B Mixing in the Standard Model and Beyond

Ulrich Nierste

Karlsruhe Institute of Technology

Federal Ministry of Education and Research

Karlsruhe Institute of Technology

CKM2012, Sep 28 – Oct 2, 2012

$B-\overline{B}$ mixing in the Standard Model

B_q $-\overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices *M* and Γ.

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices *M* and Γ.

The mass matrix element M_{12}^q stems from the dispersive (real) part of the box diagram, internal *t*.

The decay matrix element Γ_{12}^q stems from the absorpive (imaginary) part of the box diagram, internal *c*, *u*.

 $B_q - \overline{B}_q$ mixing with q = d or q = s involves the 2 × 2 matrices *M* and Γ.

The mass matrix element M_{12}^q stems from the dispersive (real) part of the box diagram, internal *t*.

The decay matrix element Γ_{12}^q stems from the absorpive (imaginary) part of the box diagram, internal *c*, *u*.

3 physical quantities in $B_q - \overline{B}_q$ mixing:

$$\left| M_{12}^{q} \right|, \quad \left| \Gamma_{12}^{q} \right|, \quad \phi_{q} \equiv \arg\left(-\frac{M_{12}^{q}}{\Gamma_{12}^{q}} \right)$$

The two eigenstates found by diagonalising $M - i \Gamma/2$ differ in their masses and widths:

mass difference $\Delta m_q \simeq 2|M_{12}^q|$, width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos\phi_q$ The two eigenstates found by diagonalising $M - i \Gamma/2$ differ in their masses and widths:

mass difference $\Delta m_q \simeq 2|M_{12}^q|$, width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos\phi_q$

CP asymmetry in flavor-specific decays (semileptonic CP asymmetry):

$$\mathsf{a}_{\mathrm{fs}}^{m{q}} = rac{|\Gamma_{12}^{m{q}}|}{|M_{12}^{m{q}}|} \sin \phi_{m{q}}$$

Δm_s and Δm_d

Operator Product Expansion:

$$M_{12} = |V_{tq}^* V_{tb}|^2 CQ$$

Local Operator:

$$\mathsf{Q} = \overline{\mathsf{q}}_L \gamma_\nu \mathsf{b}_L \, \overline{\mathsf{q}}_L \gamma^\nu \mathsf{b}_L$$

Theoretical uncertainty of Δm_q dominated by matrix element:

$$\langle \mathrm{B}_{\mathrm{q}} | \, \mathrm{Q} | \overline{\mathrm{B}}_{\mathrm{q}} \rangle \ = \ rac{2}{3} M_{B_{\mathrm{q}}}^2 \, f_{B_{\mathrm{q}}}^2 \, B_{B_{\mathrm{q}}}$$

Standard Model: $C = C(m_t, \alpha_s)$ is well-known.

 $B_s - \overline{B}_s$ mixing: CKM unitarity fixes $|V_{ts}| \simeq |V_{cb}|$. Use lattice results for $f_{B_q}^2 B_{B_q}$ to confront Δm_s^{exp} with the Standard Model:

$$\Delta m_{\rm s} = \left(18.8 \pm 0.6_{V_{cb}} \pm 0.3_{m_t} \pm 0.1_{\alpha_s} \right) \, {\rm ps^{-1}} \, \frac{f_{B_s}^2 \, B_{B_s}}{(220 \, {\rm MeV})^2}$$

Here $\overline{\text{MS-NDR}}$ scheme for B_{B_q} at scale m_b . Often used: scheme-invariant $\widehat{B}_{B_q} = 1.51 B_{B_q}$. Recall:

$$\Delta m_s = \left(18.8 \pm 0.6_{V_{cb}} \pm 0.3_{m_t} \pm 0.1_{\alpha_s} \right) \, \mathrm{ps^{-1}} \, \frac{f_{B_s}^2 \, B_{B_s}}{(220 \, \mathrm{MeV})^2}$$

CKMfitter lattice averages (1203.0238):

 $f_{B_s} = (229 \pm 2 \pm 6) \,\text{MeV}, \qquad B_{B_s} = 0.85 \pm 0.02 \pm 0.02$ means $f_{B_s}^2 B_{B_s} = (211 \pm 9) \,\text{MeV}$ and

 $\Delta m_{s} = (17.3 \pm 1.5) \, \mathrm{ps^{-1}}$

complying with LHCb/CDF average

 $\Delta m_{\rm s}^{\rm exp} = (17.731 \pm 0.045)\,{\rm ps}^{-1}$

```
\Delta m_{\rm s} = (17.3 \pm 1.5) \, {\rm ps^{-1}} versus
\Delta m_{\rm s}^{\rm exp} = (17.731 \pm 0.045) \, {\rm ps^{-1}}, too good to be true...
```

```
\Delta m_{\rm s} = (17.3 \pm 1.5) \, {\rm ps}^{-1} versus
\Delta m_{\rm s}^{\rm exp} = (17.731 \pm 0.045) \, {\rm ps}^{-1}, too good to be true...
```

But also:
population of Cincinnati:296943population of Karlsruhe:294761ratio:1.0074

With recent preliminary Fermilab/MILC result (1112.5642), $f_{B_s}^2 B_{B_s} = 0.0559(68) \text{ GeV}^2 \simeq [(237 \pm 14) \text{ MeV}]^2$, one finds

$$\Delta m_{
m s} = (21.7 \pm 2.6)\,{
m ps}^{-1}$$

Δm_d

 $|V_{cb}|$, short-distance coefficient and some hadronic uncertainties drop out from the ratio $\Delta m_d / \Delta m_s$:

Usual way to probe the Standard Model with Δm_d : Global fit to unitarity triangle.

Easier way: Determine R_t from Δm_d :

$$R_t = 0.880 \frac{\xi}{1.16} \sqrt{\frac{\Delta m_d}{0.49 \,\mathrm{ps}^{-1}}} \sqrt{\frac{17 \,\mathrm{ps}^{-1}}{\Delta m_s}} \frac{0.22}{|V_{us}|} \left(1 + 0.050 \overline{\rho}\right)$$

and compare with indirect determination of R_t from angles:

$$R_{t} = \frac{\sin \gamma}{\sin \alpha} = \frac{\sin(\alpha + \beta)}{\sin \alpha}$$

$$\beta = 21.4^{\circ} \pm 0.8^{\circ}, \ \alpha = 88.7^{\circ}_{-4.2^{\circ}}$$

$$R_{t} = 0.939 \pm 0.027$$

 R_t from Δm_d :

$$R_{t} = 0.880 \frac{\xi}{1.16} \sqrt{\frac{\Delta m_{d}}{0.49 \,\mathrm{ps}^{-1}}} \sqrt{\frac{17 \,\mathrm{ps}^{-1}}{\Delta m_{\mathrm{s}}}} \frac{0.22}{|V_{u\mathrm{s}}|} \left(1 + 0.050 \overline{\rho}\right)$$

Fermilab/MILC (1205.7013): $\xi = 1.268 \pm 0.063$ implying

 $R_t = 0.942 \pm 0.047_{\xi} \pm 0.006_{\text{rest}}$

agrees well with $R_t = 0.939 \pm 0.027$ from angles.

CKMfitter (Sep 27, 2012) global fit result:

 $R_t = 0.926^{+0.027}_{-0.028}$

QCD sum rule result $\xi = 1.16 \pm 0.04$ challenged by data.

Decay matrix

The calculation Γ_{12}^q , q = d, s, is needed for the width difference $\Delta \Gamma_q \simeq 2|\Gamma_{12}^q|\cos \phi_q$ and the semileptonic CP asymmetry $\mathbf{a}_{\mathrm{fs}}^q = \frac{|\Gamma_{12}^q|}{|M_{\mathrm{rs}}^q|}\sin \phi_q$

In the Standard Model

 $\phi_{s} = 0.22^{\circ} \pm 0.06^{\circ}$ and $\phi_{d} = -4.3^{\circ} \pm 1.4^{\circ}$.

Recalling $\phi_q = \arg\left(-\frac{M_{12}^q}{\Gamma_{12}^q}\right)$, a new physics contribution to arg M_{12}^q may deplete $\Delta\Gamma_q$ and enhance $|a_{fs}^q|$ to a level observable at current experiments.

But: Precise data on CP violation in $B_d \rightarrow J/\psi K_S$ and $B_s \rightarrow J/\psi \phi$ preclude large NP contributions to $\arg \phi_d$ and $\arg \phi_s$.

Leading contribution to Γ_{12}^{s} :

 Γ_{12}^{s} stems from Cabibbo-favoured tree-level $b \rightarrow c\overline{c}s$ decays, sizable new-physics contributions are impossible.

Updated Standard-Model prediction for $\Delta \Gamma_s / \Delta m_s$ in terms of hadronic parameters:

$$\frac{\Delta\Gamma_s}{\Delta m_s}\Delta m_s^{\exp} = \left[0.082 + 0.019 \frac{\widetilde{B}'_{S,B_s}}{B_{B_s}} - 0.025 \frac{B_R}{B_{B_s}}\right] \text{ ps}^{-1}$$

Here

$$\langle B_{s}|\overline{s}_{L}^{lpha}b_{R}^{eta}\,\overline{s}_{L}^{eta}b_{R}^{lpha}|\overline{B}_{s}
angle=rac{1}{12}M_{B_{s}}^{2}f_{B_{s}}^{2}\widetilde{B}_{S,B_{s}}^{\prime}$$

and $B_R = 1 \pm 0.5$ parametrises the size of higher-dimension operators.

With preliminary Fermilab/MILC result (1112.5642),

$$rac{\widetilde{B}_{\mathrm{S},B_{\mathrm{S}}}'}{B_{B_{\mathrm{S}}}} = 1.23 \pm 0.24$$

find:

 $\frac{\Delta\Gamma_s}{\Delta m_s}\Delta m^{\rm exp} = \left[0.075 \pm 0.015_{B_R/B} \pm 0.012_{\rm scale} \pm 0.004_{\widetilde{B}/B}\right] \, \rm ps^{-1}$

complies well with

 $\Delta\Gamma_s = \begin{bmatrix} 0.116 \pm 0.018_{\text{stat}} \pm 0.006_{\text{syst}} \end{bmatrix} ps^{-1}$

New physics

Trouble maker:

$$\begin{array}{rcl} {\cal A}_{\rm SL} & = & (0.532\pm 0.039) a^d_{\rm fs} + (0.468\pm 0.039) a^s_{\rm fs} \\ & = & (-7.87\pm 1.72\pm 0.93)\cdot 10^{-3} & {\sf D} \varnothing \ 2011 \end{array}$$

Define the complex parameters Δ_d and Δ_s through

$$M_{12}^q \equiv M_{12}^{\mathrm{SM},\mathrm{q}} \cdot \Delta_q , \qquad \Delta_q \equiv |\Delta_q| \mathrm{e}^{i\phi_q^\Delta}.$$

In the Standard Model $\Delta_q = 1$. Use $\phi_s = \phi_s^{SM} + \phi_s^{\Delta} \simeq \phi_s^{\Delta}$.

CKMfitter September 2012 update of 1203.0238:

CKMfitter September 2012 update of 1203.0238:

 $A_{\rm SL}$ and WA for $B(B \rightarrow \tau \nu)$ prefer small $\phi_d^{\Delta} < 0$.

Plots courtesy of Jérôme Charles Pull value for $A_{\rm SL}$: 3.3 σ

 \Rightarrow Scenario with NP in M_{12}^q only cannot accomodate the DØ measurement of A_{SL} .

The Standard Model point $\Delta_s = \Delta_d = 1$ is disfavoured by 1σ , down from the 2010 value of 3.6σ .

The LHCb measurement of Γ_s implies

$$\frac{\Gamma_d}{\Gamma_s} = \frac{\tau_{B_s}}{\tau_{B_d}} = 0.997 \pm 0.013$$

in excellent agreement with the SM prediction

 $au_{B_{\rm S}}/ au_{B_{\rm d}} = 0.998 \pm 0.003.$

Changing the Cabibbo-favoured tree-level quantity $|\Gamma_{12}^{s}|$ by opening new enhanced decay channels such as $B_{s} \rightarrow \tau^{+}\tau^{-}$ will spoil this ratio.

The LHCb measurement of Γ_s implies

$$\frac{\Gamma_d}{\Gamma_s} = \frac{\tau_{B_s}}{\tau_{B_d}} = 0.997 \pm 0.013$$

in excellent agreement with the SM prediction

 $au_{B_{\rm s}}/ au_{B_{\rm d}}=0.998\pm0.003.$

Changing the Cabibbo-favoured tree-level quantity $|\Gamma_{12}^{s}|$ by opening new enhanced decay channels such as $B_{s} \rightarrow \tau^{+}\tau^{-}$ will spoil this ratio.

Phenomenologically, new physics in the doubly Cabibbo-suppressed quantity Γ_{12}^{d} is still allowed, but requires somewhat contrived models of new physics.

Conclusions

• Δm_s and $\Delta \Gamma_s$ comply with the Standard-Model expectation.

Conclusions

- Δm_s and $\Delta \Gamma_s$ comply with the Standard-Model expectation.
- Scenarios with new physics only in M^{d,s}₁₂ can only marginally improve A_{SL}, through φ^Δ_d < 0.

Conclusions

- Δm_s and $\Delta \Gamma_s$ comply with the Standard-Model expectation.
- Scenarios with new physics only in M^{d,s}₁₂ can only marginally improve A_{SL}, through φ^Δ_d < 0.
- New physics in Γ_{12}^s from yet undiscovered B_s decay modes is not viable, but maybe new physics in Γ_{12}^d is worthwhile to look at.