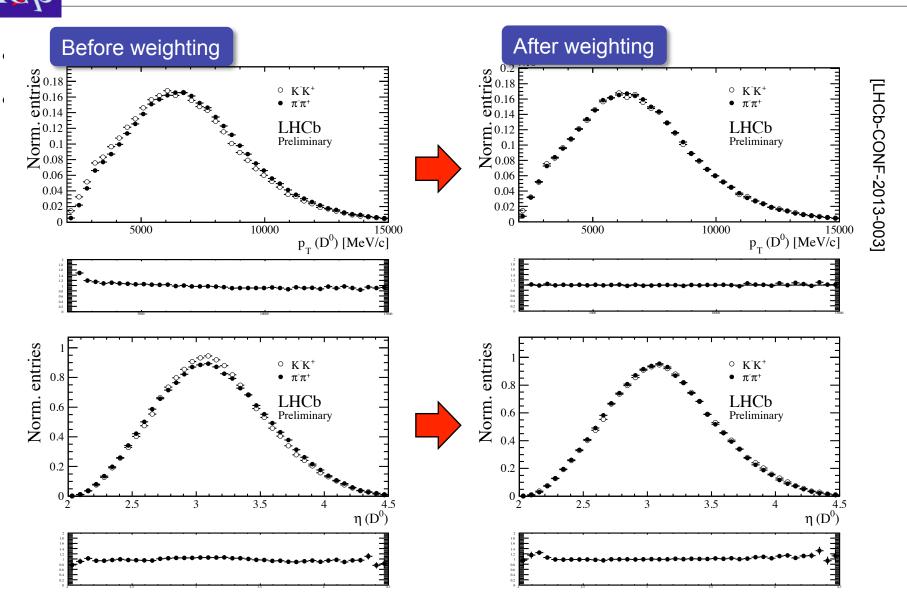
force D* vertex to the Primary Vertex

$$\triangle Acp = (-0.45 \pm 0.17) \%$$
 $\triangle Acp = (-0.34 \pm 0.15) \%$

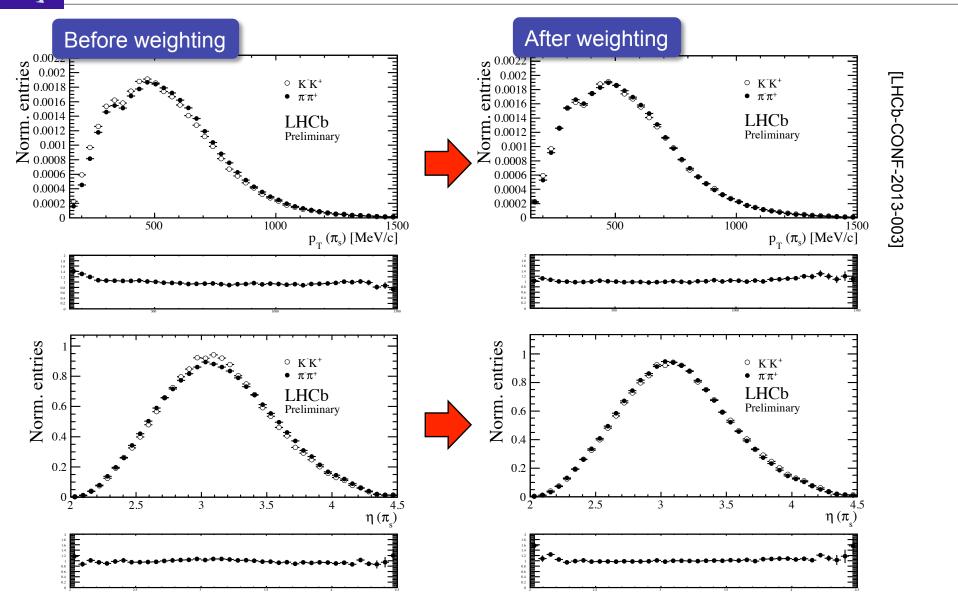

• Previous results:

Experiment	ΔA_{CP}	
LHCb	$(-0.82 \pm 0.21 \pm 0.11)\%$	Phys. Rev. Lett. 108 (2012) 111602
CDF	$(-0.62 \pm 0.21 \pm 0.10)\%$	Phys. Rev. Lett. 109 (2012) 111801
Belle	$(-0.87 \pm 0.41 \pm 0.06)\%$	arXiv:1212.5320
BaBar	$(+0.24 \pm 0.62 \pm 0.26)\%$	Phys. Rev. Lett. 100 (2008)

Analysis technique


- D* re-weighted in p and p_T (D⁰ \rightarrow KK and D⁰ \rightarrow $\pi\pi$ same kinematics)
- Break dataset into 4 subsets
 - Hardware trigger (**L0**) on D⁰ daughters (Trigger on Signal)
 - Magnet Up
 - Magnet Down
 - Hardware trigger (L0) on other particles from **pp** collision (Trigger Independent of Signal)
 - Magnet Up
 - Magnet Down
- \bullet ΔA_{CP} calculated for each subset and result is weighted average

- Kinematic Re-weighting
- Re-weight D* candidates so both D0 \to KK and D0 \to $\pi\pi$ have the same kinematics


before weighting Obviously, D* kinematics agree after weighting for D* kinematics

THE CP from D* decays

Also D⁰ distributions agree after weighting for D* kinematics

CP from D* decays

Also slow pion distributions agree after weighting for D* kinematics

ΔA_{CP} from D* decays : Cross checks

- Effects investigated for systematics
 - Peaking backgrounds
 - Tighter particle ID cuts
 - Different D* selection
 - Comparing results with and without kinematic re-weighting
- ΔA_{CP} stability checked
 - Against time which data was taken
 - Various reconstructed quantities:
 - D⁰ p_T
 - D⁰ η
- Analysis performed on large Monte Carlo samples to check for bias
- $\Delta \langle t \rangle / \tau(D^0) = (11.27 \pm 0.13)\%$
- many more

Systematic uncertainties ΔA_{CP}

 Sources of systematic uncertainties for D* analysis

Source	Uncertainty
Multiple candidates	0.01%
Peaking background	0.03%
Fit model	0.03%
Reweighting	0.01%
Soft pion IP χ^2	0.08%
Fiducial cut	0.02%
Total	0.10%

Systematic uncertainties ΔA_{CP}

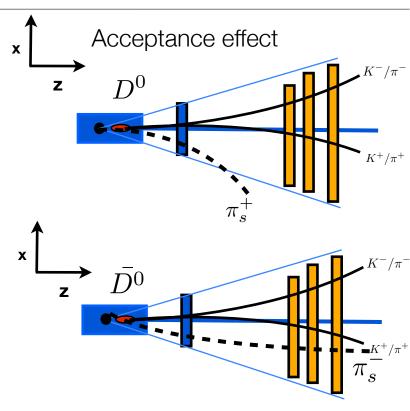
- Soft pions which do not point to primary vertex (before constraint)
 - Effect due to multiple scattering
 - Results in poor mass distribution
 - Should not depend on D⁰ decay mode
 - Raw asymmetry observed in these candidates
 - Analysis repeated with these candidates removed
 - Dominant systematic 0.08%

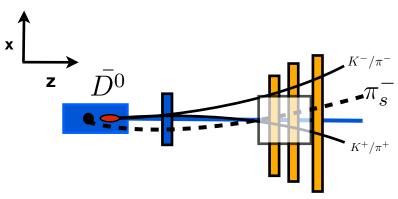
Source	Uncertainty
Multiple candidates	0.01%
Peaking background	0.03%
Fit model	0.03%
Reweighting	0.01%
Soft pion IP χ^2	0.08%
Fiducial cut	0.02%
Total	0.10%

Systematic uncertainties ΔA_{CP}

- Tighter particle identification cut
 - Analysis repeated with tighter particle identification cuts.
- Fiducial cuts
 - Analysis repeated with altered fiducial cuts.
- Re-weighting
 - Re-weighting D^0 such that $D^0 \rightarrow \pi^+\pi^-$ and $D^0 \rightarrow K^+K^-$ kinematics match.
 - Analysis repeated without kinematic reweighting.

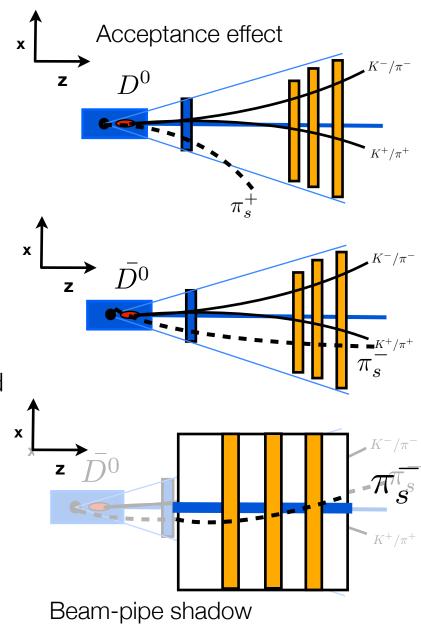
Source	Uncertainty
Multiple candidates	0.01%
Peaking background	0.03%
Fit model	0.03%
Reweighting	0.01%
Soft pion IP χ^2	0.08%
Fiducial cut	0.02%
Total	0.10%

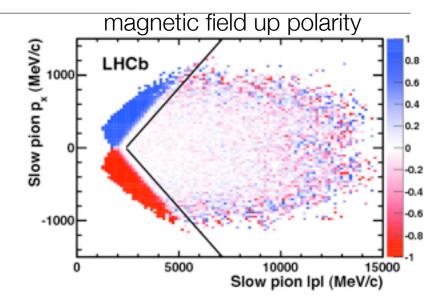

Systematic uncertainties ΔA_{CP}

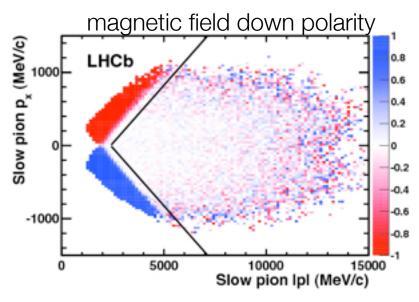

- Multiple candidates
 - Analysis repeated with a random candidate in events with multiple candidates removed.
- Peaking background
 - D mass peaks used to test for potential peaking background contributions.
- Fit model
 - Analysis repeating with the asymmetry extracted through sideband subtraction instead of a fit.

	TT
Source	Uncertainty
Multiple candidates	0.01%
Peaking background	0.03%
Fit model	0.03%
Reweighting	0.01%
Soft pion IP χ^2	0.08%
Fiducial cut	0.02%
Total	0.10%

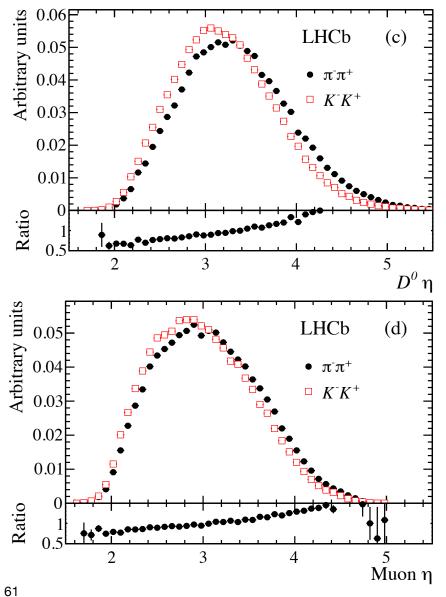
ΔA_{CP}

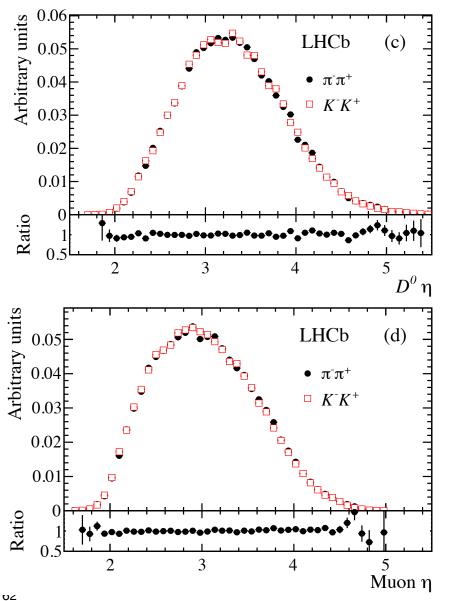

- Magnetic field induces left/right differences between the D*+ and D*- due to the slow pion
- Acceptance effect at edges of detector
- Beam-pipe shadow
- We remove this asymmetry
- We remove areas of large asymmetry to avoid secondary effects
- Frequently flip the magnetic field
- Detector asymmetries removed in difference between RAW asymmetries


$\Delta\mathsf{A}_\mathsf{CP}$


- Magnetic field induces left/right differences between the D*+ and D*- due to the slow pion
- Acceptance effect at edges of detector
- Beam-pipe shadow
- We remove this asymmetry
- We remove areas of large asymmetry to avoid secondary effects
- Frequently flip the magnetic field
- Detector asymmetries removed in difference between RAW asymmetries

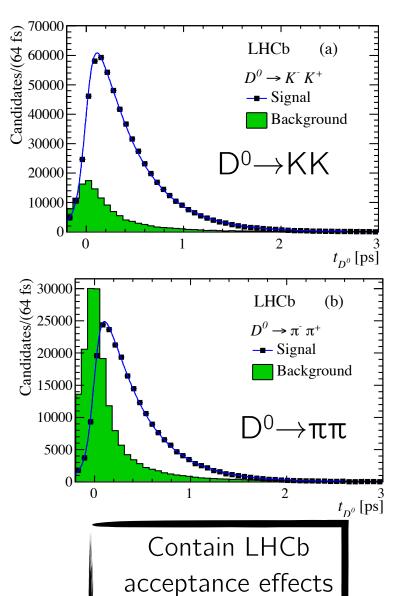
ΔA_{CP}


- Magnetic field induces left/right differences between the D*+ and D*- due to the slow pion
 - Acceptance effect at edges of detector
 - Beam-pipe shadow
- We remove this asymmetry
 - We remove areas of large asymmetry to avoid secondary effects
 - Frequently flip the magnetic field
 - Detector asymmetries removed in difference between RAW asymmetries



Phys. Rev. Lett. 108 (2012) 111602


• D⁰ candidates given weight depending on p_T and η distribution

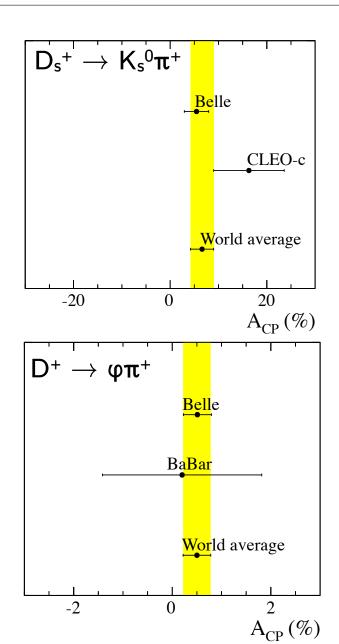

- D⁰ candidates given weight depending on p_T and η distribution
- Muon kinematics also in good agreement after re-weighting

ΔA_{CP} from semileptonic B decays

- Pairing a D⁰ with random muon (mistag)
 - Dilutes signal
 - Difference in mistag probability between D⁰ and anti-D⁰ is $(0.006 \pm 0.021)\%$
- Decay Time
 - Decay time acceptance can differ between KK and $\pi\pi$.
 - Difference in difference in
 - Small $\triangle \langle t \rangle \rightarrow \triangle A_{CP}^{30000} = \triangle a_{CP}^{dir}$
 - $\Delta \langle t \rangle / \tau(D^0) = 0.018 \pm 0.002 \text{ (stat)} \pm 0.007 \text{ (syst)}$ $\overline{\langle t \rangle} / \tau(D^0) = 1.062 \pm 0.001 \text{ (stat)} \pm 0.003 \text{ (syst)}$

ullet Raw asymmetries and ΔA_{CP} split for each magnet polarity

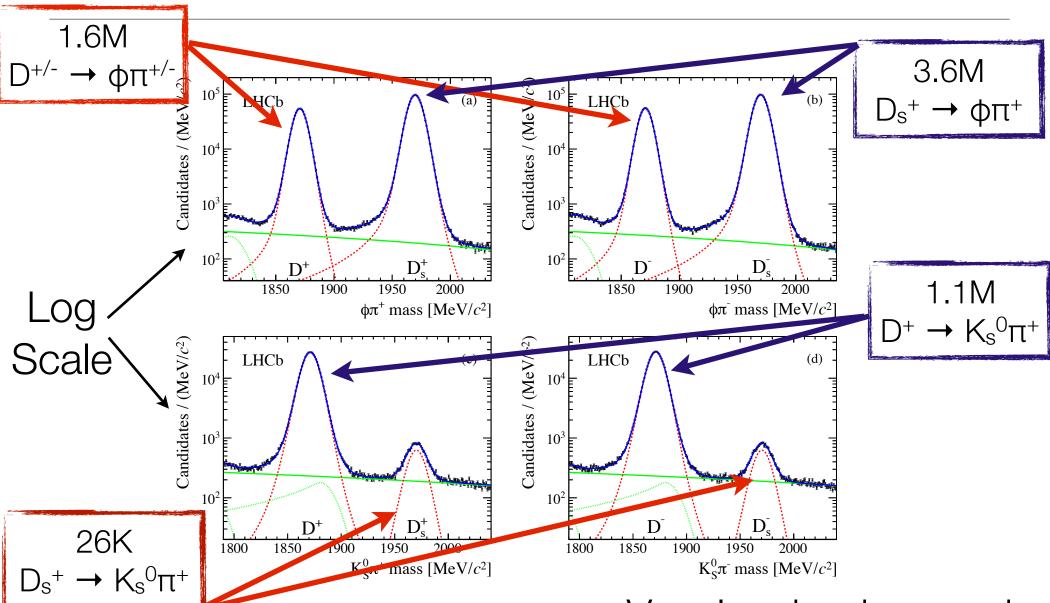
	Magnet up	Magnet down	Mean
$\overline{A_{ m raw}(K^-K^+)}$	-0.39 ± 0.23	-0.20 ± 0.19	-0.29 ± 0.15
$A_{ m raw}(\pi^-\pi^+)$	-1.25 ± 0.40	-0.29 ± 0.34	-0.77 ± 0.26
ΔA_{CP}	0.86 ± 0.46	0.09 ± 0.39	0.48 ± 0.30


• Source of systematic uncertainties

Source of uncertainty	Uncertainty
Production asymmetry:	
Difference in b -hadron mixture	0.02%
Difference in B decay time acceptance	0.02%
Production and detection asymmetry:	
Different weighting	0.05%
Background from real D^0 mesons:	
Mistag asymmetry	0.02%
Background from fake D^0 mesons:	
D^0 mass fit model	0.05%
Low lifetime background in $D^0 \rightarrow \pi^-\pi^+$	0.11%
Λ_c^+ background in $D^0 \to K^-K^+$	0.03%
Quadratic sum	0.14%

CP violation in D+ \rightarrow $\varphi\pi^{\scriptscriptstyle +}$ and Ds+ \rightarrow $K_S^0\pi^{\scriptscriptstyle +}$

CP violation in D⁺ \rightarrow $\phi\pi^+$ and D_s⁺ \rightarrow K_S⁰ π^+ Current status


- $D_s^+ \to K_s^0 \pi^+$ previously measured by
 - CLEO-c
 - Belle
- $D^+ \to \Phi \pi^+$ measured by
 - Belle
 - BaBar

LHCB-PAPER-2012-052

1fb⁻¹ collected during 2011

CP violation in D⁺ \rightarrow $\phi \pi^+$ and D_s⁺ \rightarrow K_S⁰ π^+

Very low background

CP violation in D⁺ \rightarrow $\phi\pi^+$ and D_s⁺ \rightarrow K_S⁰ π^+

- Main sources of systematic uncertainty
 - Detector efficiency differences (magnet up/magnet down)
 - Uncertainties in background model
 - kaon interaction asymmetries
 - CP violation in the neutral kaon system

Source	$A_{CP} \ (D^+) \ [\%]$	$A_{CP} \ (D_s^+) \ [\%]$	$A_{CP} _{S}$ [%]
Triggers	0.114	0.114	n/a
D_s^+ control sample size	n/a	n/a	0.169
Kaon asymmetry	0.031	0.002	0.009
Binning	0.029	0.029	n/a
Resolution	0.007	0.006	0.056
Fitting	0.033	0.033	n/a
Kaon <i>CP</i> violation	0.028	0.028	n/a
Fiducial effects	0.022	0.022	n/a
Backgrounds	0.008	n/a	0.007
D from B	0.003	0.015	0.003
Regeneration	0.010	0.010	n/a
Total	0.132	0.128	0.178

D⁰ mixing

D⁰ mixing

- Majority of systematic uncertainties cancel in ratio
- Main sources of systematics which do not cancel in ratio
 - Pollution from D⁰'s from B decays results in wrong time.
 - Some double mis-ID events (D⁰ \to K⁻ π ⁺ seen as D⁰ \to K⁺ π ⁻) pollutes WS sample
 - Other sources of uncertainty (production/ detection efficiencies) of order 10⁻⁴ can be neglected.
- Systematics account for ~10% of overall uncertainty