Recent Results of D semi-leptonic Decays

Chunlei Liu Carnegie Mellon University (BESIII Collaboration)

CKM 2012 Conference Oct. 1 2012

Charm's Role in the Big Picture

Latest result:

 $V_{ub} \times 10^3 = 3.92 + -0.09(exp) + -0.45(theory)$

* Needs inputs from Lattice QCD

* Charm physics provides perfect calibration

Why Semi-leptonic D decays

• Large branching fraction, theoretically tractable, experimentally accessible

• $P \rightarrow P$ transition

- Measure CKM elements
- Validate LQCD
- $P \rightarrow V$ transition
 - More factors
 - No unquenched calculations existed
- Rare / forbidden modes
 - New physics, new interactions

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{cx}|^2 p_X^3 |f_+(q^2)|^2$$

Experiment Results

- Exclusive D/D_s decays * P \rightarrow P | v: D \rightarrow K/ π e v (BF, form factor) Results from FOCUS, Belle, Barbar, CLEOC Results from BESIII (preliminary) * P \rightarrow V | v: D⁺ \rightarrow K π e v (new) D/D⁺ \rightarrow ρ e v (new) * rare decay /search D⁺ \rightarrow η / η / ϕ e v D_s \rightarrow ω e v (new)
 - Inclusive D/D_s Decays

$D^0 \rightarrow K e v \& \pi e v$

- BESIII, ~2.9 fb⁻¹ data taken at ψ (3770), ~923 pb⁻¹
- Double tag technique (to suppress backgroud), tag side: fully reconstructed hadronic modes signal side: missing neutrino inferred

$$U = E_{\rm miss} - c \left| \vec{P}_{\rm miss} \right| \approx 0$$

• Simple differential decay rate function (massless lepton assumed)

$$\frac{\Delta\Gamma(D \to \pi(K)e\nu)}{dq^2} = \frac{G_F^2 |V_{cd(s)}|^2}{24\pi^3} p^3 |f_+(q^2)|^2$$

Tag Mode Reconstruction

mBC ($D^0 \rightarrow K\pi$) mBC ($D^0 \rightarrow K\pi\pi^0$) Four tag modes picked ٠ 12000 18000 16000 **BESIII Preliminary BESIII Preliminary** 14000 8000 12000 Best tag mode based ٠ 10000 6000 8000 4000 6000 minimum ΔE 4000 2000 2000 1.83 1.83 1.84 1.85 1.86 1.87 1.88 1.89 mBC/GeV mBC/GeV mBC ($D^0 \rightarrow K\pi\pi^0\pi^0$) mBC ($D^0 \rightarrow K\pi\pi\pi$) $\Delta E \equiv E - E_{beam}$ 5000 16000 14000 **BESIII Preliminary BESIII Preliminary** 4000 1200 10000 3000 8000 6000 2000 4000 1000 2000

1.86

1.87

1.88 1.89 mBC/GeV

BESIII Preliminary

Mode	Data Yield	Fraction of All Tags $(\%)$	Tag Efficiency(%)	
$D^0 \to K^- \pi^+$	$159,929 \pm 413$	20.7	$62.08 {\pm} 0.07$	
$D^0 \to K^- \pi^+ \pi^0$	$323,\!348 \pm 667$	41.8	$33.56{\pm}0.03$	
$D^0 \to K^- \pi^+ \pi^0 \pi^0$	$78{,}467\pm480$	10.1	$14.93 {\pm} 0.04$	
$D^0 \to K^- \pi^+ \pi^- \pi^+$	$211,\!910\pm 550$	27.4	$36.80 {\pm} 0.04$	

1.83

Les 1.84 1.85 1.86 1.87

1.88

1.89 mBC/GeV

Signal Selection

- Two good oppositely-charged tracks
- Kaon/pion and electron PID requirements
- Electron has same charge as the tag side K
- Veto if any unmatched EMC shower is > 250MeV (some background has extra π^0)

Branching Fraction Results

$$N_{tag}^{obs} = 2N_{D\bar{D}}B_{tag}\epsilon_{tag}$$

$$N_{sig}^{obs} = 2N_{D\bar{D}}B_{tag}B_{sig}\epsilon_{tag,sig}$$

$$B_{sig} = \frac{N_{sig}^{obs}}{\sum_{\alpha} N_{tag}^{obs,\alpha}\epsilon_{tag,sig}^{\alpha}/\epsilon_{tag}^{\alpha}},$$

BESIII Preliminary

Mode	measured branching fraction(%)	PDG	CLEOc
$\bar{D^0} \to K^+ e^- \bar{\nu}$	$3.542 \pm 0.030 \pm 0.067$	3.55 ± 0.04	$3.50 \pm 0.03 \pm 0.04$
$\bar{D^0} \to \pi^+ e^- \bar{\nu}$	$0.288 \pm 0.008 \pm 0.005$	0.289 ± 0.008	$0.288 \pm 0.008 \pm 0.003$

* Systematics are preliminary

* Will improve using full (3x) data set in the near future

Partial Decay Rates Results

- Measured in each q² bin, by fitting U distribution
- Compare results from each tag mode

f(q²) Results

- Points: data with stat. error only
- Curves: from Fermilab-MILC within one stat. error, preliminary, arXiv:1111.5471 (XXIX International Symposium on Lattice Field Theory);
- Other theoretical work: HPQCD, arXiv:1111.0225
- Comparing shape only here (f₊(0) not known)

Form Factor Parameterization

Fit to partial decay rates $\Delta\Gamma$

Simple pole model:

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{1 - q^{2}/m_{pole}^{2}}$$

Modified pole model: Beciirevic and Kaidalov PLB 478, 417 (2000)

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{pole}^{2}}\right)\left(1 - \alpha \frac{q^{2}}{m_{pole}^{2}}\right)}$$

Series expansion: Becher and Hill PLB 633, 61 (2006)

$$f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2},t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0}) \left[z(q^{2},t_{0})\right]^{k}$$

Could fit: f_{+}(0), r_{1} = a_{2}/a_{1}, r_{2} = a_{3}/a_{1}

Form Factor Fits

$$\chi^{2} = \sum_{i,j=1}^{n} \left(\Delta \Gamma_{i} - g(q^{2})_{i} \right) C_{ij}^{-1} \left(\Delta \Gamma_{j} - g(q^{2})_{j} \right)$$

Form Factor Results

BESIII Preliminary

Simple Pole	$f_+(0) V_{cd(s)} $	m_{pole}	
$D^0 \to K e \nu$	$0.729 {\pm} 0.005 {\pm} 0.007$	$1.943{\pm}0.025{\pm}0.003$	
$D^0 o \pi e \nu$	$0.142{\pm}0.003{\pm}0.001$	$1.876 {\pm} 0.023 {\pm} 0.004$	
Modified Pole	$f_+(0) V_{cd(s)} $	α	
$D^0 \to K e \nu$	$0.725 {\pm} 0.006 {\pm} 0.007$	$0.265 {\pm} 0.045 {\pm} 0.006$	
$D^0 o \pi e \nu$	$0.140 {\pm} 0.003 {\pm} 0.002$	$0.315{\pm}0.071{\pm}0.012$	
2 par. series	$f_+(0) V_{cd(s)} $	r_1	
$D^0 \to K e \nu$	$0.726 {\pm} 0.006 {\pm} 0.007$	$-2.034{\pm}0.196{\pm}0.022$	
$D^0 o \pi e \nu$	$0.140 {\pm} 0.004 {\pm} 0.002$	$-2.117{\pm}0.163{\pm}0.027$	
3 par. series	$f_+(0) V_{cd(s)} $	r_1	r_2
$D^0 \to K e \nu$	$0.729 {\pm} 0.008 {\pm} 0.007$	$-2.179{\pm}0.355{\pm}0.053$	$4.539 {\pm} 8.927 {\pm} 1.103$
$D^0 ightarrow \pi e \nu$	$0.144 {\pm} 0.005 {\pm} 0.002$	$-2.728 {\pm} 0.482 {\pm} 0.076$	$4.194{\pm}3.122{\pm}0.448$

Comparison (3 par. Series)

- Numbers are from HFAG 2012 report(arXiv:1207.1158)
- Error bar of BESIII prel. will shrink with full data

$D^+ \rightarrow K \pi e \nu$

- BaBar, 347.5 fb⁻¹ Υ(4s), PRD 83, 072001 (2011)
- Measurements of Kπ resonant and non-resonant contributions: S-wave, search of radially excited P-wave and D-wave
- Accurate measurements of K^{*}(892) modes: resonance parameters, form factors
- $K\pi$ S-wave phase versus the $K\pi$ mass

FIG. 3 (color online). Definition of angular variables.

Differential decay rate has 5 degrees of freedom:

- m^2 , of the k π system
- q², of the e v system
- cos(θ_k)
- cos(θ_e)
- χ

Event Selection

- Particles boosted to the CM system
- Fisher discrimination variables to reject:

(1) BB_bar events (2) continuum background (mainly from charm)

Cuts: $F_{bb} > 0$, $F_{cc} > 0.5$

After cuts: 244×10^3 signal events left with S/B = 2.3

Form Factor Parameterization

Form factors expanded into partial waves:

F₁₀ for S-wave contribution,

 F_{i1} and F_{i2} for P and D waves, respectively

$$\mathcal{F}_{1} = \mathcal{F}_{10} + \mathcal{F}_{11} \cos\theta_{K} + \mathcal{F}_{12} \frac{3\cos^{2}\theta_{K} - 1}{2},$$
$$\mathcal{F}_{2} = \frac{1}{\sqrt{2}} \mathcal{F}_{21} + \sqrt{\frac{3}{2}} \mathcal{F}_{22} \cos\theta_{K};$$
$$\mathcal{F}_{3} = \frac{1}{\sqrt{2}} \mathcal{F}_{31} + \sqrt{\frac{3}{2}} \mathcal{F}_{32} \cos\theta_{K}.$$

 $F_{i1} \rightarrow$ Helicity form factors \rightarrow axial-vector from factor $A_{1,2}(q^2)$ the vector form factor $V(q^2)$

 $\begin{aligned} \mathcal{F}_{11} &= 2\sqrt{2}\alpha q H_0, \\ \mathcal{F}_{21} &= 2\alpha q (H_+ + H_-), \\ \mathcal{F}_{31} &= 2\alpha q (H_+ - H_-), \end{aligned}$

Single pole mode:

$$V(q^2) = \frac{V(0)}{1 - \frac{q^2}{m_V^2}},$$
$$A_1(q^2) = \frac{A_1(0)}{1 - \frac{q^2}{m_A^2}},$$
$$A_2(q^2) = \frac{A_2(0)}{1 - \frac{q^2}{m_A^2}},$$

Form Factor Results

Phase of S-wave Component

- Agreement with K⁻p interactions producing K⁻π⁺ at small momentum transfer
- Additional negative sign between S and P wave compared with elastic $K\pi$ scattering

$D^{0}/D^{+} \rightarrow \rho e v$ $D^{+} \rightarrow \omega e v$

- CLEOc, 818 pb⁻¹, arXiv:1112.2884
- Improved precision on BF on both decays
- First measurement on Cabbio-suppressed P→V Form Factor measurement
- Combined with $D \rightarrow K^* e \nu$ and $B \rightarrow V |^+ |^-$, could extract V_{ub} from $B \rightarrow \rho e \nu$
- Double tag technique, extract yields by fitting U = $E_{miss} P_{miss}$

$\rho/\omega e \nu$ Branching Fraction Results

			$\langle \rangle$			
Decay Mode	ϵ (%)	$N_{\rm tag,~SL}$	$\mathcal{B}_{ m SL}$	$\mathcal{B}_{\mathrm{SL}}(\mathrm{prev})$	$\mathcal{B}_{\rm SL}({\rm ISGW2})$	$\mathcal{B}_{\rm SL}({\rm FK})$
$D^0 ightarrow ho^- e^+ \nu_e$	26.03 ± 0.02	304.6 ± 20.9	$1.77 \pm 0.12 \pm 0.10$	$1.94 \pm 0.39 \pm 0.13$	1.0	2.0
$D^+ ightarrow ho^0 e^+ \nu_e$	42.84 ± 0.03	447.4 ± 24.5	$2.17 \pm 0.12^{+0.12}_{-0.22}$	$2.1 \pm 0.4 \pm 0.1$	1.3	2.5
$D^+ \to \omega e^+ \nu_e$	14.67 ± 0.03	128.5 ± 12.6	$1.82 \pm 0.18 \pm 0.07$	$1.6^{+0.7}_{-0.6} \pm 0.1$	1.3	2.5

BF units 10⁻³, more consistent with FK predictions (PRD 72, 034029, 2005)

Results consistent with iso-spin invariance : (Iso-spin symmetry not expected to be exact due to ρ^0 - ω interference)

$$\frac{\Gamma(D^0 \to \rho^- e^+ \nu_e)}{2\Gamma(D^+ \to \rho^0 e^+ \nu_e)} = 1.03 \pm 0.09^{+0.08}_{-0.02}$$

p e v Form Factor Measurement

- Differential decay rate can be expressed in terms of 3 helicity amplitudes
- Helicity amplitudes are related to 2 axial form factors A₁(q²), A₂(q²), and 1 vector form factor V(q²)
- Assume simple pole mode, and simultaneous fit to iso-spin conjugate $D^0/D^+ \rightarrow \rho \in v$
- extract two FF ratios:

$$r_V = \frac{V(0)}{A_1(0)}$$
 and $r_2 = \frac{A_2(0)}{A_1(0)}$.

ρ e v Form Factor Result

Projection of the combined ρ and ρ^0 data

* Difference in $\cos\theta_{\pi}$ might be due to s-wave interference

*

 $\begin{array}{l} \mathsf{r_V} = 1.48 \, \pm \, 0.15 \, \pm \, 0.05 \\ \mathsf{r_2} = 0.83 \, \pm \, 0.11 \, \pm \, 0.04 \end{array}$

*

Using PDG V_{cd} , D⁰ and D⁺ lifetime:

 $A_1(0) = 0.56 \pm 0.01^{+0.02}_{-0.03}$ $A_2(0) = 0.47 \pm 0.06 \pm 0.04,$ $V(0) = 0.84 \pm 0.09^{+0.05}_{-0.06}$

Search for $D^+_{s} \rightarrow \omega e v$

- CLEOc, 4170 MeV, 586 pb⁻¹ (0.6x10⁶ D_sD_s^{*}), PRD 84, 012005 (2011)
- Probe four-quark content of D_s , BF > 2*10⁻⁴ unlikely due to ω - ϕ mixing, evidence for "weak annihilation". (see PRD 79, 074006, 2009)

Signal Selection and Results

Missing mass square measured for missing neutrino:

$$MM^2 = (E_b - E_{tag} - E_{\gamma} - E_s)^2 - (\mathbf{p}_b - \mathbf{p}_{tag} - \mathbf{p}_{\gamma} - \mathbf{p}_s)^2$$

 (E_s, P_s) : from $\omega(\pi\pi\pi^0)$ and electron

Require $-0.05 < MM^2 < 0.05$ GeV2, fit mass of $\pi\pi\pi^0$

Summary

- Semi-leptonic D decay analyses have been successful, FOCUS, BELLE, BarBar and CELOc
- 1/3 $\psi(3770)$ data analyzed at BESIII for $D^0 \rightarrow K/\pi e \nu$, better precision expected
- More new results coming soon from BESIII