

LHCb Results on Semileptonic $B/B_s/\Lambda_b$ Decays

Concezio Bozzi, INFN Sezione di Ferrara on behalf of the LHCb Collaboration

Outline

- The LHCb detector and data sample
- Semileptonic decays at LHCb
- Results on b production fractions and B_s decays
- Outlook: form factors, CKM and decays with taus

Concezio Bozzi, Oct 1st 2012, CKM Workshop

Great LHC(b) performance!

Concezio Bozzi, Oct 1st 2012, CKM Workshop

Large and clean samples

Concezio Bozzi, Oct 1st 2012, CKM Workshop

- "Calibration tool" and hadronization studies
 - $-b\overline{b}$ cross section

Phys. Lett. B 694 (2010) 209

Eur. Phys. J. C (2012) 72:2022

PRD 85, 032008 (2012)

Phys. Lett. B 698 (2011) 14

PRD 85, 032008 (2012)

- flavour tagging performance
- production fractions of B, B_s, $\Lambda_{\rm b}$
- CP Violation through semileptonic asymmetries
 → see Zhou's talk in WG IV
- Exclusive decays of $\mathrm{B_s}$ and Λ_b
 - Composition of the inclusive SL width
 - Improved systematic uncertainties on CP asymmetries
 - Measurement of form factors
 - Measurements of CKM parameters $|V_{ub}|/|V_{cb}|$ (e.g. $B_s \rightarrow K^{(*)}\mu\nu$)

Events/ (0.1)

• Production fractions directly related to yields of different charmed hadrons, after correcting for cross-feeds i.e.

$$\begin{split} f_q &= BR(b \rightarrow B_q) \quad \frac{f_s}{f_u + f_d} = \frac{n_{\mathrm{corr}}(\bar{B}_s^0 \rightarrow D\mu)}{n_{\mathrm{corr}}(B \rightarrow D^0\mu) + n_{\mathrm{corr}}(B \rightarrow D^+\mu)} \frac{\tau_{B^-} + \tau_{\bar{B}^0}}{2\tau_{\bar{B}_s^0}}, \\ &\frac{f_{\Lambda_b}}{f_u + f_d} = \frac{n_{\mathrm{corr}}(\Lambda_b^0 \rightarrow D\mu)}{n_{\mathrm{corr}}(B \rightarrow D^0\mu) + n_{\mathrm{corr}}(B \rightarrow D^+\mu)} \times \frac{\tau_{B^-} + \tau_{\bar{B}^0}}{2\tau_{\Lambda_b^0}}(1 - \xi). \end{split}$$

Determine cross-feeds with D⁰K and D⁰p control samples. For instance:

$$n_{\rm corr}(\Lambda_b^0 \to D\mu) = \frac{n(\Lambda_c^+ \mu^-)}{\mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)\epsilon(\Lambda_b^0 \to \Lambda_c^+)} + 2\frac{n(D^0 p\mu^-)}{\mathcal{B}(D^0 \to K^- \pi^+)\epsilon(\Lambda_b^0 \to D^0 p)},$$

- Perform analysis in 3 (η) x 5 (p_T) bins, 2< η <5, p_T ≤14 GeV
- Measurements based on single-muon, low- p_T (1GeV) trigger

D⁰ and D⁺ samples

Channel	Signal (RAW)	Prompt D	Combinatorial
$D^0\mu\nu X$	27666 ± 167	695 ± 43	1492 ± 30
D⁺μνX	9257 ± 110	362 ± 34	1150 ± 22

Use also wrong charm-lepton charge correlations for background estimates

$\rm D_s$ and Λ_c samples

charge correlations for background estimates

Channel	Signal (RAW)	Prompt D	Combinatorial	Λ_{c} reflection
D _s μνX	2192 ± 64	63 ± 16	985 ± 145	387 ± 132
$Λ_{c}$ μνΧ	3028 ± 112	43 ± 17	589 ± 27	

10

the D_{s1}^+ efficiency of $(0.598 \pm 0.025)\%$ as

The relative branching fraction of the D_{s1}^+ with respect

- predicted (Godfrey-Isgur model) Contrary to the hera Bured us observed mesons, not indecays events 3 known experimentally $D^+ X \mu^- \overline{\nu} e^{\chi}$ 2.8 efficiencies are 1.0 on exclusive B decays by 2.6 X_{μ}^{μ} , $\overline{\nu}$ ev • Final states with Dak comp g 2.4 can be used to measuferm
 - $B_{s} \rightarrow D_{s} * * I_{v}^{\text{The overall uncert}}$ 2.2 ield is 6.6 to this error are t $D_{\rm s}^+$ brane 2 D'_{s1}, D^*_{s2} under the inty on the to add to 0* 2* 31 07 $D_{sJ}^{(*)} \rightarrow D_s^{(*)+} + n(\pi^0 \text{ or } \gamma)$ and the result from

ion is com reconstruc **P-wave**

DK

 $^{-1}$ sample

m the eff

rrected \overline{B}

he doubli

which is

ptracted b

reducing

 $(3.3 \pm 1.0 \pm$

the doubling of the rates of the relative branching fractions, Concezio Bozzi, Oct 1st 2012, CKM Workshop

S-wave

 $\underline{\mathcal{B}(\overline{B}_{s}^{0} \to D_{s2}^{*+} X \mu^{-} \overline{\nu})}_{\circ}$

First observation:
$$\overline{B}_{s} \rightarrow D_{s2}^{*+} X \mu^{-} \overline{\nu}$$

$$\int_{s_{1}} (2536)^{+} \rightarrow D^{*} (2007)^{0} K^{+} \\ (missed \pi^{0} \text{ or } \gamma)$$

$$\int_{s_{2}} (2573)^{*} \rightarrow D^{0} K^{+} \\ (missed \pi^{0} \text{ or } \gamma)$$

$$\int_{\overline{(B_{s}^{0})}} \frac{2}{D_{s}(2573)^{*}} \rightarrow D^{0} K^{+} \\ (missed \pi^{0} \text{ or } \gamma)$$

$$\int_{\overline{(B_{s}^{0})}} \frac{2}{D_{s}(2573)^{*}} \rightarrow D^{0} K^{+} \\ (missed \pi^{0} \text{ or } \gamma)$$

$$\int_{\overline{(B_{s}^{0})}} \frac{2}{D_{s}(2573)^{*}} \rightarrow D^{0} K^{+} \\ (missed \pi^{0} \text{ or } \gamma)$$

$$\int_{\overline{(B_{s}^{0})}} \frac{2}{D_{s}(2573)^{*}} \rightarrow D^{0} K^{+} \\ (missed \pi^{0} \text{ or } \gamma)$$

$$\int_{\overline{(B_{s}^{0})}} \frac{2}{D_{s}(2573)^{*}} \rightarrow D^{0} K^{+} \\ (missed \pi^{0} \text{ or } \gamma)$$

$$\int_{\overline{(B_{s}^{0})}} \frac{2}{D_{s}(2573)^{*}} = 0.61 \pm 0.14 \pm 0.05,$$

$$\int_{\overline{(B_{s}^{0})}} \frac{2}{B_{s}(2573)^{*}} = (3.3 \pm 1.0 \pm 0.4)\%,$$

$$\int_{\overline{(B_{s}^{0})}} \frac{2}{B_{s}(2573)^{*}} = (5.4 \pm 1.2 \pm 0.5)\%,$$

Concezio Bozzi, Oct 1st 2012, CKM Workshop

S

 $|V_{xb}|$ with exclusive decays?

- Need to reconstruct rest frame observables
- Neutrino reconstruction:
 - Determine B flight direction vector from the separation of primary and B decay vertices
 - Get neutrino momentum with twofold ambiguity
 - Resulting q² resolution is similar to that observed in B factories
- First steps: measure BFs and form factors in ${\rm B_s}$ and $\Lambda_{\rm b}$ decays
- Ultimate goal: measure $|V_{ub}|$ in exclusive ${\sf B}_{\sf s}$ and $\Lambda_{\sf b}$ decays
- Input from lattice/LCSR needed

 $B \rightarrow D^{(*)} \tau v$?

B

University Metutrino reconstruction outlined above not appropriate on $\tau \rightarrow \mu \nu \nu$ (too many neutrinos!)

• Try to kinematically reconstruct 3- prong decays $\tau^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}v_{\tau}$

$$ec{p}_{ au}| = rac{(m_{3\pi}^2+m_{ au}^2)ec{p}_{3\pi}ec{}\cos heta\pm E_{3\pi}\sqrt{(m_{3\pi}^2-m_{ au}^2)^2-4m_{ au}^2ec{}p_{3\pi}ec{}^2\sin^2 heta}}{2(E_{3\pi}^2-ec{p}_{3\pi}ec{}^2\cos^2 heta)}$$

- Main problems: two-fold ambiguity v_t (four-fold when going to B), nonphysical solutions due to p momentum and vertex resolutions
- High track multiplicities should not be a problem, see e.g. $B_{(s)} \rightarrow D_{(s)} \pi \pi \pi$

More on D** states

B→Dπππ analysis clearly shows D₁(2420) and D*₂(2460) signals, confirming and extending Belle's evidence for 3-body decays of D** mesons

→Search for radial excitations D^(*)

Conclusion

Semileptonic B/B_s/ $\Lambda_{\rm b}$ decays are an important part of the LHCb physics program

- Precise measurements of production fractions
- Improving knowledge of exclusive decays
- Neutrino reconstruction will allow for form factor measurements and eventually to determine $|V_{cb}|$, $|V_{ub}|$ with B_s/Λ_b decays
- Measurements of $B \rightarrow D^{(*)}\tau v$ through 3-prong τ decays should be viable