V_{ud} from neutron decay

Oliver Zimmer

CKM 2012, Cincinnati, 29 September 2012

 $n \rightarrow p + e^- + \overline{v_{e}}$

endpoint energy of beta spectrum: 782 keV maximum proton recoil energy: 750 eV *n*'s can be polarised close to 100% quite abundant in cold neutron beams long observation time for ultracold neutrons

no nuclear corrections in standard model:

 $g_{\rm V} = G_{\rm F} V_{\rm ud}$ G_F = 1.16639(1)×10⁻⁵ GeV⁻² ($\hbar c$)³

V-A structure with known Fermi and GT matrix elements

 \rightarrow need two observables to access $V_{\rm ud}$:

$$\tau_{\rm n}^{-1} \propto g_{\rm V}^2 \left(1 + 3\lambda^2 \right) \qquad \lambda = g_{\rm A} / g_{\rm V}$$

Accuracy goal for neutron observables

$$\left| V_{\rm ud} \right|^2 = \frac{4908.7(1.9) \text{ s}}{\tau_{\rm n} \left(1 + 3\lambda^2 \right)}$$

Marciano & Sirlin PRL 96 (2006) 032002

uncertainty due to radiative corrections: $\delta |V_{ud}|_{RC}^2 = 3.8 \times 10^{-4}$

	$ au_{ m n}$	λ
accuracy goal:	0.34 s	0.0003
PDG 2012:	880 ± 1.1 s (S=1.8)	-1.2701 ± 0.0025 (S=1.9)
Perkeo II: Mund	et al. arXiv:1204.0013	-1.2755 ± 0.0013
UCNA: Liu et al. PRL 105 (2010) 181803		-1.2759 ± 0.0043
Perkeo III: Maerkisch et al.		$-1.???? \pm 0.00067$

Determination of λ via β asymmetry (Wu experiment with free neutrons) $A = -2\frac{\lambda + \lambda^2}{1 + 3\lambda^2}$

Beta asymmetry: Perkeo II, UCNA, Perkeo III... PERC

Proton Electron Radiation Channel

Preliminary Magnet Design

D. Dubbers et al., Nucl. Instr. Meth. A 596 (2008) 238 and arXiv:0709.4440

Alternative determinations of λ

 e^{-} p^{μ} e^{-} V_{e}

Neutrino – electron angular correlation $a = \frac{1 - \lambda^2}{1 + 3\lambda^2}$ $\delta a/a = 0.1\% \rightarrow \delta \lambda = 0.00036$

Best previous:	5%	Stratowa et al. (1978), Byrne et al. (2002)
aCORN goal:	0.5%	Wietfeldt et al. (2009)
aSPECT goal:	0.3%	Glueck et al. (2005), Zimmer et al. (2000)
Nab goal:	0.1%	Pocanic et al. (2009)

Proton asymmetry

 $C = 0.27484 \times \frac{4\lambda}{1+3\lambda^2}$

 $\delta C/C = 0.1\% \rightarrow \delta \lambda = 0.0019$

 Perkeo II:
 1.1% $(C = -0.2377 \pm 0.0026)$ Schumann et al. (2008)

 Perkeo III goal:
 0.1% Maerkisch et al.

 aSPECT goal:
 0.1% Alarcon et al. (2008)

aSPECT

(ILL, Karlruhe, Mainz, Vienna, Virginia)

aSPECT

(ILL, Karlruhe, Mainz, Vienna, Virginia)

60

0_.

20

40

80 100 120 pulse height / ADC channels

Neutron lifetime

In beam experiments

 $886.3 \pm 1.2_{stat} \pm 3.2_{syst} \text{ s}$

Material bottle experiments

 $888.4 \pm 3.3 \text{ s}$ $(\Delta t \ge 12 \text{ s})$ $885.4 \pm 0.9_{\text{stat}} \pm 0.4_{\text{syst}} \text{ s}$ $(\Delta t \ge 100 \text{ s})$ $878.5 \pm 0.8 \text{ s}$ $(\Delta t \ge 5 \text{ s})$ $880.7 \pm 1.8 \text{ s}$ $(\Delta t \ge 110 \text{ s})$ $881.6 \pm 0.8_{\text{stat}} \pm 1.9_{\text{syst}} \text{ s}$

Nico et al. Phys. Rev. C 71 (2005) 055502

Nesvizhevsky et al. JETP 75 (1992) 405

Arzumanov et al. Phys. Lett. B 483 (2000) 15

Serebrov et al. Phys. Lett. B 605 (2005) 72

Pichlmaier et al. Phys. Lett. B 693 (2010) 221

Arzumanov et al. JETP Lett. 95 (2012) 224

Magnetic bottle experiments

permanent magnet 20-pole bottle Ezhov et al. to be published He-II filled 4-pole trap: $833 + 74_{-63}$ s Dzhosyuk et al. J. Res. NIST 110 (2005) 339 goal with new 3.1 T trap: 2 s per reactor cycle projects: PENeLOPE, UCN τ , HOPE, all aiming at $\delta \tau_n \rightarrow 0.1$ s

Neutron lifetime experiment with low-*T* fluorine-oil coated walls

A. Serebrov et al. Phys. Lett. B 605 (2005) 72

Superconducting Ioffe trap

UCN production in He-II and in-situ detection (NIST)

P. Huffman et al., Int. workshop Particle Physics with slow Neutrons, May 2008 ILL proposed large volume magnetic storage experiment PENeLOPE

S. Paul et al.

$$N(t) = N(t_0) \exp\left(-\frac{t}{\tau_n}\right)$$

 $\rho_{\rm UCN} = 10^3 - 10^4 \text{ cm}^{-3}$ (PSI /FRM II):

 $N_{\rm stored} = 10^7 - 10^8$

– Statistical accuracy:

 $\delta \tau_{\rm n} \sim 0.1 \ {\rm s} \ {\rm in} \ 2-4 \ {\rm days}$

- Systematics:
 - Spin flips negligible (simulation)
 - use different values $B_{\rm max}$ to check expected $E_{\rm UCN}$ independence of τ

R. Picker et al., J. Res. NIST 110 (2005) 357

UCN storage in a trap from permanent magnets

(PNPI - ILL - LPC - TUM)

V. Ezhov et al. J. Res. NIST 110 (2005) 345

Follow-up trap design (90 l):

UCNτ

Walstrom et al. Nucl. Instr. Meth. A 599 (2009) 82

Pictures courtesy C.Y. Liu

D. Bowman, Int. Workshop UCN Sources and Experiments Sept. 13-14 2007 TRIUMF

Halbach OctuPole Experiment

$$N(t) = N(t_0) \exp\left(-\frac{t}{\tau_n}\right)$$

With new UCN source SUN-2 @ ILL:

$$N_{\rm stored} = 10^5$$

- Statistical accuracy:

 $\delta \tau_{\rm n} \sim 0.5 \, {\rm s} \, {\rm in} \, 10 \, {\rm days}$

- Systematics checks:
 - spin flips (negligible)
 - spectral shaping with scatterer/ absorber to kill marginally trapped neutrons

12 octupoles + hands & forces = magnetic trap

Storage time constant of trap closed with teflon plug: 800 s (PhD thesis Kent Leung)

Development of new He-II UCN sources

PRL highlight O. Z., F.M. Piegsa, S.N. Ivanov, PRL 107 (2011) 134801

Conclusions

- Accuracy still insufficient compared to $0^+ \rightarrow 0^+$ decays
- Many projects in the pipeline, some well advanced, to reach the goals for δτ and δλ in the years to come