

Summary of WG VII (charm mixing/CPV)

Mat Charles, Ray Cowan, Alexey Petrov, Svjetlana Fajfer

First

- Many thanks to the speakers for an excellent set of talks
- and to the audience for lively discussion
- and to the organisers for the opportunity to listen to the above
- and to the Westin for sustaining us with cookies

Summary²

Sunday 30 September 2012

WG VII - Harding (08:30-10:30)

time	title	presenter
08:30	CPV and Mixing in the Charm Sector at Belle, and HFAG Averages	KO, Byeong Rok
09:08	CPV and Mixing in the Charm Sector at BaBar	CENCI, Riccardo
09:41	Charm Mixing at Threshold (Quantum Correlations) at CLEO	SUN, Werner
10:00	Charm Mixing in the Standard Model: Short Distance Approach	BOBROWSKI, Markus

WG VII - McKinley (16:30-18:30)

time	title	presenter
16:30	Charm Mixing in the Standard Model: Long Distance Approach	LIGETI, Zoltan
16:55	CPV and Mixing in the Charm Sector at LHCb	PARKES, Chris
17:20	CPV and Mixing in the Charm Sector at CDF	MATTSON, Mark Edward
17:40	Direct CPV in Non-leptonic Charm Decays I	BHATTACHARYA, Bhubanjyoti
18:00	Direct CPV in Non-leptonic Charm Decays II	BROD, Joachim

Monday 01 October 2012

WG VII - Hays (11:00-13:00)

time	title	presenter
11:00	Direct CPV in Non-leptonic Charm Decays: New Physics	KAMENIK, Jernej
11:25	Status and Prospects for Mixing/CPV Using Charm at Threshold	BRIERE, Roy
11:45	Prospects for Charm Mixing and CPV at SuperB	BRANCHINI, Paolo
12:05	Prospects for Charm Mixing and CPV at Belle II	ASNER, David
12:25	Prospects for Charm Mixing and CPV at the LHCb Upgrade	SPRADLIN, Patrick
12:40	Charm Mixing and CPV: Measurements We Need	GROSSMAN, Yuval

- 5 talks on current experimental results
- 5 on state of theory
- 4 on experimental prospects (next decade)
- I on where to go next

č/mitaghya ji fa Alarr, Wikimedia

CKM 2012

Caveat

or: why experimentalists should not give summary talks

Apologies to G. Larson

D⁰ mixing

- Tremendous advances in the last decade
- ... but still a long way to go

$$D^{0}-\overline{D^{0}} \text{ transitions observables}$$

$$x = \frac{\Delta M}{\Gamma}, \quad y = \frac{\Delta \Gamma}{2\Gamma} \quad R_{M} = \frac{1}{2} \left(x^{2} + y^{2} \right)$$

$$x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi} \qquad \left| \frac{q}{p} \right| \qquad Arg\left(\frac{q}{p} \right)$$

$$y_{CP} = \frac{\tau(D^0 \to K^- \pi^+)}{2} \left(\frac{1}{\tau(D^0 \to K^- K^+)} + \frac{1}{\tau(\overline{D^0} \to K^- K^+)} \right) - 1 \approx \frac{\tau(D^0 \to K^- \pi^+)}{\tau(D^0 \to K^- K^+)} - 1$$

CKM 2012

Mixing: experiment

HFAG average from March shown here. Several new measurements not yet included.

- No-mixing point now excluded at > 10σ
- Sign(x/y) likely positive
- General scale of mixing now very clear.
- Individual parameters still uncertain (esp. x).

New & recent results (I)

• Updates on y_{CP} from Belle & BaBar. Both use simultaneous fit to $K\pi$, KK, $\pi\pi$ samples

New & recent results (2)

- Belle update of time-dependent Dalitz plot analysis of $D^0 \rightarrow K_S \pi^+ \pi^-$ to 920/fb
- Preliminary results:

	result (%)
X	$(0.56 \pm 0.19^{+0.03+0.06}_{-0.09-0.09})$
У	$(0.30 \pm 0.15^{+0.04+0.03}_{-0.05-0.06})$

M. Charles, WG VII summary

Ко

Aside

• Mild tension between y_{CP} & y from these methods:

y from t-dep Dalitz plot:

Belle 920/fb (preliminary) $y = (+0.30 \pm 0.15 \substack{+0.04 & +0.03 \\ -0.05 & -0.06})\%$

BaBar 470/fb $y = (+0.57 \pm 0.20 \pm 0.13 \pm 0.07)\%$ PRL 106:081803 (2010)

My naive average $y \approx (+0.38 \pm 0.13)\%$

New & recent results (3)

Sun

- Mixing parameters extracted with quantumcorrelated decays at CLEO-c
- Updated results with full CLEO-c dataset (818/pb)

Parameter	HFAG 2010 CLEO 2008	Fit: no ext. meas. (standard)	Fit: w/ ext. y, x, y' (extended)	
y (10 ⁻²)	0.79 ± 0.13	4.2 ± 2.0 ± 1.0	0.636 ± 0.114	Average of y and
x ² (10 ⁻³)	0.037 ± 0.024	0.6 ± 2.3 ± 1.1	0.022 ± 0.023	
r _{Kπ} ² (10 ⁻³)	3.32 ± 0.08	5.33 ± 1.07 ± 0.45	3.33 ± 0.08	
cosδ _{Kπ}	1.10 ± 0.36	0.81 +0.22 +0.07 -0.18 -0.05	1.15 +0.19 +0 -0.17 -0.08	2.5σ diff. due to
sinδ _{Kπ}		$-0.01 \pm 0.41 \pm 0.04$	0.56 +0.32 +0.21 -0.31 -0.20	r^2 and y,
$\delta_{K\pi}$ (°) [derived]	22 +11 +9 -12 -11	10 +28 +13 -53 -0	18 ⁺¹¹ ₋₁₇	correlated
CLEO only External measurements used as inputs				

CKM

Indirect CPV: experiment

HFAG average from March shown here. New measurements not yet included.

- Poorly constrained due to smallness of x, y.
- Large CPV still allowed.
- New & recent results below

Belle preliminary, 976/fb	$A_{\Gamma} = (-0.03 \pm 0.20 \pm 0.08)\%$
BaBar preliminary, 470/fb	$\Delta Y = (0.088 \pm 0.255 \pm 0.058)\%$
LHCb, 0.03/fb JHEP 04 (2012) 129	$A_{\Gamma} = (-0.59 \pm 0.59 \pm 0.21)\%$

Mixing: theory

- Mixing in SM is just plain hard to calculate.
- Short-distance picture discussed by Markus Bobrowski
- Long-distance picture discussed by Zoltan Ligeti

Bobrowski

Mixing (short-distance)

- \bullet Operator product expansion in $1/m_{c}$
- Naive prediction (D=6) for y is horribly wrong

$$|y| \equiv |\Gamma_{12}| \cdot \tau(D^0) \simeq 10^{-6}$$

> MB, Lenz, Riedl, & Rohrwild ('10)

JHEP 1003 (2010) 009

 ... but this is not because m_c is too small. Instead, comes from delicate cancellation:

$$\Gamma_{12}\left(D^{0}\right) = -\mathcal{O}\left(\lambda^{2}\right)\left[\left(\Gamma_{12}^{ss} - 2\Gamma_{12}^{sd} + \Gamma_{12}^{dd}\right) + \mathcal{O}\left(\lambda^{6}\right)\left(\Gamma_{12}^{sd} - \Gamma_{12}^{dd}\right) + \mathcal{O}\left(\lambda^{10}\right)\Gamma_{12}^{dd}\right]$$
$$\frac{m_{12}^{4}}{m_{12}^{4}} \sim 1$$

 Cancellation less exact when including higherdimension operators => y can be much larger.

Mixing (short-distance)

• Going to D=9:

- Guess another large factor going to D=12.
- Another one (non-factorization?) and we're done!

CKM 2012

M. Charles, WG VII summary

Bobrowski

Bobrowski

Mixing (short-distance)

- What does this tell us about indirect CPV?
- O(I) weak phase in short-distance Hamiltonian
- So conceivably SM $\phi \sim O(10^{-3})$ overall

weak phase in the SD-Hamiltonian

$$\phi = \arg\left(-rac{M_{12}}{\Gamma_{12}}
ight) \simeq \mathcal{O}(1)$$

Mixing (long-distance)

- Contributions large & hard to calculate
- But not hopeless: SU(3) breaking due to phase-space tractable.
- Naturally obtain x, y ~ O(1%)

Multi-body final states			(PV)p-wave
Final state repres	Final state representation		
$(3P)_s$ -wave	8	-0.48	
	27	-0.11	
(3P)p-wave	8	-1.13	
	27	-0.07	(VV)s-wave
$^{(3P)}$ form-factor	8	-0.44	
	27	-0.13	(VV)p-wave
4P	8	3.3	
	27	2.2	(VV)d-wave
	27'	1.9	

• Look for CP violation in mixing, which remains a potentially robust signal of NP

M. Charles, WG VII summary

Ligeti

 $y_{F,R}/s_1^2$

-0.0038

-0.00071

0.031

0.032

0.020

0.016

0.040

-0.081

-0.061

-0.10

-0.14

0.51

0.57

2-body final states

8

 $\mathbf{27}$

85

 8_A

10

 $\overline{10}$

 $\mathbf{27}$

8

 $\mathbf{27}$

8

 $\mathbf{27}$

8

 $\mathbf{27}$

Final state representation

(PP)s-wave

Ko, Mattson, Parkes

Direct CPV: ΔA_{CP}

- ΔA_{CP} : Is there something there?
- If so, is it SM?
- If not, what could it be?

Ko, Mattson, Parkes

Direct CPV: ΔA_{CP}

- ΔA_{CP} : Is there something there?
- Effect seen by LHCb, CDF, Belle with similar central values, significances between $2.1-3.5\sigma$.

CKM 2012

Direct CPV: ΔA_{CP}

Is it SM?

- Consensus: it can be accommodated.
- Contributions from penguin & tree:

$$egin{aligned} &\mathcal{A}_f\equiv\mathcal{A}(D^0
ightarrow f)=\mathcal{A}_f^Tig[1+r_fe^{i(\delta_f-\phi_f)}ig]\,,\ &ar{\mathcal{A}}_f\equiv\mathcal{A}(\overline{D^0}
ightarrow f)=\mathcal{A}_f^Tig[1+r_fe^{i(\delta_f+\phi_f)}ig] \end{aligned}$$

 r_f relative magnitude of subleading (penguin) amplitude with relative strong phase δ_f , weak phase ϕ_f .

$$\mathcal{A}_f^{\mathsf{dir}} := \frac{|A_f|^2 - |\bar{A}_f|^2}{|A_f|^2 + |\bar{A}_f|^2} = 2r_f \sin \phi_f \sin \delta_f$$

How large can r_f be?

CKM 2012

Bhattacharya, Brod

Direct CPV: ΔA_{CP}

- Clue: odd pattern of BRs (e.g. $D^0 \rightarrow K^+K^- >> D^0 \rightarrow \pi^+\pi^-$)
- Several papers come to broadly the same answer: large penguin amplitude drives BOTH apparent Uspin breaking in BRs AND large ΔA_{CP} .

e.g. Feldmann et al, JHEP 1206 (2012) 007

Direct CPV: ΔA_{CP}

- Bhattacharya et al fit to cocktail of BRs to extract Penguin, Penguin Annihilation amplitudes.
- Penguin enhanced by an order of magnitude compared to naive estimate.
- $\Delta A_{CP} \sim -0.6\%$ projected
- $|A(K^+K^-)| < |A(\pi^+\pi^-)|$ likely

Bhattacharya

Phys. Rev. D 85, 054014

Brod Direct CPV: ΔΑ_{CP}

- Brod et al: posit nominal U-spin breaking
- Then $D^0 \rightarrow h^+h^-$ BRs demand large penguin amplitude

$$\begin{split} A(\bar{D}^{0} \to K^{+}\pi^{-}) = &V_{cs}V_{ud}^{*}T(1 - \frac{1}{2}\epsilon_{1T}'), \\ A(\bar{D}^{0} \to \pi^{+}\pi^{-}) = &-V_{cs}V_{us}^{*}\left[T(1 + \frac{1}{2}\epsilon_{1T}) - P_{\text{break}}(1 - \frac{1}{2}\epsilon_{sd}^{(2)})\right] \\ &-V_{cb}^{*}V_{ub}(T/2(1 + \frac{1}{2}\epsilon_{1T}) + P(1 - \frac{1}{2}\epsilon_{P})), \\ A(\bar{D}^{0} \to K^{+}K^{-}) = &V_{cs}V_{us}^{*}\left[T(1 - \frac{1}{2}\epsilon_{1T}) + P_{\text{break}}(1 + \frac{1}{2}\epsilon_{sd}^{(2)})\right] \\ &-V_{cb}^{*}V_{ub}(T/2(1 - \frac{1}{2}\epsilon_{1T}) + P(1 + \frac{1}{2}\epsilon_{P})), \\ A(\bar{D}^{0} \to \pi^{+}K^{-}) = &V_{cd}V_{us}^{*}T(1 + \frac{1}{2}\epsilon_{1T}'). \end{split}$$

• Implies large $r_f =>$ large ΔA_{CP} allowed

Kamenik

Direct CPV: ΔA_{CP}

- But still room for NP here:
 - SM estimates rather uncertain
 - We haven't explained WHY the penguin amplitudes are large
- Suppose that central value for ΔA_{CP} is correct and that SM doesn't saturate it. What NP could contribute without violating existing constraints?

KamenikDirect CPV: ΔAcP

• Generically, what operators can contribute?

$$\mathcal{H}_{|\Delta c|=1}^{\text{eff}-\text{NP}} = \frac{G_F}{\sqrt{2}} \sum_i C_i^{\text{NP}} Q_i$$

- LL 4q operators: excluded
- LR 4q operators: ajar potentially visible effects in D- \overline{D} and/or ϵ'/ϵ
- **RR 4q operators:** unconstrained in EFT UV sensitive contributions?

Model example: Da Rold et al., 1208.1499

Dipole operators only weakly constrained (edm's)

esp. chromo-magnetic dipole operators

Kamenik

Direct CPV: ΔA_{CP}

- What about specific models? Considered:
 - SUSY
 - Warped extra dimensions
 - 4th generation
- Interesting implications/features for each
- See refs in Jernej's slides for details

Ko, Cenci, Mattson, Parkes Direct CPV: Other results

 Measurements in other modes vital to understand what's going on. Several new & recent results.

 $A_{CP}^{D^+ \to \overline{K}^0 \pi^+} = (-0.024 \pm 0.094 \pm 0.067)\%$ Belle PRL 109, 021601 (2012)

 $A_{CP}(D^+ \to K_S^0 K^+) = (+0.46 \pm 0.36 \pm 0.25)\%$ $A_{CP}(D_s^+ \to K_S^0 K^+) = (+0.28 \pm 0.23 \pm 0.24)\%$ BABAR preliminary $A_{CP}(D_s^+ \to K_S^0 \pi^+) = (+0.3 \pm 2.0 \pm 0.3)\%$

Time-integrated search for CPV in $D^0 \rightarrow K_S \pi^+ \pi^$ incl. searches in Dalitz plot distribution Overall ACP = -0.0005 ± 0.0057 ± 0.0054 CDF Phys. Rev. D 86, 032007 (2012)

Search for CPV in $D^+ \rightarrow K^- K^+ \pi^-$ (see next slide)

BABAR preliminary

Direct CPV: Other results

- Really thorough analysis, wringing out every drop of sensitivity.
- Overall ACP
- Model-independent search in big bins
- Model-independent search in fine bins
- Model-independent search w/ Legendre moments
- Model-dependent search (fit D⁺, D⁻ separately)

Cenci

Direct CPV: Other results

M. Charles, WG VII summary

CKM 2012

Cenci

What next?

- Theory talks identified important modes to probe.
- Several now checked or in progress...
- ... though Murphy's law in effect: many compelling modes are experimentally tough.

Isospin-related $\Delta I = 3/2 \mod D^0 \rightarrow K^+ \overline{K^0}$ $D^0 \rightarrow \pi^0 \pi^0$ $D^+ \rightarrow \pi^+ \pi^0$ $D^0 \rightarrow K^0 \overline{K^0}$ $D^0 \rightarrow (X) \gamma$ $D^0 \rightarrow (X) l^+ l^ D^0 \rightarrow P^+ P^- \gamma$ (esp. near ϕ, ρ) $D^0 \rightarrow \eta' \eta'$ ("not very practical")

Briere, Branchini, Asner, Spradlin

Into the future

- Caution: my rough projection!
- Important complementarity
 between hadron & e⁺e⁻ machines
 - Statistical reach of LHCb upgrade staggering

Charm@threshold has an important role to play.Tau-charm factory not shown but highly desirable.

LHCb upgrade

Control of systematics is going to be the name of the game.

Extrapolating to the statistica	I sensitivity of the L	HCb upgrade
Mode	Parameter(s)	Precision
$\overline{D^{*+} ightarrow D^0 \pi^+; D^0 ightarrow K^- K^+, (\pi^- \pi^+)}$	Уср	0.004% (0.008%)
$D^{*+} \rightarrow D^0 \pi^+; D^0 \rightarrow K^- K^+, (\pi^- \pi^+)$	A _Γ	0.004% (0.008%)
WS/RS $K\pi$	(x'^2, y')	$\mathcal{O}[(10^{-5}, 10^{-4})]$
WS/RS $K\mu\nu$	R _M	$\mathcal{O}(5 \times 10^{-7})$
$\underline{D^{*+} \rightarrow D^0 \pi^+; D^0 \rightarrow K^0_{\rm s} \pi^- \pi^+}$	(<i>x</i> , <i>y</i>)	(0.015%, 0.010%)

the second se	
Extrapolating to the statistica	I sensitivity of the LHCb upgrade

Mode	Parameter(s)	Precision
$\overline{D^{*+} ightarrow D^0 \pi^+; D^0 ightarrow K^- K^+, (\pi^- \pi^+)}$	Ar	0.004% (0.008%)
$D^{*+} ightarrow D^0 \pi^+; D^0 ightarrow K^- K^+, \pi^- \pi^+$		0.015%
$D^+\! ightarrow K_{ m s}^0 K^+$	Acp	10 ⁻⁴
$D^+ ightarrow K^- K^+ \pi^+$	A _{CP}	5 × 10 ⁻⁵
$D^+ \! ightarrow \pi^- \pi^+ \pi^+$	A _{CP}	8 × 10 ⁻⁵
$D^+\! ightarrow h^- h^{\prime +} \pi^+$	CPV in phases	$(0.01 - 0.10)^{\circ}$
$D^+ \rightarrow h^- h'^+ \pi^+$	CPV in fractions	(0.01 – 0.10)%

CKM 2012

M. Charles, WG VII summary

Spradlin

LHCb-PUB-2012-006

Conclusions

- Plenty of surprises since CKM 2010
- Lots more to do on both theory & experiment
 - More use of Lattice?
- Charm important in the game of model-killing
 - esp. D mixing (Golowich et al, Phys.Rev. D79 (2009) 114030; Phys.Rev. D76 (2007) 095009)
- Avalanche of data in the coming decade -- should clear up many questions (and surely raise new ones)

The University of Manchester

Home

- Scientific Programme
- Registration
- Abstract Submission

Venue

- Accommodation
- Social Events
- **Travel and Local Information**
- Participants
- Organisers
- Contact

CHARM2013: The 6th International Workshop on Charm Physics

31 Aug - 4 Sept 2013; Manchester, England

CHARM 2013 will be held at the University of Manchester (England) 31 Aug - 4 Sept 2013