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INTRODUCTION

This talk aims to assess the approach of p-p scattering toward s and t unitarity

saturation. The analysis I shall present is based on:

General principles manifested by Froissart-Martin bound of p-p asymptotic

total cross sections, introduced 50 years ago.

TeV-scale p-p data analysis based on the output of the TEVATRON, LHC, and

AUGER (in which p-p features are calculated from p-Air Cosmic Rays data).

As we shall see, the TEVATRON(1.8)-LHC(7)-AUGER(57) data indicate that

soft scattering amplitudes populate a small, slow growing, fraction of the

available phase space confined by unitarity bounds.

Phenomenological unitarity models substantiate the conclusions obtained from

the data analysis in the TeV-scale. Model predictions suggest that saturation

is attained (if at all) at much higher energies.

A review of updated unitarity models will be given by Gotsman.



SINGLE CHANNEL UNITARITY

Following are 3 paradoxes, dating back to the ISR epoch, which are resolved

by the introduction of unitarity screenings.

• Whereas σtot grows like s∆, σel grows faster, like s2∆ (up to logarithmic

corrections). With no screening, σel will, eventually, be larger than σtot.

• Elastic and diffractive scatterings are seemingly similar. However, the

energy dependence of σdiff is significantly more moderate than that of σel.

• The elastic amplitude is central in impact parameter b-space, peaking at

b=0. The diffractive amplitudes are peripheral peaking at large b, which

gets larger with energy.



Assume a single channel unitarity equation in impact parameter b-space,

2Imael(s, b) = | ael(s, b)|
2 + Ginel(s, b), i.e. at a given (s,b): σel + σinel = σtot.

Its general solution can be written as:

ael(s, b) = i
(

1 − e−Ω(s,b)/2
)

and Ginel(s, b) = 1 − e−Ω(s,b),

where the opacity Ω(s, b) is arbitrary. It induces a unitarity bound | ael(s, b) |≤ 2.

Even though not frequently used, this bound is perfectly legitimate.

Troshin and Tyurin have promoted a unitarity U matrix model, compatible

with the bound above. Their reproduction of the Tevatron data is quite good.

However, their predicted LHC σel and σtot values are significantly higher than

TOTEM’S 7 TeV cross section data and continue to rapidly grow.

In a Glauber like eikonal approximation, the input opacity, Ω(s, b), is real.

i.e. ael(s, b) is imaginary. Ω equals the imaginary part of the input Born term.

The initiated bound is | ael(s, b) |≤ 1, which is the black disc bound.



In a single channel eikonal model, the screened cross sections are:

σtot = 2
∫

d2b
(

1 − e−Ω(s,b)/2
)

, σel =
∫

d2b
(

1 − e−Ω(s,b)/2
)2
, σinel =

∫

d2b
(

1 − e−Ω(s,b)
)

.

The figure above shows the effect of s-channel screening, securing that the

screened elastic amplitude is bounded by unity. The figure illustrates, also,

the bound implied by analyticity/crossing on the expanding b-amplitude.

Saturating s-channel unitarity and analyticity/crossing bounds, we get the

Froissart-Martin bound: σtot ≤ Cln2(s/s0). s0 = 1GeV 2, C = π/2m2
π ≃ 30mb.

C is far too large to be relevant in the analysis of TeV-scale data.



Coupled to Froissart-Martin is MacDowell-Martin bound: σtot
Bel

≤ 18 π σel
σtot
.

The Froissart-Martin ln2s behavior relates to the bound, NOT to the total

cross sections which can have any energy dependence as long as σel(s) is below

saturation.

In t-space, σtot is proportional to a single point, dσel/dt(t = 0) (optical theorem).

σtot in b-space is obtained from a b2 integration over 2(1 − e−
1
2Ω(s,b)).

Saturation in b-space is, thus, a differential feature, attained initially at b=0

and then expands very slowly with energy.

Consequently, a black core is a product of partial saturation, different from a

complete saturation in which ael(s, b) is saturated at all b.

In a single channel model, σel ≤
1
2σtot and σinel ≥

1
2σtot.

At saturation, regardless of the energy at which it is attained, σel = σinel = 1
2σtot.

Introducing diffraction, will significantly change the features of unitarity

screenings. However, the saturation signatures remain valid.



TEV-SCALE DATA

Following is p-p TeV-scale data relevant to the assessment of saturation:

CDF(1.8 TeV): σtot = 80.03 ± 2.24mb, σel = 19.70 ± 0.85mb, Bel = 16.98 ± 0.25GeV −2.

TOTEM(7 TeV): σtot = 98.3 ± 0.2(stat) ± 2.8(sys)mb,

σel = 24.8 ± 0.2(stat) ± 1.2(sys)mb, Bel = 20.1 ± 0.2(stat) ± 0.3(sys)GeV −2.

AUGER(57 TeV): σtot = 133 ± 13(stat)±17
20(sys) ± 16(Glauber)mb,

σinel = 92 ± 7(stat) ±9
11 (sys) ± 16(Glauber)mb.

Consequently:

σinel/σtot(CDF ) = 0.75, σinel/σtot(TOTEM) = 0.75, σinel/σtot(AUGER) = 0.69.

σtot/Bel(TOTEM) = 12.6 < 14.1.

The ratios above imply that saturation of the elastic p-p amplitude has NOT

been attained up to 57 TeV. Note that the margin of AUGER errors is large.

Consequently, present study of saturation in the TeV-scale needs the support

of model predictions!



POMERON MODEL

Translating the concepts presented into a viable phenomenology requires a

specification of Ω(s, b), for which Regge poles are a powerful tool.

Pomeron (IP ) exchange is the leading term in the Regge hierarchy.

The growing total and elastic cross sections in the ISR-Tevatron range are well

reproduced by the non screened single channel DL IP model in which:

αIP (t) = 1 + ∆IP + α′
IP t, ∆IP = 0.08, α′

IP = 0.25GeV −2.

∆IP determines the energy dependence, and α′
IP the forward slopes.

Regardless of DL remarkable success at lower energies, they under estimate the

LHC cross sections. This is traced to DL neglect of diffraction and unitarity

screenings initiated by s and t dynamics.

Updated Pomeron models include s and t diffraction and unitarity screenings.



GOOD-WALKER DECOMPOSITION

Consider a system of two orthonormal states, a hadron Ψh and a diffractive

state ΨD. ΨD replaces the continuous diffractive Fock states. Good-Walker

(GW) noted that: Ψh and ΨD do not diagonalize the 2x2 interaction matrix T.

Let Ψ1, Ψ2 be eigen states of T. Ψh = αΨ1 + β Ψ2, ΨD = −β Ψ1 + αΨ2, α
2 + β2 = 1,

initiating 4 Ai,k elastic GW amplitudes (ψi + ψk → ψi + ψk). i,k=1,2.

For initial p(p̄) − p we have A1,2 = A2,1.

I shall follow the GLM definition, in which the mass distribution associated

with ΨD is not defined.

The elastic, SD and DD amplitudes in a 2 channel GW model are:

ael(s, b) = i{α4A1,1 +2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1+ (α2 − β2)A1,2 + β2A2,2},

add(s, b) = iα2β2{A1,1 − 2A1,2 + A2,2}.

Ai,k(s, b) =
(

1 − e
1
2Ωi,k(s,b)

)

≤ 1.



GW mechanism changes the structure of s-unitarity below saturation.

• In the GW sector we obtain the Pumplin bound: σel + σGWdiff ≤
1
2σtot.

σGWdiff is the sum of the GW soft diffractive cross sections.

• Below saturation, σel ≤
1
2σtot − σGWdiff and σinel ≥

1
2σtot + σGWdiff .

• ael(s, b) = 1, when and only when, A1,1(s, b) = A1,2(s, b) = A2,2(s, b) = 1.

• When ael(s, b) = 1, all diffractive amplitudes at (s,b) vanish.

• As we shall see, there is a distinction between GW and non GW diffraction.

Regardless, GW saturation signatures are valid also in the non GW sector.

• At saturation, σel = σinel = 1
2σtot. In a multi channel calculation we add

σdiff = 0. Consequently, prior to saturation the diffractive cross sections

stop growing and start to decrease with energy!



CROSSED CHANNEL UNITARITY

Mueller(1971) applied 3 body unitarity to equate the cross section of

a + b→M 2
D + b to the triple Regge diagram a + b + b̄→ a + b + b̄.

The signature of this presentation is a triple vertex with a leading 3IP term.

The 3IP approximation is valid, when
m2

p

M2
D
<< 1 and

M2
D
s << 1.

The leading energy/mass dependences are dσ3IP

dt dM2
D
∝ s2∆IP ( 1

M2
D
)1+∆IP .

Mueller’s 3IP approximation for non GW diffraction is the lowest order of

multi IP t-channel interactions, which are compatible with t-channel unitarity.



a) b)

Recall that unitarity screening of GW (”low mass”) diffraction is carried out

explicitly by eikonalization, while the screening of non GW (”high mass”)

diffraction is carried out by the survival probability (to be discussed).

The figure above shows the IP Green function. Multi IP interactions are summed

differently in the various IP models

Note the analogy with QED renormalization:

a) Enhanced diagrams, present the renormalization of the propagator.

b) Semi enhanced diagrams, present the pIPp vertex renormalization.



SURVIVAL PROBABILITY

The experimental signature of a IP exchanged reaction is a large rapidity gap

(LRG), devoid of hadrons in the η − φ lego plot, η = −ln(tanθ
2
).

S2, the LRG survival probability, is a unitarity induced suppression factor of

non GW diffraction, soft or hard: S2 = σscrdiff/σ
nscr
diff . It is the probability that the

LRG signature will not be filled by debris (partons and/or hadrons) originating

from either the s-channel re-scatterings of the spectator partons, or by the

t-channel multi IP interactions.

Denote the gap survival factor initiated by s-channel eikonalization S2
eik, and

the one initiated by t-channel multi IP interactions, S2
enh.

The eikonal re-scatterings of the incoming projectiles are summed over (i,k).

S2 is obtained from a convolution of S2
eik and S2

enh.

A simpler, reasonable approximation, is S2 = S2
eik · S

2
enh.



THE PARTONIC POMERON

Current IP models differ in details, but have in common a relatively large

adjusted input ∆IP and a very small α′
IP . The exceedingly small fitted α′

IP

implies a partonic description of the IP which leads to a pQCD interpretation.

The microscopic sub structure of the IP is obtained from Gribov’s partonic

interpretation of Regge theory, in which the slope of the IP trajectory is related

to the mean transverse momentum of the partonic dipoles constructing the

Pomeron, and consequently, the running QCD coupling.

α′
IP ∝ 1/ < pt >

2, αS ∝ π/ln
(

< p2
t > /Λ2

QCD

)

<< 1.

We obtain a single IP with hardness depending on external conditions.

This is a non trivial relation as the soft IP is a simple moving pole in J-plane,

while, the BFKL IP is a branch cut approximated, though, as a simple pole

with ∆IP = 0.2 − 0.3, α′
IP = 0.



GLM and KMR models are rooted in Gribov’s partonic IP theory with a hard

pQCD IP input. It is softened by unitarity screening (GLM), or the decrease

of its partons’ transverse momentum (KMR).

Both models have a bound of validity, at 60(GLM) and 100(KMR) TeV,

implied by their approximations. Consequently, as attractive as updated IP

models are, we can not utilize them above the TeV-scale.

To this end, the only available models are single channel, most of which have a

logarithmic parametrization input. The main deficiency of such models is that

while they provide a good reproduction of the total and elastic data at the

TeV-scale, their predictions at higher energies are questionable since t-channel

screening is not included.



7TeV 14TeV 57TeV 100TeV

GLM KMR BH GLM KMR BH GLM BH GLM KMR BH

σtot 98.6 97.4 95.4 109.0 107.5 107.3 130.0 134.8 139.0 138.8 147.1

σinel 74.0 73.6 69.0 81.1 80.3 76.3 95.2 92.9 101.5 100.7 100.0

σinel

σtot
0.75 0.76 0.72 0.74 0.75 0.71 0.73 0.70 0.73 0.73 0.68

IS SATURATION ATTAINABLE? (PHENOMENOLOGY)

A) Total and Inelastic Cross Sections:

The Table above, compares σtot and σinel outputs of GLM, KMR and BH in

the energy range of 7-100 TeV.

Note that, GLM predictions at 100 TeV are above the model validity bound.

As seen, the 3 models have compatible σinel
σtot

outputs in the TeV-scale,

significantly larger than 0.5.

The BH model can be applied at arbitrary high energies. The prediction of

BH at the Planck-scale (1.22·1016TeV ) is, σinel/σtot = 1131mb/2067mb = 0.55, which

is below ael saturation.



TeV 1.8 → 7.0 7.0 → 14.0 7.0 → 57.0 57.0 → 100.0 14.0 → 100.0

∆eff (GLM) 0.081 0.072 0.066 0.060 0.062

∆eff (KMR) 0.076 0.071 0.065

∆eff (BH) 0.088 0.085 0.082 0.078 0.080

B) ∆eff
IP Dependence on Energy:

∆eff
IP serves as a simple measure of the rate of cross section growth estimated

as s∆
eff
IP . When compared with the adjusted input ∆IP , we can assess the strength

of the applied screening.

The screenings of σtot, σel, σsd, σdd and M 2
diff are not identical. Hence, their ∆eff

IP

values are different.

The cleanest determination of ∆eff
IP is from the energy dependence of σtot.

All other options require also a determination of α′
IP .

The table above compares ∆eff
IP values obtained by GLM, KMR and BH.

The continuous reduction of ∆eff
IP is a consequence of s and t screenings.



7TeV 14TeV 57TeV 100TeV

GLM KMR GLM KMR GLM GLM KMR

σtot 98.6 97.4 109.0 107.5 130.0 134.0 138.8

σel 24.6 23.8 27.9 27.2 34.8 37.5 38.1

σGW
sd 10.7 7.3 11.5 8.1 13.0 13.6 10.4

σsd 14.88 17.31 21.68

σGW
dd 6.21 0.9 6.79 1.1 7.95 8.39 1.6

σdd 7.45 8.38 18.14

σel+σGW
diff

σtot
0.42 0.33 0.42 0.34 0.43 0.43 0.36

C) Diffractive Cross Sections:

GLM and KMR total, elastic and diffractive cross sections are presented.

KMR confine their predictions to the GW sector.

GLM GW σsd and σdd are larger than KMR. Their σtot and σel are compatible.

In both models, the GW components are compatible with the Pumplin bound.

The persistent growth of the diffractive cross sections indicates that saturation

will be attained (if at all) well above the TeV-scale.

Analysis of diffraction, is hindered by different choices of signatures and bounds!



D) MacDowell-Martin Bound:

Recall that, MacDowell-Martin Bound is σtot
Bel

≤ 18π σel
σtot
.

GLM and KMR ratios and bounds are:

7TeV : σtot
Bel

= 12.5 < 14.1(GLM), σtot
Bel

= 12.3 < 13.8(KMR).

14TeV : σtot
Bel

= 13.0 < 14.5(GLM), σtot
Bel

= 12.8 < 14.3(KMR).

100TeV : σtot
Bel

= 13.8 < 15.3(GLM), σtot
Bel

= 13.8 < 15.5(KMR).

As seen, the ratios above are compatible with a non saturated ael(s, b)

in the TeV-scale.

CONCLUSION

Both the available experimental data in the TeV-scale and the outputs of GLM

KMR and BH models, decisively indicate that the p-p elastic amplitude does

not saturate up to 100 TeV and possibly (BH) up to the Planck-scale. This

conclusion does not rule out the possibility that ael(s, b) has a black core at high

enough energy.


