Semileptonic *B_s* Decays @ Babar, Belle, & D0

On Behalf of the Belle collaboration

Introduction

 Fewer measurements of semileptonic B_s than that of B⁺, B⁰

• Inclusive, Exclusive, $|V_{cb}|$, $|V_{ub}|$, HQ parameters... not for B_{s_i} but what can we learn?

Semileptonic B_s decays are (already) used as standard candles of B_s measurements,
 e.g. LHCb & D0 hadronisation fraction, f_s,
 determinations [PRD.85.032008 (2011)]

 Normalisation of B_s production essential for comparison between SM and data

$$\frac{d\Gamma(B \to Dl\nu)}{dw} \propto \frac{G_F^2 |V_{cb}|^2}{48\pi^3} (w^2 - 1)^{3/2} \xi^2(w)$$
B_s modes may be more precise in determining exclusive $|V_{qb}dw$ due $G_F |V_{cb}|^2 (w^2 - 1)^{1/2} (w + 1)^2 \xi^2(w)$ is with heavier quarks, (and other phase space at lower recoil...But can experiment keep up? ν

Semileptonic Bs

2

universitätbon

Inclusive Semileptonic B_s decay predictions

- The most important prediction for SL B_s decays is Flavour SU(3) (& U-spin)
 Symmetry, which must be tested.
- Non-perturbative QCD contributions are modified, which are most significant at third order e.g. spin orbit operator. Largest effect in charmless modes.
- High order corrections, e.g. due to weak annihilation, expected to be small.

$\frac{\Gamma_{\rm sl}(B_s^0 \to X_c \ell \nu)}{-0.09 \pm 0.04}$	Order	Term	δΓ%	δTerm (d⇔s)	δΓ _c (d⇔s)%	δΓ _u ($d \leftrightarrow s$)%
$\Gamma_{\rm sl}(B^0_d \to X_c \ell \nu) \stackrel{= 0.33 \pm 0.04}{=}$	1/m _b ²	μ_{π}^2	-1	25%	-0.25	-
$\frac{\Gamma_{\rm sl}(B_s^0 \to X_c \ell \nu)}{\Gamma_{\rm sl}(B_s^0 \to X_c \ell \nu)} \approx 0.99$		μ_G^2	-3.5	10%	-0.4	-
$\Gamma_{\rm sl}(B^0_s \to X_u \ell \nu) \sim 0.07$	1/m _b ³	ρ_D^3	-3	50%	-1.5	2.5
$\overline{\Gamma_{\rm sl}(B^0_d \to X_u \ell \nu)} \approx 0.97$	Higher orders		0.5		0.5	2

• Bigi et al., JHEP 1109 (2011) 012,

• Gronau, Rosner, PhysRevD.83.034025 (2012)

• These parameters were measured directly in $|V_{cb}|/m_b$ moment fits

Semileptonic B_s decays, CKM 2012

Phillip URQUIJO

3

B_s production *near* the Y(5S)

 B_s tagging can be exploited for unbiased absolute measurements, and to suppress B_{ud} background.

• $\Upsilon(5S) \rightarrow B^{(*)}B^{(*)}(n\pi), B_s^{(*)}B_s^{(*)}, \Upsilon(nS)\pi\pi$

Experiment	Luminosity
Babar: √s>2m _{Bs}	~3.2 fb ⁻¹
Belle: $\sqrt{s} \sim m_{Y(5S)}$	121 fb ⁻¹
CLEO: $\sqrt{s} \sim m_{Y(5S)}$	~0.5 fb ⁻¹

4

Semileptonic *B_s* decays, CKM 2012

B_s production @ $\Upsilon(5S)$

- Challenges (for precise measurements) • $\sigma_{\rm bb}^{(\sqrt{s}=10.87 \, {\rm GeV})} / \sigma_{\rm bb}^{(\sqrt{s}=10.58 \, {\rm GeV})} \sim 0.3$
 - *f_s*~0.199±0.030 [HFAG 2012], large uncertainty! impacting most absolute BF measurements at Y(5S).
 - Above $\mathbf{B}_{\mathbf{s}^{(*)}}\mathbf{B}_{\mathbf{s}^{(*)}}$ threshold ~14M B_s⁰ in 121 fb⁻¹ at Belle
 - Excited production: kinematic smearing
 - BF(Y(5S) \rightarrow B_s^{*}B_s^{*})~90%
 - $B_s^* \rightarrow B_s \gamma$, m(B_s^*)-m(B_s)~49 MeV

5

Current B_s Tagging methods^{B_sBsereiteleptriceBranchingFracticition}

Smaller data samples and B_{u/d} contamination,

Choose particles that have very different decay rates from **B** and **B**_s e.g. [PDG2012]

• $B(B_s^0 \rightarrow D_s^{\pm} X) = (93 \pm 25)\%,$ $B(B \rightarrow D_s^{\pm} X) = (8.3 \pm 0.8)\%$

Two methods **Φ**, **D**_s+:

Semileptonic B_s decays, CKM 2012

6

universitätbon

Babar Inclusive

Measure number of events, Φ yield, and Φ
 +lepton yield in correlation with a high momentum lepton as a function of CM energy

Ф→K+K ⁻ production	Φ	Φ+I (same B)	Ф+I (Орр. В)
$B(B_s \rightarrow D_s X) \times B(D_s \rightarrow \Phi X)$	15%	1.3%	1.4%
$B(B \rightarrow \Phi X)$	3.4%	0.1%	0.7%

$$C_{h} = R_{B} \left[f_{s} \epsilon_{h}^{s} + (1 - f_{s}) \epsilon_{h} \right]$$

$$C_{\phi} = R_{B} \left[f_{s} \epsilon_{\phi}^{s} P(B_{s} \overline{B}_{s} \to \phi X) + (1 - f_{s}) \epsilon_{\phi} P(B \overline{B} \to \phi X) \right]$$

$$C_{\phi \ell} = R_{B} \left[f_{s} \epsilon_{\phi \ell}^{s} P(B_{s} \overline{B}_{s} \to \phi \ell X) + (1 - f_{s}) \epsilon_{\phi \ell} P(B \overline{B} \to \phi \ell X) \right]$$

Rates

p(**B**→**ΦX**) are probabilities that a Φ is produced in a **BBbar** event

Semileptonic B_s decays, CKM 2012

Babar Inclusive

- B_{u/d} from Y(4S), Continuum from using offB_s Semileptonic Branching.Fraction resonance
- f_s extracted simultaneously at each energy scan point from N_{events}, and Φ yield
- B_s contributions depend on various inputs e.g. BFs: $B_s \rightarrow D_s X, B_s \rightarrow Iv X,$ $D_s \rightarrow Iv X, D_s \rightarrow \Phi X, D_s \rightarrow \Phi Iv X'$
- χ^2 constructed from measured and expected value of P(BBbar $\rightarrow \Phi IX$), minimising for BF(B_s $\rightarrow IvX$)

- ► BF(B_s→IvX) = 9.5 +2.5 -2.0 +1.1 -1.9 %
- Dominant systematic (~%10) from inclusive D_s yield.

8

Belle Inclusive

- Same sign tagging D_s·l·: no tag bias
- Fit m(**KK** π) in bins of lepton momentum
- Continuum subtracted with off resonance (Lumi(off)/Lumi(on)~0.5)

Belle Inclusive

Two component fraction fit: **prompt leptons** and **secondary and fake** leptons

	Rel. Systematic Uncertainty	e	μ
$= 0.0426 \pm 0.0020 \pm 0.0013$	Lepton ID, fake rate	0.7	1.4
	D _s efficiency	0.8	0.8
$\frac{-}{-}$ $-$ 0.0471 \pm 0.0024 \pm 0.0016	KKπ fit	2.0	2.2
$\frac{-}{)} = 0.0471 \pm 0.0024 \pm 0.0016$	Secondary leptons	1.0	1.5
	Continuum	1	.1
	Semileptonic Width Composition	1	.2
Semileptonic B _s decays, CKM 201	2 Phillip URQUIJO	10	universität

BF Extraction

Measu	Expectation from external parameters			
	$N(D_s^-\ell^-) = N_s(D_s^-\ell^-) + N_{u,d}(D_s^-\ell^-)$			
	$\overline{N(D_s^-)} = \overline{N_s(D_s^-) + N_{u,d}(D_s^-)}$			
	$\mathcal{F}_{D^+\ell^+}(B_s^{(*)}\bar{B}_s^{(*)}) + \mathcal{F}_{D^+\ell^+}(B_{ud}^{(*)}\bar{B}_{ud}^{(*)}(\pi))$	'Extern	al parameter	r /
	$= \underbrace{\mathcal{F}_{D_s^+}(B_s^{(*)}\bar{B}_s^{(*)})}_{\mathcal{F}_{D_s^+}(B_{s,d}^{(*)}\bar{B}_{s,d}^{(*)})} + \underbrace{\mathcal{F}_{D_s^+}(B_{u,d}^{(*)}\bar{B}_{ud}^{(*)}(\pi))}_{\mathcal{F}_{d_s^+}(B_{u,d}^{(*)}\bar{B}_{ud}^{(*)}(\pi))}$	System	atic Errors	
		Parameter	Value	$\frac{\Delta \mathcal{B}}{\mathcal{B}}$ [%]
	$\mathcal{F}_{D^+}(B^{(*)}_*\bar{B}^{(*)}_*) = 2 \cdot f_* \cdot \mathcal{B}(B^0_* \to D^{\pm}_*X).$	$f_s/f_{u,d}$	$(26.2 \pm 5.1)\%$	3.2
D _+		$\mathcal{B}(B_s \to D_s^{\pm} X)$	$(93 \pm 25)\%$	4.4
US	$(\mathcal{F}_{D^+}(B^{(*)}_{ud}\bar{B}^{(*)}_{ud}(\pi)) = 2 \cdot f_{ud} \cdot [1/2 \cdot \mathcal{B}(B^0 \to D^{\pm}_s X)]$	$\mathcal{B}(B^+ \to D_s^+ X)$	$(7.9 \pm 1.4)\%$	2.4
	$D_s \leftarrow u, u \leftarrow u \leftarrow v \rightarrow u \leftarrow v \leftarrow$	$\mathcal{B}(B^0 \to D_s^+ X)$	$(10.3 \pm 2.1)\%$	1.5
	$+1/2 \cdot \mathcal{B}(B^+ \to D_s^+ X)],$	$\mathcal{B}(B^{\circ} \to D_s X)$ $\mathcal{B}(D^+ \to D^- Y)$	$(1.50 \pm 0.84)\%$	1.2
	$\mathcal{F}_{D^{+}\ell^{+}}(B^{0(*)}_{\circ}\bar{B}^{0(*)}_{\circ}) = 2 \cdot f_{\circ} \cdot \mathcal{B}(B^{0}_{\circ} \to X^{-}\ell^{+}\nu_{\ell}) \cdot$	$\mathcal{B}(B^0 \to D_s \Lambda)$ $\mathcal{B}(B^0 \to Y\ell^+\mu_s)$	$(1.1 \pm 0.4)\%$ $(10.33 \pm 0.28)\%$	1.0
	$D_{s} \ell^{+} (-s - s) = J_{s} \ell^{-} (-s - s)$	$\mathcal{B}(B^+ \to X\ell^+\nu_\ell)$ $\mathcal{B}(B^+ \to X\ell^+\nu_\ell)$	$(10.33 \pm 0.28)\%$ $(10.99 \pm 0.28)\%$	0.4
	$[\chi_s \cdot \mathcal{B}(B^0_s \to D^+_s X)]$	$\Gamma(B^+B^-)/\Gamma(B^0\bar{B}^0)$	$(10.00 \pm 0.20)/0$ $(1.0 \pm 0.2)[17]$	0.2
	$+(1-\gamma_{*})\cdot\mathcal{B}(B^{0}\rightarrow D^{-}X)$]	$F_{B^*\bar{B}^*}$	$(38.1 \pm 3.4)\%$	0.1
D + I +	$+(1 \chi_{s}) \mathcal{O}(\mathbf{D}_{s} (\mathbf{D}_{s} \mathbf{\Lambda}))]$	$F_{B^*\bar{B}}$	$(13.7 \pm 1.6)\%$	0.1
US I	$\mathcal{F}_{D^+\ell^+}(B^{0*}\bar{B}^0\pi) = 2 \cdot f_{ud} \cdot \frac{1}{4} \cdot (1 - F_2) \cdot F'_{D^*\bar{D}}$	$F_{B\bar{B}}$	(5.5 ± 1.6)	0.1
	$D_{s}\ell$	$F'_{B^*\bar{B}^*\pi}$	$(5.9 \pm 7.8)\% [14]$	0.2
	$\mathcal{B}(B^0 \to X\ell^+ \nu_\ell) \cdot [\chi_d^{(+)} \cdot \mathcal{B}(B^0 \to D_a^+) +$	$F'_{B^*\bar{B}\pi}$	$(41.6 \pm 12.1)\%$ [14]	0.4
	(\pm) (\pm) (\pm)	$F_{B\bar{B}\pi}$	$(0.2 \pm 0.8)\% [14]$ (0.771 ± 0.008)	0.1
	$(1 - \chi_d^{(\top)}) \cdot \mathcal{B}(B^{\circ} \to D_s^-)] .$	x_d	(0.771 ± 0.008) (26.49 ± 0.29)	0.1
		<i>ws</i>	(20.10 - 0.20)	< 0.1

Systematics: $B_s \rightarrow D_s X$

- B_s→D_sX error dominates measurements, but PDG has 3 main issues:
 - D_s BF's outdated: Most use BF(D_s⁻ $\rightarrow \phi \pi^{-}$)=3.5±0.9, but BF(D_s⁻ $\rightarrow \phi \pi^{-}$)=(4.66±0.25)% in PDG.
 - S-wave contributions treated inconsistently (different helicity requirements)
 - Multiplicities and BFs combined despite differences in definition, i.e. upper vertex part. Large for B_s!
 - Inconsistent *f_s*.
 - $BF(B_s^0 \rightarrow D_s^{\pm}X)$
 - PDG 2012: = (93 ± 25)%
 - Theory = (91 ± 11)%
- f_s : Issue for most B_s measurements at 5S, correlated to $B_s \rightarrow D_s X!$

Semileptonic B_s decays, CKM 2012

B Diagrams

B_s Diagrams

Inclusive Summary

- Belle: Model independent
- ~10% limit on SU3 symmetry breaking
- Systematics limited!
 - Due to tagging techniques.
 - **B**_s **full reconstruction** (particularly >1 ab⁻¹) will help, but there is still some kinematic smearing
- Can still improve *f_s* & *D_sX* with current 5S data. (not yet measured for 121 fb⁻¹)

Phillip URQUIJO 13

 $\mathcal{B}(B^0_s \to X \ell \nu)$

 $\mathcal{B}(B^0_d \to X \ell \nu)$

Exclusives

- Semileptonic decays to heavier excited charm states, more of the available phase space near zero recoil, increasing importance of corrections in HQET.
- Theory expects large SU(3) symmetry breaking, but inconsistent predictions.
- Exclusive measurements:
 - K I v...eventually
 - Isolating charm states,
 D_s^{**}, D_sJ.
 - Calibration for QCD
 factorisation predictions

Predictions:						
$BF(B_s)$ (%)	D _s μν	D _s *μν				
Zhang, Wang, 1003.5576	2.9±0.4	7.1±0.9				
Chen, Fu, Kim, Wang J. Phys G 39 045002, (2012)	1.4 – 1.7	5.1 – 5.8				
SU(3) Symmetry, $B(B^0) \times \tau_{Bs}/\tau_{B0}$ [HFAG 2012 values]	2.12±0.12	4.92±0.11				

1.

. .

Semileptonic Bs decays, CKM 2012

Exclusives @ D0: $B_s \rightarrow D_{s1} \mu^+ \nu X$

ر MeV/c • D* associated with μ , and add Ks⁰ to isolate Events/2.5 • $D_{s1}(2536)$ → D^{*-} Ks⁰

Normalise to

• $BF(b \rightarrow D^* \mu \nu X) = (2.75 \pm 0.19)$ %, assume $BF(D_{s1}) \sim 25\%$ (assumed)

First observation

 $f(\bar{b} \to B_s^0) \cdot Br(B_s^0 \to D_{s1}^- \mu^+ \nu_\mu X) \cdot Br(D_{s1}^- \to D^{*-} K_S^0) =$ $= [2.66 \pm 0.52 \,(\text{stat}) \pm 0.45 \,(\text{syst})] \times 10^{-4}.$

 $\mathcal{B}(B_s^0 \to D_{s1}^-(2536)\mu^+\nu_\mu X) = (1.03 \pm 0.20 \pm 0.17 \pm 0.14_{\text{prod}})\%$

• More details on D_{s2}^* in C. Bozzi's talk

[1] ISGW2, Phys. Rev. D 52, 2783 (1995) [2] ISGW + Non-relativ. HQET, J. Phys. G 29, 2059 (2003)

Semileptonic B_s decays, CKM 2012

$B_s^0 \rightarrow D_s^{*\pm} I_V @ 121 \text{ fb}^{-1}, "Publicity"$

- Untagged approach to be exploited at Belle: X_{miss} , $cos\theta_{BY}$
- Suppression of B_{ud} cross feed for $D_s^{(*)}$ final states, with some peaking contamination from ~ 6 $10^{-4}_{BF(B \rightarrow Ds(*)\pm KIv)} \times 4$ (fud/fs)
- Resolution: Kinematic smearing due to Y(5S) decay modes, and γ in $D_s^* \rightarrow D_s \gamma$ (unfortunately), but w resolution acceptable

• $B_s^0 \rightarrow D_s^{*\pm} I v, D_s^* \rightarrow D_s \gamma, D_s \rightarrow \Phi(KK)\pi (p_{lep} > 0.5 \text{ GeV})$

Yield projections

- (My) Rough estimates for Signal: $B_s \rightarrow D_s(\Phi \pi) h$, $D_s(\Phi \pi)^* h$, Kh.
 - D_s tagging could be extended , e.g. (Φπ,K_sK,K^{*}K) (~x3 eff. w/r/t Belle result)
 - But, To be uncorrelated we must ignore opposite sign D_s-l⁺ pairs for inclusive analysis
 - B_s Full Recon & SL efficiencies: take Eff(B⁰) as a guide
 - Too early to quote precise, expected precision on exclusive modes, $\frac{\text{Assume}}{\text{BF}(\text{Klv}) \sim 1.5 \times 10^{-4}}$

			Yields (tagging x efficiency x BF)								
Tag Method	Tag Eff.	N_{Bs}/N_B	121 fb ⁻¹ (5 ab ⁻¹)								
			ΧΙν	∆stat	Δsys	Dsh	/	D_s^*h	J	Κĺν	,
Un tagged	2	$f_s/f_{d,u} \simeq 0.25$	2.7M	-	-	720	0	1090	00	250	00
Φ	0.12	$4.4 \cdot f_s/f_{d,u}$	160k	-	-	450		650		150)
D _s : Φ π, <i>K</i> _S <i>K</i> , <i>K</i> [*] <i>K</i>	0.04	$10 \cdot f_s/f_{d,u}$	27k	3%	7%	140	(6,000)	200	(8,500)	47	(2,000)
SL tag (D _s l)	0.01	≫ 10	6800	3%	~5%	40	(1,500)	50	(2,200)	12	(500)
B _s Full Recon.	0.004	≫ 10	5400	2%	~4%	15	(620)	20	(880)	5	(200)

(My) Expected error @ 5 ab⁻¹~ 10%

Semileptonic B_s decays, CKM 2012

Other B_s semileptonic measurements: L>1 ab⁻¹

- Time integrated A^{SL}CP
 - SuperB (design report): Δa_{sl}^{s} , = (0.1)% (ultimate 75 ab-1)
 - c.f. LHCb, 1fb⁻¹ $a_{sl}^{s} = (-0.24 \pm 0.54 \pm 0.33)\%$
- Other than |V_{ub}| with Klv: (expect smaller Lattice errors than πlv), What else can we uniquely learn from the B_s system with semileptonic, charged weak current B_s decays?

Semileptonic *B_s* decays, CKM 2012

- **K**^{*} **I ν**: polarisation?
- Tauonic modes?

$$A_{\rm SL}^s = \frac{\mathcal{B}(B_s \to \overline{B}_s \to D_s^{(*)-} l^+ \nu_l) - \mathcal{B}(\overline{B}_s \to B_s \to D_s^{(*)+} l^- \nu_l)}{\mathcal{B}(B_s \to \overline{B}_s \to D_s^{(*)-} l^+ \nu_l) + \mathcal{B}(\overline{B}_s \to B_s \to D_s^{(*)+} l^- \nu_l)}$$
$$= \frac{1 - |q/p|^4}{1 + |q/p|^4}.$$

Summary

- Most precise model independent absolute B_s branching fraction measurements. Systematics limited but can be reduced with B_s tagging.
 - **BF(B_s \rightarrow X | v)=(10.5 ± 0.8)%**
 - Consistent with SU3 and u-spin symmetry
 - Important calibration for B_s, as f_s<<1</p>
- Semileptonic B_s physics a√s=Y(5S) may be quite promising: plans to measure more exclusive modes, and use these for f_s.
- B_s full reconstruction will allow access to rare, BF O(1%) modes even with 121 fb⁻¹.
- Belle II plans to pursue rare and charmless modes.

Semileptonic B_s decays, CKM 2012

Backup

Systematics Babar Analysis

Multiplicative Systematics	Relative Uncertainty (%)
$\mathcal{B}(B_s \to D_s^{(*)}X)$	+8.72/-13.58
$\mathcal{B}(B_s \to c\overline{c}\phi)$ (Unmeasured)	± 3.20
$\mathcal{B}(B_s \to DD_s X)$ (Unmeasured)	+1.12/-1.16
Other Branching Fractions	+0.52/-0.54
Event and Lepton Selection	+1.99/-2.85
Fixed Fit Parameters	+0.49/-0.15
Background Parameterization	± 0.93
PID and Lepton Fake Rate	± 3.21
$P(B_{u,d}\overline{B}_{u,d} \to \phi)$	+1.47/-1.69
Simulation Branching Fractions	± 2.59
ISR and 2γ Background	+1.57/-7.14
Correction to Event Subtraction	+1.88/-4.59
Technique bias	+0.39/-10.00
Total Multiplicative	(+10.87/-19.92)%
Additive Systematics	Uncertainty $(\times 10^{-3})$
Other Branching Fractions	+0.56/-0.64
$P(B_{u,d}\overline{B}_{u,d} \to \phi \ell \nu)$	+4.30/-3.90
Total Additive	$(+4.34/-3.95) \times 10^{-3}$
Total Systematic	$(+11.20/-19.34) \times 10^{-3}$

