

LISHEP 2013 17-24 March 2013 Brazil - Rio de Janeiro

D meson production with ALICE

Riccardo Russo for the ALICE Collaboration Università degli Studi di Torino, INFN Torino 21 March 2013

- Physics motivations for D meson study in Pb-Pb collisions
- Nuclear modification factor in 2011 Pb-Pb data
 - analysis method
 - results
- Elliptic flow in 2011 Pb-Pb data
 - analysis method
 - results
- Conclusions

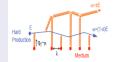
Hard Probes

- ullet produced in high Q^2 interactions \rightarrow pQCD regime, short timescale $\propto 1/Q^2$
- ullet high p_{T} partons, heavy flavors, quarkonia
- predictions: in dense partonic matter they suffer from
 - in-medium dissociation due to binding potential screening (quarkonia)
 - in-medium parton energy loss

Energy loss mechanism

- elastic collisions
- gluon radiation

• e.g. BDMPS model Armesto et al., PRD 71 (2005) 054027

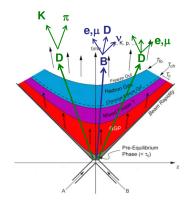

 $<\Delta E>_{parton}=lpha_{s}L^{2}\widehat{q}\ C_{r}$

- L distance transversed in the medium
- *q* transport coefficient (medium properties)
- C_r Casimir factor
 - 3 for gluons
 - 3/4 for quarks

Observables related to these effects:

✓ high $p_{\rm T}$ hadrons, jets

✓ Open Heavy Flavors



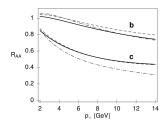
Quarkonia

Open Heavy Flavors

D and B mesons, baryons

c and b quarks and evolution of the medium

they can be identified from their hadronic or semileptonic decays
 fragmentation functions for D and B peaked at 1 → open heavy-flavour kinematic close to the one of parent quark

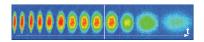

э

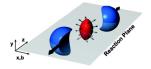
Open Heavy Flavors - R_{AA}

nuclear modification factor

 $R_{AA}(p_{\mathrm{T}}) = rac{1}{N_{coll}} rac{dN_{AA}/dp_{\mathrm{T}}}{dN_{pp}/dp_{\mathrm{T}}}$

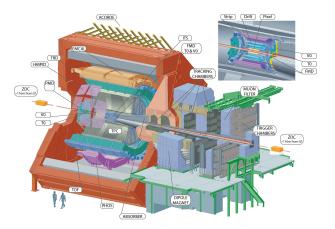
- for heavy flavors $R_{AA} = 1$ if no nuclear effects are present
- $R_{AA} \neq 1$ may indicate the presence of:
 - initial state effects (observed in pA collisions): PDF nuclear modification (shadowing), Cronin enhancement, ...
 - final state effects: collisional and radiative energy loss in the medium


prediction for b and c quarks R_{AA} Djordjevic et al, arXiv:0410372 • gluon radiation suppressed for angles $\theta < M_Q/E_Q$ (dead cone effect) $R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$


(pions come mainly from gluon fragmentation \rightarrow higher C_r - $<\Delta E>= \alpha_s L^2 \widehat{q} C_r$)

イロト イヨト イヨト

Spatial anisotropy of the fireball converted into **momentum anisotropy** of final state particles due to multiple interactions among the medium constituents


$$rac{dN}{d(arphi-\Psi_{RP})} \propto 1+2 extsf{v}_1 \cos(arphi-\Psi_{RP})+2 extsf{v}_2 \cos(2(arphi-\Psi_{RP}))+...$$

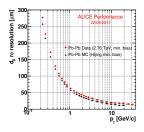
- $\bullet~$ D meson $v_2 \neq 0$ at low $p_{\rm T} \rightarrow$ c quark thermalization in the medium
- $\bullet~$ D meson $v_2 \neq 0$ at high $p_{\rm T} \rightarrow$ path length dependance of the energy loss

ALICE detector

- Inner Tracking System: 6 layers of silicon detectors for tracking and vertex position
- Time Projection Chamber provides tracking and particle identification
- Time of Flight detector provides particle identification

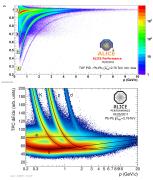
イロト イヨト イヨト

- trigger based on VZERO detector (array of scintillators) and Silicon Pixel Detector (inner layer of ITS)
- centrality provided by VZERO amplitude

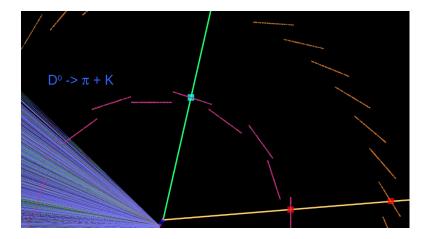

D meson reconstruction

The decay kinematic is fully reconstructed through the hadronic decays of D mesons

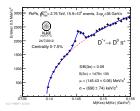
- $D^0 \rightarrow K^- \pi^+$
- $D^+ \rightarrow K^- \pi^+ \pi^+$
- $D^{*+} \rightarrow D^0 \pi^+$
- $D_s \to \pi^+ \phi \to K^+ K^- \pi^+$

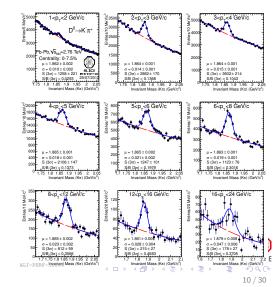

The reconstruction of these decays requires:

Excellent vertex and impact parameter resolution ($c\tau$ of the D mesons ~ 100-300 μ m)

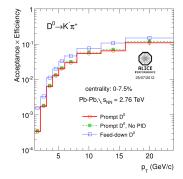


Particle Identification





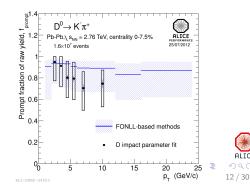
Analysis of Pb-Pb 2011 data


- 16 M events collected with central triggers 0-7.5% centrality
- Invariant mass analysis of fully reconstructed decay topologies displaced from the primary vertex
- selection strategy based on:
 - topological cuts: decay length, cosine of the pointing angle...
 - particle identification for decay tracks

Analysis of Pb-Pb 2011 data - Efficiencies

Reminder: we are looking for the prompt D mesons R_{AA} in different $p_T \text{ bins } \rightarrow D$ meson from B decay are more displaced from the primary vertex (B meson decay length + D meson decay length) \rightarrow different efficiencies

- HIJING+Pythia
- simulated data reconstructed taking into account detector conditions for each run
- higher efficiency for D mesons from B → analysis cuts select preferentially more displaced vertex

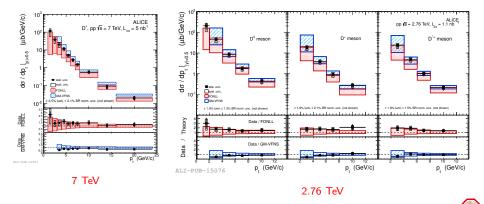

Analysis of Pb-Pb 2011 data - Beauty feed-down subtraction

Reminder: we are looking for the prompt D mesons R_{AA} in different p_T bins \rightarrow need to subtract the fraction of D mesons coming from B meson decay (beauty feed-down)

- FONLL predictions for non-prompt D meson cross section in pp
- the number of non-prompt D in a given $p_{\rm T}$ bin is

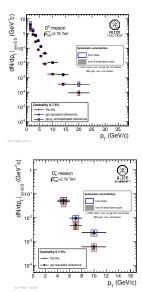
$$\frac{dN_{DfromB}^{theory}}{dp_{\rm T}} = \Delta p_{\rm T} \times eff_{DfromB} \times T_{AA} \times R_{AA}^{DfromB} \times \frac{d\sigma_{DfromB}^{pr}}{dp_{\rm T}}$$

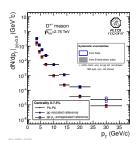
- T_{AA} nuclear overlap function (from Glauber Model)
 - hypothesis: 0.3 < R^{DromB}_{AA} <3 in general we expect R_{AA} of D mesons from B to be different from that of prompt D mesons, accordingly to the different energy loss hypothesis of c and b q

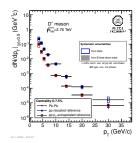

pp reference

- pp @ 7TeV: 316 M events
- pp @ 2.76TeV: 68 M events

- 7 TeV data extrapolated to 2.76 TeV using FONLL predictions
- 2.76 TeV data used to validate results

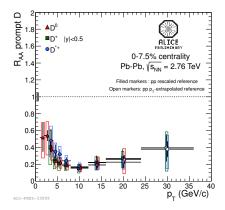

ALICE


13/30



• pp reference for R_{AA} at higher p_T obtained with p_T -extrapolation using FONLL/data ratios in the measured region

$p_{\rm T}$ spectrum - pp and Pb-Pb



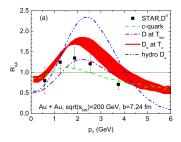
• pp spectra multiplied by $< T_{AA} >$ in 0-7.5%

- main sources of systematic uncertaintes:
 - yield extraction ($\sim 10\%$)
 - PID (~ 5%)
 - topological cut variation ($\sim 10\%)$
 - B feed-down uncertaintes ($\sim 10\%$)

イロト イヨト イヨト

- $R_{\rm AA}$ measurements up to 36 GeV/c
- $\bullet~D^0,~D^+$ and D^{*+} mesons show a suppression by a factor of 4-5 above a transverse momentum of 5 GeV/c

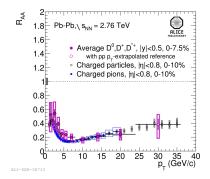

э


イロト 不得 トイヨト イヨト

$R_{\rm AA}$ results - focus on D_s

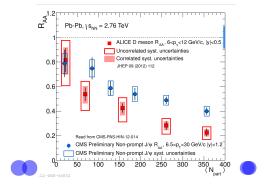
Physics motivation

The relative yield of D_s with respect to that of non-strange D meson expected to be enhanced in Pb-Pb collisions at low-intermediate p_T if charm quarks hadronize via recombination in the medium



- large statistical and systematic uncertainties with the present data sample do not allow to conclude about low and intermediate p_T region
- for $8 < p_T < 12$ GeV/c suppression similar to the one of non-strange D mesons ALICE

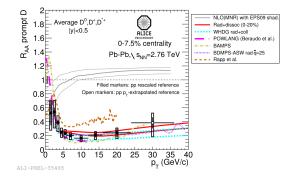
$R_{\rm AA}$ results - Comparison to charged hadrons



- D meson R_{AA} similar to that of charged hadrons and pions (caveat slightly different centrality for charged hadrons and pions: 0-10%)
- maybe a hint for $R_{AA}(D) > R_{AA}(\pi)$ at low p_{T}

< ロ > < 同 > < 三 > < 三 >

${\it R}_{ m AA}$ results - Comparison to non prompt J/ ψ



- non-prompt J/ ψ from B meson decay (CMS data CMS-PAS-HIN-12-014)
- hints for stronger D meson suppression in central collisions

イロト イヨト イヨト

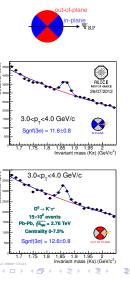
$R_{\rm AA}$ results - Comparison to models

- shadowing alone (NLO(MNR) model) cannot explain such a strong suppression
- models including in-medium parton energy loss can give a reasonable description of the data

イロト イボト イヨト イヨト

v₂ - Analysis

Candidates are divided into 2 sub-groups, depending on the reconstructed track angle φ w.r.t. event plane Ψ_{EP} (estimator of the reaction plane is defined by the impact parameter and the beam direction)


•
$$|\Delta \varphi| = \varphi - \Psi_{EP}$$

• in plane: $|\Delta \varphi| < \frac{\pi}{4}$

- out of plane: $\frac{\pi}{4} < |\Delta \varphi| < \frac{3\pi}{4}$
- fit to mass spectra in the 2 regions to get total in-plane(N_{in}) and out of plane(N_{out}) yields

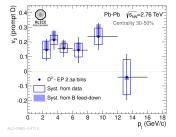
Determine v_2 as

$$v_2 = \frac{\pi}{4} \frac{N_{in} - N_{out}}{N_{in} + N_{out}} \frac{1}{R_2}$$

• R₂: event plane resolution

20 / 30

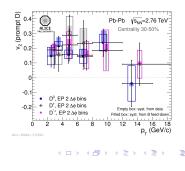
Event plane is evaluated from the tracks azimuthal distribution in the TPC TPC tracks are used to compute the 2 dimensional Q_n vector, in particular the 2nd harmonic Q_2


$$Q_2 = \left(\begin{array}{c} \sum_{i=0}^{N} w_i \cos \phi_i \\ \sum_{i=0}^{N} w_i \sin \phi_i \end{array}\right)$$

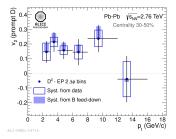
$$\Psi_{EP}=rac{1}{2} an^{-1}(rac{Q_{2_{\chi}}}{Q_{2_{y}}})$$

- ϕ_i azimuthal angle of the $i{\rm th}$ reconstructed track of the event
- w_i weight of the *i*th track
- Weights depend on azimuth and account for efficiency discrepancies among different TPC sectors → they are computed in order to have a flat event plane distribution.

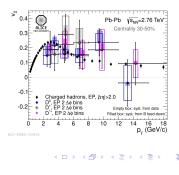
A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A


*v*₂ - results in 30-50%

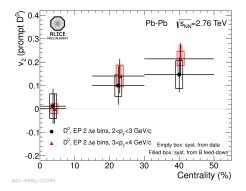
- indication for non-zero D⁰ v2 (3σ for 2< p_T <6 GeV/c)
- D⁰ v₂ in agreement with D⁺ and D^{*+} within uncertaintes


Systematic uncertaintes:

- yield extraction (different fitting functions, bin counting)
- different topological cuts
- B feed-down subtraction (here we need an hypothesis on both feed-down R_{AA} and v₂)
- event plane resolution evaluation

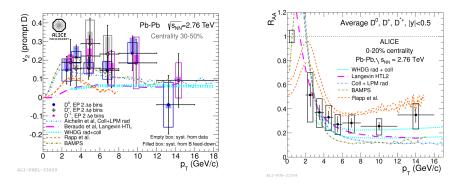

*v*₂ - results in 30-50%

- indication for non-zero D^0 v2 (3 σ for 2< $p_{\rm T}$ <6 GeV/c)
- D⁰ v₂ in agreement with D⁺ and D^{*+}
- D meson v₂ compatible with that of charged hadrons in the same centrality 30-50%


Systematic uncertaintes:

- yield extraction (different fitting functions, bin counting)
- different topological cuts
- B feed-down subtraction (here we need a hypothesis on both feed-down R_{AA} and v₂
- event plane resolution evaluation

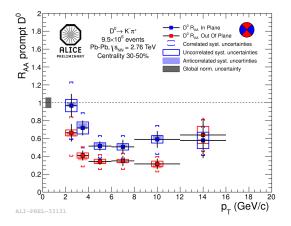
v_2 - other centralities



- p_T bins [2,3] and [3,4] GeV/c for 0-7.5%, 15-30% and 30-50%
- v₂ enhancement going from central to semiperipheral collisions
- expected from the small initial geometrical anisotropy in central collisions

< ロ > < 同 > < 回 > < 回 >

v_2 - Comparison to models

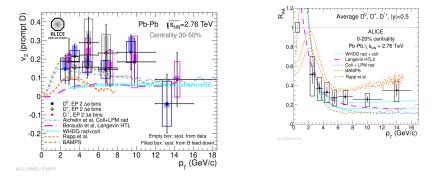


Challenging for the models to reproduce simulataneously $R_{\rm AA}$ and v_2

э

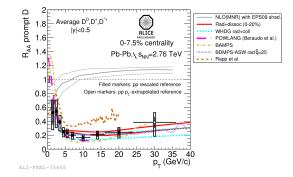
イロト イボト イヨト イヨト

 access different informations to the relative contribution of partonic energy loss and anisotropic flow to the suppression


- R_{AA} measurement in central collisions has shown a strong suppression (factor 4÷5) of heavy flavours yield w.r.t. pp collisions
- D_s measured for the 1st time in heavy-ion collisions. Intriguing result, although not conclusive on the predicted enhancement at low and intermediate p_T
- D meson v_2 measured for the 1st time; positive v_2 with 3σ significance in $2<{\it p}_{\rm T}<6~{\rm GeV/c}$
- different theoretical models agree with elliptic flow and nuclear modification factor results separately, but simultaneous description of both effects is challenging
- strong suppression of yield at high p_T and v₂ comparable to that of charged hadrons indicate that charm quarks are strongly affected by the medium and are good probes for testing its characteristics

Backup

v_2 - Comparison to models



Two models seem in better agreement with data, based on

- Boltzmann Approach Multi-Parton Scattering (**BAMPS**), but underestimate R_{AA} (see slide 13)
- collisional + radiation with LPM effect (QCD coherence effect arising from the interference of radiated quanta with medium), but it also underestimates R_{AA}

$R_{\rm AA}$ results - Comparison to models

- shadowing alone (NLO(MNR) model) cannot explain such a strong suppression
- the following models show better agreement with data
 - Vitev: radiative energy loss supplemented with in-medium D meson dissociation
 - $\bullet~$ WHDG: energy loss +~ pQCD includes elastic, inelastic and path length fluctuations contributions
 - CUJET1.0: MonteCarlo pQCD tomographic model

