Theory News on $B_{s(d)} o \mu^+ \mu^-$ Decays

ROBERT FLEISCHER

Nikhef & Vrije Universiteit Amsterdam

WG III @ CKM 2012, Cincinnati, 28 September – 2 October 2012

- Setting the Stage
- Recent Development: $\Delta \Gamma_s \neq 0 \rightarrow \text{affects } B_s \text{ BRs in a subtle way } \dots$
- Impact on $B_s \rightarrow \mu^+ \mu^-$ (?): \Rightarrow BR \oplus new window for New Physics
- <u>Conclusions</u>

Setting the Stage

General Features of $B^0_{s(d)} o \mu^+ \mu^-$ Decays

• Only loop contributions in the Standard Model (SM):

 \Rightarrow strongly suppressed & sensitive to New Physics (NP)

• Hadronic sector: only $B_{s(d)}$ -decay constant $f_{B_{s(d)}}$ enters: [\rightarrow talk by E. Gamiz]

$$\Rightarrow \mid B^0_{s(d)} \rightarrow \mu^+ \mu^-$$
 belong to the cleanest rare B decays

• <u>SM predictions</u>: $BR(B_s \to \mu^+ \mu^-) = (3.23 \pm 0.27) \times 10^{-9}$ $BR(B_d \to \mu^+ \mu^-) = (1.07 \pm 0.10) \times 10^{-10}$

[Buras, Girrbach, Guadagnoli & Isidori (2012); address also soft photon corrections]

NP may – in principle – enhance BRs significantly...

[Babu & Kolda, Dedes et al., Foster et al., Carena et al., Isidori & Paradisi, ...]

• Situation in different supersymmetric flavour models, showing also the impact of recent LHCb upper bounds on $BR(B_{s,d} \rightarrow \mu^+ \mu^-)$:

[D. Straub (2010); A.J. Buras & J. Girrbach (2012) \oplus talk by C. Bobeth]

Experimental Upper Bounds (95% C.L.):

[Review: J. Albrecht (2012) \oplus talks by F. Archilli, B. Gaur & K. Pitts]

- <u>Tevatron</u>: \rightarrow "legacy" ...
 - DØ (2010): BR $(B_s \to \mu^+ \mu^-) < 51 \times 10^{-9}$
 - CDF (2011): BR $(B_{s(d)} \rightarrow \mu^+ \mu^-) < 31 \, (46) \, \times 10^{-9}$
- Large Hardon Collider: $\rightarrow future \dots$
 - ATLAS (2012): BR $(B_s \to \mu^+ \mu^-) < 22 \times 10^{-9}$
 - CMS (2012): BR $(B_{s(d)} \rightarrow \mu^+ \mu^-) < 7.7 (1.8) \times 10^{-9}$
 - LHCb (2012): BR $(B_{s(d)} \rightarrow \mu^+ \mu^-) < 4.5 (1.0) \times 10^{-9}$

 \Rightarrow LHC combination: BR $(B_{s(d)} \rightarrow \mu^+ \mu^-) < 4.2 \times 10^{-9} (8.1 \times 10^{-10})$

 $[\mathsf{BR}(B_{s(d)} \to \mu^+ \mu^-)_{\rm SM} = (3.23 \pm 0.27) \times 10^{-9} \ ((1.07 \pm 0.10) \times 10^{-10})]$

• <u>Note</u>: the limiting factor for the $BR(B_s \to \mu^+ \mu^-)$ measurement – and all B_s branching ratios – is the ratio of f_s/f_d fragmentation functions.

[Details: R.F., Serra & Tuning (2010); Fermilab Lattice & MILC Collaborations (2012)]

Recent Development:

◊ concerning a – seemingly – unrelated topic:

B^0_s – $ar{B}^0_s$ Mixing & $\Delta\Gamma_s$

• Quantum mechanics: $\Rightarrow |B_s(t)\rangle = a(t)|B_s^0\rangle + b(t)|\bar{B}_s^0\rangle$

- Mass eigenstates: $\Delta M_s \equiv M_{\rm H}^{(s)} M_{\rm L}^{(s)}$, $\Delta \Gamma_s \equiv \Gamma_{\rm L}^{(s)} \Gamma_{\rm H}^{(s)}$
- Time-dependent decay rates: $\Gamma(B^0_s(t) \to f)$, $\Gamma(\bar{B}^0_s(t) \to f)$
- Key feature of the B_s -meson system:

$$\Delta \Gamma_s \neq 0$$

- Expected theoretically since decades [Recent review: A. Lenz (2012)].
- Recently established by LHCb at the $6\,\sigma$ level:

$$y_s \equiv \frac{\Delta\Gamma_s}{2\Gamma_s} \equiv \frac{\Gamma_{\rm L}^{(s)} - \Gamma_{\rm H}^{(s)}}{2\Gamma_s} = 0.088 \pm 0.014$$

$$\tau_{B_s}^{-1} \equiv \Gamma_s \equiv \frac{\Gamma_{\rm L}^{(s)} + \Gamma_{\rm H}^{(s)}}{2} = (0.6580 \pm 0.0085) \, {\rm ps}^{-1}$$

B_s Branching Ratios:

- $\Delta\Gamma_s \neq 0 \Rightarrow special \ care$ has to be taken when dealing with the concept of a branching ratio ...
- How to *convert* measured "experimental" B_s branching ratios into "theoretical" B_s branching ratios?

[De Bruyn, R.F., Knegjens, Koppenburg, Merk and Tuning Phys. Rev. **D 86** (2012) 014027 [arXiv:1204.1735 [hep-ph]]]

Experiment vs. Theory

• Untagged B_s decay rate: \rightarrow sum of two exponentials:

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f) = R_{\rm H}^f e^{-\Gamma_{\rm H}^{(s)} t} + R_{\rm L}^f e^{-\Gamma_{\rm L}^{(s)} t}$$
$$= \left(R_{\rm H}^f + R_{\rm L}^f \right) e^{-\Gamma_s t} \left[\cosh\left(\frac{y_s t}{\tau_{B_s}}\right) + \mathcal{A}_{\Delta\Gamma}^f \sinh\left(\frac{y_s t}{\tau_{B_s}}\right) \right]$$

• "Experimental" branching ratio: [I. Dunietz, R.F. & U. Nierste (2001)]

$$BR (B_s \to f)_{exp} \equiv \frac{1}{2} \int_0^\infty \langle \Gamma(B_s(t) \to f) \rangle dt$$
$$= \frac{1}{2} \left[\frac{R_{\rm H}^f}{\Gamma_{\rm H}^{(s)}} + \frac{R_{\rm L}^f}{\Gamma_{\rm L}^{(s)}} \right] = \frac{\tau_{B_s}}{2} \left(R_{\rm H}^f + R_{\rm L}^f \right) \left[\frac{1 + \mathcal{A}_{\Delta\Gamma}^f y_s}{1 - y_s^2} \right]$$
(6)

- "Theoretical" branching ratio: [R.F. (1999); S. Faller, R.F. & T. Mannel (2008); ...] BR $(B_s \to f)_{\text{theo}} \equiv \frac{\tau_{B_s}}{2} \langle \Gamma(B_s^0(t) \to f) \rangle \Big|_{t=0} = \frac{\tau_{B_s}}{2} \left(R_{\text{H}}^f + R_{\text{L}}^f \right)$ (8)
 - By considering t = 0, the effect of $B_s^0 \bar{B}_s^0$ mixing is "switched off".
 - The advantage of this definition is that it allows a straightforward comparison with the BRs of B_d^0 or B_u^+ mesons by means of $SU(3)_F$.

Conversion of B_s Decay Branching Ratios

• Relation between BR $(B_s \to f)_{\text{theo}}$ and the measured BR $(B_s \to f)_{\text{exp}}$:

$$BR (B_s \to f)_{theo} = \left[\frac{1 - y_s^2}{1 + \mathcal{A}_{\Delta\Gamma}^f y_s} \right] BR (B_s \to f)_{exp}$$
(9)

• While $y_s = 0.088 \pm 0.014$ has been measured, $\mathcal{A}_{\Delta\Gamma}^f$ depends on the considered decay and generally involves non-perturbative parameters:

differences can be as large as $\mathcal{O}(10\%)$ for the current value of y_s

 \Rightarrow

• Compilation of theoretical estimates for specific B_s decays:

$B_s \to f$	${ m BR}(B_s o f)_{ m exp}$	$\mathcal{A}^f_{\Delta\Gamma}(\mathrm{SM})$	$\mathrm{BR}\left(B_s \to f\right)_{\mathrm{theo}} / \mathrm{BR}\left(B_s \to f\right)_{\mathrm{exp}}$	
			From Eq. (9)	From Eq. (11)
$J/\psi f_{0}(980)$	$(1.29^{+0.40}_{-0.28}) \times 10^{-4} [18]$	$0.9984 \pm 0.0021 \ [14]$	0.912 ± 0.014	0.890 ± 0.082 [6]
$J/\psi K_{ m S}$	$(3.5 \pm 0.8) \times 10^{-5}$ [7]	0.84 ± 0.17 [15]	0.924 ± 0.018	N/A
$D_s^-\pi^+$	$(3.01 \pm 0.34) \times 10^{-3}$ [9]	0 (exact)	0.992 ± 0.003	N/A
K^+K^-	$(3.5 \pm 0.7) \times 10^{-5} \ [18]$	-0.972 ± 0.012 [13]	1.085 ± 0.014	1.042 ± 0.033 [19]
$D_s^+ D_s^-$	$(1.04^{+0.29}_{-0.26}) \times 10^{-2} [18]$	-0.995 ± 0.013 [16]	1.088 ± 0.014	N/A

TABLE I: Factors for converting BR $(B_s \to f)_{exp}$ (see (6)) into BR $(B_s \to f)_{theo}$ (see (8)) by means of Eq. (9) with theoretical estimates for $\mathcal{A}_{\Delta\Gamma}^f$. Whenever effective lifetime information is available, the corrections are also calculated using Eq. (11).

How can we avoid theoretical input? \rightarrow

• Effective B_s decay lifetimes:

$$\tau_f \equiv \frac{\int_0^\infty t \left\langle \Gamma(B_s(t) \to f) \right\rangle dt}{\int_0^\infty \left\langle \Gamma(B_s(t) \to f) \right\rangle dt} = \frac{\tau_{B_s}}{1 - y_s^2} \left[\frac{1 + 2 \mathcal{A}_{\Delta\Gamma}^f y_s + y_s^2}{1 + \mathcal{A}_{\Delta\Gamma}^f y_s} \right]$$

$$\Rightarrow \left| \operatorname{BR} \left(B_s \to f \right)_{\text{theo}} = \left[2 - \left(1 - y_s^2 \right) \tau_f / \tau_{B_s} \right] \operatorname{BR} \left(B_s \to f \right)_{\text{exp}} \right|$$

(11)

 \rightarrow advocate the use of this relation for Particle Listings (PDG, HFAG)

$B_s ightarrow VV$ Decays

• Another application is given by B_s decays into two vector mesons:

– Examples:
$$B_s \to J/\psi \phi$$
, $B_s \to K^{*0} \bar{K}^{*0}$, $B_s \to D_s^{*+} D_s^{*-}$, ...

• Angular analysis of the vector-meson decay products has to be performed to disentangle the CP-even $(0, \|)$ and CP-odd (\bot) states (labelled by k):

$$f_{VV,k}^{\exp} = \frac{\mathrm{BR}_{\exp}^{VV,k}}{\mathrm{BR}_{\exp}^{VV}}, \quad \mathsf{BR}_{\exp}^{VV} \equiv \sum_{k} \mathsf{BR}_{\exp}^{VV,k} \ \Rightarrow \ \sum_{k} f_{VV,k}^{\exp} = 1.$$

• Conversion of the "experimental" into the "theoretical" branching ratios:

- Using theory info about
$$\mathcal{A}_{\Delta\Gamma}^{VV,k} = -\eta_k \sqrt{1 - C_{VV,k}^2} \cos(\phi_s + \Delta \phi_{VV,k})$$
:
 $\mathsf{BR}_{\mathrm{theo}}^{VV} = (1 - y_s^2) \left[\sum_{k=0,\parallel,\perp} \frac{f_{VV,k}^{\mathrm{exp}}}{1 + y_s \mathcal{A}_{\Delta\Gamma}^{VV,k}} \right] \mathsf{BR}_{\mathrm{exp}}^{VV}$

- Using effective lifetime measurements:

$$\mathrm{BR}_{\mathrm{theo}}^{VV} = \mathsf{BR}_{\mathrm{exp}}^{VV} \sum_{k=0,\parallel,\perp} \left[2 - \left(1 - y_s^2\right) \frac{\tau_k^{VV}}{\tau_{B_s}} \right] f_{VV,k}^{\mathrm{exp}}$$

[See also LHCb, arXiv:1111.4183; S. Descotes-Genon, J. Matias & J. Virto (2011)]

Key B_s Decay: $B_s
ightarrow \mu^+ \mu^-$

- Upper bounds on the branching ratio are becoming stronger and stronger, thereby approaching the SM prediction ...
- What is the impact of $\Delta \Gamma_s \neq 0$ on these analyses?

 \rightarrow opens actually a new window for New Physics

[De Bruyn, R.F., Knegjens, Koppenburg, Merk, Pellegrino and Tuning Phys. Rev. Lett. **109** (2012) 041801 [arXiv:1204.1737 [hep-ph]] The General $B_s
ightarrow \mu^+ \mu^-$ Amplitudes

• Low-energy effective Hamiltonian for $\bar{B}_s^0 \to \mu^+ \mu^-$: $| SM \oplus NP |$

$$\mathcal{H}_{\text{eff}} = -\frac{G_{\text{F}}}{\sqrt{2}\pi} V_{ts}^* V_{tb} \alpha \left[C_{10}O_{10} + C_S O_S + C_P O_P + C_{10}' O_{10}' + C_S' O_S' + C_P' O_P' \right]$$

 $[G_{\mathrm{F}}:$ Fermi's constant, $V_{qq'}:$ CKM matrix elements, $\alpha:$ QED fine structure constant]

• Four-fermion operators, with $P_{L,R} \equiv (1 \mp \gamma_5)/2$ and *b*-quark mass m_b :

$$\begin{array}{rclcrcl}
O_{10} &=& (\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell), & O_{10}' &=& (\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell) \\
O_{S} &=& m_{b}(\bar{s}P_{R}b)(\bar{\ell}\ell), & O_{S}' &=& m_{b}(\bar{s}P_{L}b)(\bar{\ell}\ell) \\
O_{P} &=& m_{b}(\bar{s}P_{R}b)(\bar{\ell}\gamma_{5}\ell), & O_{P}' &=& m_{b}(\bar{s}P_{L}b)(\bar{\ell}\gamma_{5}\ell)
\end{array}$$

[Only operators with non-vanishing $\bar{B}^0_s \rightarrow \mu^+ \mu^-$ matrix elements are included]

- The Wilson coefficients C_i , C'_i encode the short-distance physics:
 - SM case: only $C_{10} \neq 0$, and is given by the *real* coefficient C_{10}^{SM} .
 - Outstanding feature of $\bar{B}_s^0 \to \mu^+ \mu^-$: sensitivity to (pseudo-)scalar lepton densities $\to O_{(P)S}$, $O'_{(P)S}$; WCs are still largely unconstrained.

[W. Altmannshofer, P. Paradisi & D. Straub (2011) \rightarrow model-independent NP analysis]

 \rightarrow convenient to go to the rest frame of the decaying \bar{B}_s^0 meson:

• Distinguish between the $\mu_{\rm L}^+\mu_{\rm L}^-$ and $\mu_{\rm R}^+\mu_{\rm R}^-$ helicity configurations:

$$|(\mu_{\rm L}^+\mu_{\rm L}^-)_{\rm CP}\rangle \equiv (\mathcal{CP})|\mu_{\rm L}^+\mu_{\rm L}^-\rangle = e^{i\phi_{\rm CP}(\mu\mu)}|\mu_{\rm R}^+\mu_{\rm R}^-\rangle$$

 $[e^{i\phi_{\rm CP}(\mu\mu)}]$ is a convention-dependent phase factor \rightarrow cancels in observables]

• General expression for the decay amplitude [$\eta_{\rm L} = +1$, $\eta_{\rm R} = -1$]:

$$A(\bar{B}_s^0 \to \mu_\lambda^+ \mu_\lambda^-) = \langle \mu_\lambda^- \mu_\lambda^+ | \mathcal{H}_{\text{eff}} | \bar{B}_s^0 \rangle = -\frac{G_F}{\sqrt{2}\pi} V_{ts}^* V_{tb} \alpha$$
$$\times f_{B_s} M_{B_s} m_\mu C_{10}^{\text{SM}} e^{i\phi_{\text{CP}}(\mu\mu)(1-\eta_\lambda)/2} \left[\eta_\lambda P + S\right]$$

• Combination of Wilson coefficient functions [CP-violating phases $\varphi_{P,S}$]:

$$P \equiv |P|e^{i\varphi_P} \equiv \frac{C_{10} - C'_{10}}{C_{10}^{\rm SM}} + \frac{M_{B_s}^2}{2m_\mu} \left(\frac{m_b}{m_b + m_s}\right) \left(\frac{C_P - C'_P}{C_{10}^{\rm SM}}\right) \xrightarrow{\rm SM} 1$$

$$S \equiv |S|e^{i\varphi_S} \equiv \sqrt{1 - 4\frac{m_\mu^2}{M_{B_s}^2}} \frac{M_{B_s}^2}{2m_\mu} \left(\frac{m_b}{m_b + m_s}\right) \left(\frac{C_S - C_S'}{C_{10}^{\rm SM}}\right) \xrightarrow{\rm SM} 0$$

 $[f_{B_s}: B_s$ decay constant, $M_{B_s}: B_s$ mass, m_μ : muon mass, m_s : strange-quark mass]

The $B_s \rightarrow \mu^+ \mu^-$ Observables

• Key quantity for calculating the CP asymmetries and the untagged rate:

$$\xi_{\lambda} \equiv -e^{-i\phi_s} \left[e^{i\phi_{\rm CP}(B_s)} \frac{A(\bar{B}^0_s \to \mu^+_{\lambda} \mu^-_{\lambda})}{A(B^0_s \to \mu^+_{\lambda} \mu^-_{\lambda})} \right]$$

 $\Rightarrow A(B_s^0 \to \mu_{\lambda}^+ \mu_{\lambda}^-) = \langle \mu_{\lambda}^- \mu_{\lambda}^+ | \mathcal{H}_{\text{eff}}^\dagger | B_s^0 \rangle \text{ is also needed } \dots$

• Using $(\mathcal{CP})^{\dagger}(\mathcal{CP}) = \hat{1}$ and $(\mathcal{CP})|B_s^0\rangle = e^{i\phi_{\mathrm{CP}}(B_s)}|\bar{B}_s^0\rangle$ yields:

$$A(B_s^0 \to \mu_\lambda^+ \mu_\lambda^-) = -\frac{G_{\rm F}}{\sqrt{2}\pi} V_{ts} V_{tb}^* \alpha f_{B_s} M_{B_s} m_\mu C_{10}^{\rm SM}$$

$$\times e^{i[\phi_{\rm CP}(B_s) + \phi_{\rm CP}(\mu\mu)(1-\eta_\lambda)/2]} \left[-\eta_\lambda P^* + S^*\right]$$

• The convention-dependent phases cancel in ξ_{λ} [$\eta_{\rm L} = +1$, $\eta_{\rm R} = -1$]:

$$\xi_{\lambda} = -\left[\frac{+\eta_{\lambda}P + S}{-\eta_{\lambda}P^* + S^*}\right] \quad \Rightarrow \quad \left[\xi_{\mathrm{L}}\xi_{\mathrm{R}}^* = \xi_{\mathrm{R}}\xi_{\mathrm{L}}^* = 1\right]$$

CP Asymmetries:

- Time-dependent rate asymmetry: \rightarrow requires tagging of B_s^0 and \bar{B}_s^0 :
 - $\frac{\Gamma(B_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-) \Gamma(\bar{B}_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-)}{\Gamma(B_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-) + \Gamma(\bar{B}_s^0(t) \to \mu_\lambda^+ \mu_\lambda^-)} = \frac{C_\lambda \cos(\Delta M_s t) + S_\lambda \sin(\Delta M_s t)}{\cosh(y_s t/\tau_{B_s}) + \mathcal{A}_{\Delta\Gamma}^\lambda \sinh(y_s t/\tau_{B_s})}$
- Individual observables: \rightarrow theoretically clean (no dependence on f_{B_s}):

$$C_{\lambda} \equiv \frac{1 - |\xi_{\lambda}|^2}{1 + |\xi_{\lambda}|^2} = -\eta_{\lambda} \left[\frac{2|PS|\cos(\varphi_P - \varphi_S)}{|P|^2 + |S|^2} \right] \xrightarrow{\text{SM}} 0$$

$$S_{\lambda} \equiv \frac{2 \operatorname{Im} \xi_{\lambda}}{1 + |\xi_{\lambda}|^2} = \frac{|P|^2 \sin 2\varphi_P - |S|^2 \sin 2\varphi_S}{|P|^2 + |S|^2} \xrightarrow{\text{SM}} 0$$

$$\mathcal{A}_{\Delta\Gamma}^{\lambda} \equiv \frac{2\operatorname{\mathsf{Re}}\,\xi_{\lambda}}{1+|\xi_{\lambda}|^2} = \frac{|P|^2\cos 2\varphi_P - |S|^2\cos 2\varphi_S}{|P|^2 + |S|^2} \xrightarrow{\mathrm{SM}} 1$$

• <u>Note</u>: $S_{CP} \equiv S_{\lambda}$, $\mathcal{A}_{\Delta\Gamma} \equiv \mathcal{A}_{\Delta\Gamma}^{\lambda}$ are *independent* of the muon helicity λ .

• Difficult to measure the muon helicity: \Rightarrow consider the following rates:

$$\Gamma(\overset{(-)}{B}{}^{0}_{s}(t) \to \mu^{+}\mu^{-}) \equiv \sum_{\lambda=\mathrm{L,R}} \Gamma(\overset{(-)}{B}{}^{0}_{s}(t) \to \mu^{+}_{\lambda}\mu^{-}_{\lambda})$$

• Corresponding CP-violating rate asymmetry: $\rightarrow C_{\lambda} \propto \eta_{\lambda}$ terms cancel:

$$\frac{\Gamma(B_s^0(t) \to \mu^+ \mu^-) - \Gamma(\bar{B}_s^0(t) \to \mu^+ \mu^-)}{\Gamma(B_s^0(t) \to \mu^+ \mu^-)} = \frac{\mathcal{S}_{\rm CP} \sin(\Delta M_s t)}{\cosh(y_s t/\tau_{B_s}) + \mathcal{A}_{\Delta\Gamma} \sinh(y_s t/\tau_{B_s})}$$

- Practical comments:
 - It would be most interesting to measure this CP asymmetry since a non-zero value immediately signaled CP-violating NP phases.
 [See, e.g., Buras & Girrbach ('12) for Minimal U(2)³ models [Barbieri *et al.*])]
 - Unfortunately, this is challenging in view of the tiny branching ratio and as B_s^0 , \bar{B}_s^0 tagging and time information are required.

 $\begin{bmatrix} \text{Previous studies of CP asymmetries of } B^0_{s,d} \to \ell^+ \ell^- \text{ (assuming } \Delta \Gamma_s = 0\text{):} \\ \text{Huang and Liao (2002); Dedes and Pilaftsis (2002), Chankowski et al. (2005)} \end{bmatrix}$

Untagged Rate and Branching Ratio:

• The first measurement concerns the "experimental" branching ratio:

BR
$$(B_s \to \mu^+ \mu^-)_{exp} \equiv \frac{1}{2} \int_0^\infty \langle \Gamma(B_s(t) \to \mu^+ \mu^-) \rangle dt$$

 \rightarrow time-integrated untagged rate, involving

$$\langle \Gamma(B_s(t) \to \mu^+ \mu^-) \rangle \equiv \Gamma(B_s^0(t) \to \mu^+ \mu^-) + \Gamma(\bar{B}_s^0(t) \to \mu^+ \mu^-)$$
$$\propto e^{-t/\tau_{B_s}} [\cosh(y_s t/\tau_{B_s}) + \mathcal{A}_{\Delta\Gamma} \sinh(y_s t/\tau_{B_s})]$$

• Conversion into the "theoretical" branching ratio: \rightarrow NP searches:

$$BR(B_s \to \mu^+ \mu^-) = \left[\frac{1 - y_s^2}{1 + \mathcal{A}_{\Delta\Gamma} y_s}\right] BR(B_s \to \mu^+ \mu^-)_{exp}$$

- $\mathcal{A}_{\Delta\Gamma}$ depends on NP and is hence unknown: $\in [-1, +1] \Rightarrow two \ options:$
 - Add extra error: $\Delta BR(B_s \to \mu^+ \mu^-)|_{y_s} = \pm y_s BR(B_s \to \mu^+ \mu^-)_{exp}$.

-
$$\mathcal{A}_{\Delta\Gamma}^{\mathrm{SM}} = 1$$
 gives new SM reference value [rescale BR_{SM} by $1/(1-y_s)$]:
BR $(B_s \to \mu^+ \mu^-)_{\mathrm{SM}}|_{y_s} = (3.54 \pm 0.30) \times 10^{-9}$.

Effective $B_s \rightarrow \mu^+ \mu^-$ Lifetime:

- \diamond Collecting more and more data \oplus include decay time information \Rightarrow
- Access to the effective $B_s \rightarrow \mu^+ \mu^-$ lifetime:

$$\tau_{\mu^+\mu^-} \equiv \frac{\int_0^\infty t \, \langle \Gamma(B_s(t) \to \mu^+\mu^-) \rangle \, dt}{\int_0^\infty \langle \Gamma(B_s(t) \to \mu^+\mu^-) \rangle \, dt}$$

• $\underline{\mathcal{A}_{\Delta\Gamma}}$ can then be extracted: $\mathcal{A}_{\Delta\Gamma} = \frac{1}{y_s} \left[\frac{(1-y_s^2)\tau_{\mu^+\mu^-} - (1+y_s^2)\tau_{B_s}}{2\tau_{B_s} - (1-y_s^2)\tau_{\mu^+\mu^-}} \right]$

• Finally, extraction of the "theoretical" BR: \rightarrow clean expression:

$$BR\left(B_s \to \mu^+ \mu^-\right) = \underbrace{\left[2 - \left(1 - y_s^2\right) \frac{\tau_{\mu^+ \mu^-}}{\tau_{B_s}}\right] BR\left(B_s \to \mu^+ \mu^-\right)_{exp}}_{\to only \text{ measurable quantities}}$$

- It is *crucial* that $\mathcal{A}_{\Delta\Gamma}$ does *not* depend on the muon helicity.
- Important new measurement for the high-luminosity LHC upgrade: \Rightarrow precision of 5% or better appears feasible for $\tau_{\mu^+\mu^-}$...

Constraints on New Physics

• Information from the $B_s \rightarrow \mu^+ \mu^-$ branching ratio:

$$R \equiv \frac{\mathsf{BR}(B_s \to \mu^+ \mu^-)_{exp}}{\mathsf{BR}(B_s \to \mu^+ \mu^-)_{SM}} = \left[\frac{1 + \mathcal{A}_{\Delta\Gamma} y_s}{1 - y_s^2}\right] \left(|P|^2 + |S|^2\right)$$
$$= \left[\frac{1 + y_s \cos 2\varphi_P}{1 - y_s^2}\right] |P|^2 + \left[\frac{1 - y_s \cos 2\varphi_S}{1 - y_s^2}\right] |S|^2 \stackrel{\text{LHC}}{<} 1.3$$

– Unknown CP-violating phases φ_P , $\varphi_S \Rightarrow |P|, |S| \le \sqrt{(1+y_s)R} < 1.2$

– R does not allow a separation of the P and S contributions:

 \Rightarrow large NP could be present, even if the BR is close to the SM value.

• Further information from the measurement of $\tau_{\mu^+\mu^-}$ yielding $\mathcal{A}_{\Delta\Gamma}$:

$$|S| = |P| \sqrt{\frac{\cos 2\varphi_P - \mathcal{A}_{\Delta\Gamma}}{\cos 2\varphi_S + \mathcal{A}_{\Delta\Gamma}}}$$

| offers a new window for New Physics in $B_s o \mu^+ \mu^-$

How does the situation in NP parameter space look like?

• Current constraints in the |P|-|S| plane and illustration of those following from a future measurement of the $B_s \to \mu^+ \mu^-$ lifetime yielding $\mathcal{A}_{\Delta\Gamma}$:

• Illustration of the allowed regions in the $R-A_{\Delta\Gamma}$ plane for scenarios with scalar or non-scalar NP contributions:

• Authors have started to include the effect of $\Delta\Gamma_s$ in analyses of the constraints on NP that are implied by $BR(B_s \rightarrow \mu^+ \mu^-)_{exp}$:

O. Buchmueller, R. Cavanaugh, M. Citron, A. De Roeck, M. J. Dolan, J. R. Ellis, H. Flächer and S. Heinemeyer *et al.*, "The CMSSM and NUHM1 in Light of 7 TeV LHC, $B_s \rightarrow \mu^+ \mu^-$ and XENON100 Data," arXiv:1207.7315 [hep-ph]

T. Hurth and F. Mahmoudi, "The Minimal Flavour Violation benchmark in view of the latest LHCb data," arXiv:1207.0688 [hep-ph]

A. J. Buras and J. Girrbach, "On the Correlations between Flavour Observables in Minimal $U(2)^3$ Models," arXiv:1206.3878 [hep-ph]

W. Altmannshofer and D. M. Straub, "Cornering New Physics in $b \rightarrow s$ Transitions," arXiv:1206.0273 [hep-ph]

D. Becirevic, N. Kosnik, F. Mescia and E. Schneider, "Complementarity of the constraints on New Physics from $B_s \rightarrow \mu^+\mu^-$ and from $B \rightarrow K\ell^+\ell^-$ decays," arXiv:1205.5811 [hep-ph]

F. Mahmoudi, S. Neshatpour and J. Orloff, "Supersymmetric constraints from $B_s \rightarrow \mu^+\mu^-$ and $B \rightarrow K^*\mu^+\mu^-$ observables," arXiv:1205.1845 [hep-ph]

T. Li, D. V. Nanopoulos, W. Wang, X. -C. Wang and Z. -H. Xiong, "Rare B decays in the flip SU(5) Model," JHEP **1207** (2012) 190 arXiv:1204.5326 [hep-ph]

Conclusions

Exciting Times for Leptonic Rare B **Decays**

- $BR(B_d \to \mu^+ \mu^-)$: experimental upper bound $\sim 8 \times BR(B_d \to \mu^+ \mu^-)_{SM}$.
- $BR(B_s \rightarrow \mu^+ \mu^-)$: experimental upper bound ...

... is moving closer and closer to the SM prediction:

 \Rightarrow will we see a signal soon?

... or will we go below the SM expectation?

• Recent news on a – seemingly – unrelated topic:

LHCb has established $\Delta \Gamma_s \neq 0$ at the 6σ level $| \Rightarrow$

- Care has to be taken when dealing with B_s decay branching ratios.
- "Experimental" vs. "theoretical" branching ratios ...

 \Rightarrow what is the impact of $\Delta\Gamma_s$ on NP searches with $B_s \rightarrow \mu^+ \mu^-$?

 \rightarrow the muon helicity of $B_s \rightarrow \mu^+ \mu^-$ has *not* to be measured:

• The theoretical $B_s \to \mu^+ \mu^-$ SM branching ratio has to be rescaled by $1/(1-y_s)$ for the comparison with the experimental branching ratio:

$$\Rightarrow new SM reference: | \mathsf{BR}(B_s \to \mu^+ \mu^-)_{\mathrm{SM}}|_{y_s} = (3.54 \pm 0.30) \times 10^{-9}$$

- $B_s \rightarrow \mu^+ \mu^-$ is a sensitive probe for physics beyond the SM:
 - y_s can be *included* in the constraints for NP from $BR(B_s \to \mu^+ \mu^-)_{exp}$.
- The effective lifetime $\tau_{\mu^+\mu^-}$ offers a new observable (yielding $\mathcal{A}_{\Delta\Gamma}$):
 - Allows the extraction of the "theoretical" $B_s \rightarrow \mu^+ \mu^-$ branching ratio.
 - <u>New theoretically clean observable to search for NP:</u> $\mathcal{A}_{\Delta\Gamma}^{SM} = +1$
 - * In contrast to the BR no dependence on the B_s -decay constant f_{B_s} .
 - * May reveal NP effects even if the BR is close to the SM prediction: still largely unconstrained (pseudo-)scalar operators $O_{(P)S}$, $O'_{(P)S}$.

 \Rightarrow | exciting study the LHC upgrade physics programme!