A proposal to solve some puzzles in semileptonic *B* decays

Sascha Turczyk

Lawrence Berkeley National Laboratory Work in collaboration with F. Bernlochner and Z. Ligeti

[Phys.Rev. D85 (2012) 094033, arXiv:1202.1834]

7th International Workshop on the CKM Unitarity Triangle Sunday, September 30th, 2012

Sascha Turczyk

A proposal to solve some puzzles in semileptonic B decays

Outline

- Motivation
- Current Situation

Proposal

- Theoretical Considerations
- Viability

Motivation Current Situation

Experiments

- BaBar and Belle: 1.1 ab^{-1} at $\Upsilon(4s)$
- About 25% of all B decays are semi-leptonic

Semileptonic Charm Modes

- Access to V_{cb}
- Input for rare decay modes
- ⇒ Important concistency checks
- \Rightarrow Background understanding
 - Several tensions with varying level of significance for over ten years

Motivation Current Situation

Experiments

- BaBar and Belle: 1.1 ab^{-1} at $\Upsilon(4s)$
- About 25% of all B decays are semi-leptonic

Semileptonic Charm Modes

- Access to V_{cb}
- Input for rare decay modes
- \Rightarrow Important concistency checks
- \Rightarrow Background understanding
 - Several tensions with varying level of significance for over ten years

Motivation Current Situation

Experiments

- BaBar and Belle: 1.1 ab^{-1} at $\Upsilon(4s)$
- About 25% of all B decays are semi-leptonic

Semileptonic Charm Modes

- Access to V_{cb}
- Input for rare decay modes
- \Rightarrow Important concistency checks
- \Rightarrow Background understanding
 - Several tensions with varying level of significance for over ten years

Introduction
Proposal
Discussion

Motivation Current Situation

Notation	$s_l^{\pi_l}$	J^P	<i>m</i> (GeV)	Г (GeV)	
D	$\frac{1}{2}^{-}$	0-	1.87		١.
D^*	$\frac{1}{2}^{-}$	1^{-}	2.01		∫ ls
D_0^*	$\frac{1}{2}^{+}$	0+	2.40	0.28	
D_1^*	$\frac{1}{2}^{+}$	1^+	2.44	0.38	f Ip "broad"
D_1	$\frac{3^{+}}{2}$	1^{+}	2.42	0.03	<u>]</u>
D_2^*	$\frac{3}{2}^{+}$	2+	2.46	0.04	f Ip "narrow"
D'	$\frac{1}{2}^{-}$	0-	2.54	0.13	<u>ک</u>
$D^{\prime *}$	$\frac{1}{2}^{-}$	1^{-}	2.61	0.09	f 2s

- Isospin averaged masses and widths
- $s_l^{\pi_l}$ spin and parity of the light degrees of freedom
- Babar found evidence for 2s states consistent with helicity angles [arXiv:1009.2076]

Introduction
Proposal
Discussion

Motivation Current Situation

Notation	$s_l^{\pi_l}$	J^P	<i>m</i> (GeV)	Г (GeV)	
D	$\frac{1}{2}^{-}$	0-	1.87		٦.
D^*	$\frac{1}{2}^{-}$	1^{-}	2.01		∫ ls
D_0^*	$\frac{1}{2}^{+}$	0+	2.40	0.28	
D_1^*	$\frac{1}{2}^{+}$	1^+	2.44	0.38	J Ip "broad"
D_1	$\frac{3^{+}}{2}$	1^{+}	2.42	0.03	<u>]</u>
D_2^*	$\frac{3}{2}^{+}$	2+	2.46	0.04	f Ip "narrow"
D'	$\frac{1}{2}^{-}$	0-	2.54	0.13	<u>ک</u>
$D^{\prime *}$	$\frac{1}{2}^{-}$	1^{-}	2.61	0.09	∫ 2s

- Isospin averaged masses and widths
- $s_l^{\pi_l}$ spin and parity of the light degrees of freedom
- Babar found evidence for 2s states consistent with helicity angles [arXiv:1009.2076]

Motivation Current Situation

Tension: Inclusive vs. Exclusive Measurement

Charm state X _c	$\mathcal{B}(B^+ \to X_c \ell^+ \nu)$	-
D	$(2.31 \pm 0.09)\%$	
D*	$(5.63 \pm 0.18)\%$	
$\sum D^{(*)}$	$(7.94 \pm 0.20)\%$	
$D_0^* \rightarrow D \pi$	$(0.41 \pm 0.08)\%$	broad states
$D_1^* \rightarrow D^* \pi$	$(0.45 \pm 0.09)\%$	$(0.86 \pm 0.12)\%$
$D_1 o D^* \pi$	$(0.43 \pm 0.03)\%$	narrow states
$D_2^* \rightarrow D^{(*)} \pi$	$(0.41 \pm 0.03)\%$	$\left. \right\} (0.84 \pm 0.04)\%$
$\sum D^{**} o D^* \pi$	$(1.70\pm 0.12)\%$	
$D \pi$	$(0.66 \pm 0.08)\%$	
$D^* \pi$	$(0.87 \pm 0.10)\%$	
$\sum D^*\pi$	$(1.53\pm 0.13)\%$	
$\sum D^{(*)} + \sum D^* \pi$	$(9.47\pm 0.24)\%$	_
$\sum D^{(*)} + \sum D^{**} \to D^{(*)}\pi$	$(9.64\pm 0.23)\%$	
Inclusive X_c	$(10.92\pm0.16)\%$	Courte

Courtesy of Florian Bernlochner

• $B \rightarrow D^{(*)} \pi \ell \bar{\nu}_{\ell}$: Weighted average of both isospin modes, assuming a 100% correlation between both values.

- "Inclusive X_c $[\sum D^{(*)} + \sum D^*\pi]$ ":Gap of (1.45 ± 0.29) % emerges
- Uses semi-inclusive $D^{(*)}\pi$ branching fractions; Instead use measured 1P decay $D^{**} o D^{(*)}\pi \Rightarrow (1.28 \pm 0.28)\%$

[HFAG 2010]

Motivation Current Situation

Tension: Inclusive vs. Exclusive Measurement

Charm state V	$\mathcal{R}(\mathbf{P}^+) \times \mathcal{I}^+ \cdots$	-
	$D(B \rightarrow \Lambda_c \ell \nu)$	
D	$(2.31 \pm 0.09)\%$	
D*	$(5.63 \pm 0.18)\%$	
$\sum D^{(*)}$	$(7.94 \pm 0.20)\%$	
$D_0^* o D \pi$	$(0.41 \pm 0.08)\%$	broad states
$D_1^* ightarrow D^* \ \pi$	$(0.45\pm 0.09)\%$	$(0.86 \pm 0.12)\%$
$D_1 o D^* \; \pi$	$(0.43 \pm 0.03)\%$	narrow states
$D_2^* ightarrow D^{(*)} \pi$	$(0.41 \pm 0.03)\%$	$\left\{ (0.84 \pm 0.04)\% \right\}$
$\sum D^{**} \rightarrow D^* \pi$	$(1.70 \pm 0.12)\%$	
$D \pi$	$(0.66 \pm 0.08)\%$	
$D^* \pi$	$(0.87 \pm 0.10)\%$	
$\sum D^* \pi$	$(1.53\pm 0.13)\%$	
$\sum D^{(*)} + \sum D^* \pi$	$(9.47\pm 0.24)\%$	
$\sum D^{(*)} + \sum D^{**} \to D^{(*)}\pi$	$(9.64\pm 0.23)\%$	
Inclusive X_c	$(10.92 \pm 0.16)\%$	
		Courtes

Courtesy of Florian Bernlochner

• $B \to D^{(*)} \pi \ell \bar{\nu}_{\ell}$: Weighted average of both isospin modes, assuming a 100% correlation between both values.

- "Inclusive X_c $[\sum D^{(*)} + \sum D^*\pi]$ ": Gap of (1.45 ± 0.29) % emerges
- Uses semi-inclusive $D^{(*)}\pi$ branching fractions; Instead use measured 1P decay $D^{**} \rightarrow D^{(*)}\pi \Rightarrow (1.28 \pm 0.28)\%$

[HFAG 2010]

Motivation Current Situation

Update with [HFAG 2011] Data

- Use only B^0 modes and relate to B^+ with isospin
- Add $B \to D_1 \ell \bar{\nu}_\ell \to [D\pi\pi] \ell \bar{\nu}_\ell$ recently observed by LHCb and Belle

$$X_c - \left[\sum D^{(*)} + \sum D^* \pi\right] = 1.74 \pm 0.24$$

$$X_c - [\sum D^{(*)} + (\sum D^{**} \to D^{(*)}\pi) + (D_1 \to D\pi\pi)] = 1.80 \pm 0.25$$

• No longer exclude Belle lower limit on D'_1 (neg. yields)

$$X_c - [(D^{(*)}) + D(*)\pi + D_1 o D\pi\pi] = 1.61 \pm 0.25$$

Comments

- Analysis often fill up 'gap'
- Differences between Isopsin related modes
- Even with conservative uncertainties and rejecting incompatible measurements gap stays
- Difference in 'obtaining' gap strengthens argument to investigate
- The discussion here is independent of the actual gap

Motivation Current Situation

Update with [HFAG 2011] Data

- Use only B^0 modes and relate to B^+ with isospin
- Add $B \to D_1 \ell \bar{\nu}_\ell \to [D\pi\pi] \ell \bar{\nu}_\ell$ recently observed by LHCb and Belle

$$X_c - \left[\sum D^{(*)} + \sum D^*\pi\right] = 1.74 \pm 0.24$$

$$X_c - [\sum D^{(*)} + (\sum D^{**} \to D^{(*)}\pi) + (D_1 \to D\pi\pi)] = 1.80 \pm 0.25$$

• No longer exclude Belle lower limit on D'_1 (neg. yields)

$$X_c - [(D^{(*)}) + D(*)\pi + D_1 \rightarrow D\pi\pi] = 1.61 \pm 0.25$$

Comments

- Analysis often fill up 'gap'
- Differences between Isopsin related modes
- Even with conservative uncertainties and rejecting incompatible measurements gap stays
- Difference in 'obtaining' gap strengthens argument to investigate
- The discussion here is independent of the actual gap

Motivation Current Situation

Update with [HFAG 2011] Data

- Use only B^0 modes and relate to B^+ with isospin
- Add $B \to D_1 \ell \bar{\nu}_\ell \to [D\pi\pi] \ell \bar{\nu}_\ell$ recently observed by LHCb and Belle

$$X_c - \left[\sum D^{(*)} + \sum D^*\pi\right] = 1.74 \pm 0.24$$

$$X_c - [\sum D^{(*)} + (\sum D^{**} \to D^{(*)}\pi) + (D_1 \to D\pi\pi)] = 1.80 \pm 0.25$$

• No longer exclude Belle lower limit on D'_1 (neg. yields)

$$X_c - [(D^{(*)}) + D(*)\pi + D_1 o D\pi\pi] = 1.61 \pm 0.25$$

Comments

- Analysis often fill up 'gap'
- Differences between Isopsin related modes
- Even with conservative uncertainties and rejecting incompatible measurements gap stays
- Difference in 'obtaining' gap strengthens argument to investigate
- The discussion here is independent of the actual gap

Motivation Current Situation

Some more Tensions

Exclusive vs inclusive Determination of V_{cb}

 $|V_{cb}| = (41.9 \pm 0.7) \times 10^{-3}$ (inclusive)

$$|V_{cb}| = (39.9 \pm 0.9) \times 10^{-3}$$
 (exclusive)

- Inclusive: Based on HQE and inclusive measurement
- Exclusive: Theory input form factor; Measurement extrapolates to $q^2 = 0$

'1/2 vs 3/2 puzzle"

- Uraltsev sum rule prediction + quark model [Bigi et. al., arXiv:0708.1621] $\mathcal{B}(B^+ \to D^{**}_{1/2=\text{broad}} \, \ell^+ \, \nu) / \mathcal{B}(B^+ \to D^{**}_{3/2=\text{narrow}} \, \ell^+ \, \nu) \sim 0.1 - 0.2$
- In conflict with experimental result

[PDG 2012]

Motivation Current Situation

Some more Tensions

Exclusive vs inclusive Determination of V_{cb}

 $|V_{cb}| = (41.9 \pm 0.7) \times 10^{-3}$ (inclusive)

$$|V_{cb}| = (39.9 \pm 0.9) \times 10^{-3}$$
 (exclusive)

- Inclusive: Based on HQE and inclusive measurement
- Exclusive: Theory input form factor; Measurement extrapolates to $q^2 = 0$

"1/2 vs 3/2 puzzle"

• Uraltsev sum rule prediction + quark model [Bigi et. al., arXiv:0708.1621] $\mathcal{B}(B^+ \to D^{**}_{1/2=\text{broad}} \, \ell^+ \, \nu) / \mathcal{B}(B^+ \to D^{**}_{3/2=\text{narrow}} \, \ell^+ \, \nu) \sim 0.1 - 0.2$

• In conflict with experimental result

[PDG 2012]

Introduction Proposal

Motivation Current Situation

Natural Question

Is there any connection?

Theoretical Considerations Viability

Possible Decay Chains

• Strong decay chain of $D'^{(*)}$ $2S \rightarrow 1S$ $2S \rightarrow 1P \rightarrow 1S$ • Particle spectrum in decay

Transition strength indicated by line thickness

• Significant $2s \rightarrow 1P_{broad}$ cross feed plausible [Bernlochner, Ligeti, ST]

Theoretical Considerations Viability

Possible Decay Chains

Strong decay chain of D'(*) 2S → 1S 2S → 1P → 1S
Particle spectrum in decay p-wave + π → 1S s-wave + 2π → 1S d-wave + π → 1P_{narrow} → 1S

$$s-{
m wave}+\pi
ightarrow 1P_{
m broad}
ightarrow 1S$$

 $p_\pi\sim 0.01-0.5\,{
m GeV}$

Transition strength indicated by line thickness

• Significant $2s \rightarrow 1P_{broad}$ cross feed plausible [Bernlochner, Ligeti, ST]

Theoretical Considerations Viability

Possible Decay Chains

• Strong decay chain of $D'^{(*)}$ $2S \rightarrow 1S$ $2S \rightarrow 1P \rightarrow 1S$ Particle spectrum in decay p-wave + $\pi \rightarrow 1S$ s-wave + $2\pi \rightarrow 1S$ d-wave + $\pi \rightarrow 1P_{narrow} \rightarrow 1S$ s-wave + $\pi \rightarrow 1P_{broad} \rightarrow 1S$ $p_{\pi} \sim 0.01 - 0.5 \, \text{GeV}$

Transition strength indicated by line thickness

• Significant $2s \rightarrow 1P_{broad}$ cross feed plausible [Bernlochner, Ligeti, ST]

Theoretical Considerations Viability

One Solution to Ease All Tensions?

Postulate: Substantial Branching Fraction to radially excited $D'^{(*)}$

$$\mathcal{B}ig(B o D'^{(*)}\ellar{
u}ig) \sim \mathcal{O}(1\,\%)$$

Ways of Easing Tensions

Sufficient to saturate inclusive rate

 No need to introduce large non-resonant B → D^(*)πℓν_ℓ

 Enhance observed decay rate to s^{π_l} = 1/2⁺ states

 Ease "1/2 vs 3/2 puzzle"

 Mass gap of 1S and 2S relatively small

 Lepton spectrum stays hard, in agreement with observations

 No conflict between hypothesis and the B(B → D^(*)πℓν̄)

 massurement: D^(*)
 decay would yield ≥ 2 pions most of the time

Theoretical Considerations Viability

One Solution to Ease All Tensions?

Postulate: Substantial Branching Fraction to radially excited $D'^{(*)}$

$$\mathcal{B}ig(B o D'^{(*)} \ell ar{
u}ig) \sim \mathcal{O}(1\,\%)$$

Ways of Easing Tensions

- Sufficient to saturate inclusive rate
 - No need to introduce large *non-resonant* $B o D^{(*)} \pi \ell \nu_{\ell}$
- ② Enhance observed decay rate to $s_l^{\pi_l} = \frac{1}{2}^+$ states
 - Ease "1/2 vs 3/2 puzzle"
- Mass gap of 1S and 2S relatively small
 - Lepton spectrum stays hard, in agreement with observations
- Solution No conflict between hypothesis and the $\mathcal{B}(B \to D^{(*)} \pi \ell \bar{\nu})$ measurement: $D'^{(*)}$ decay would yield ≥ 2 pions most of the time

Decay Rate

• Same quantum numbers as 1S ground state (\Rightarrow 6 form factors)

•
$$1 \le w \equiv v \cdot v' \lesssim 1.3$$

 $\frac{d\Gamma_{D'^*}}{dw} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{4^{2R} m_B^5} r^3 (1-r)^2 \sqrt{w^2 - 1} (w+1)^2 \left[1 + \frac{4w}{w+1} \frac{1 - 2rw + r^2}{(1-r)^2}\right] [F(w)]^2$
 $\frac{d\Gamma_{D'}}{dw} = \frac{G_F^2 |V_{cb}|^2 m_B^5}{4^{2\pi^3}} r^3 (1+r)^2 (w^2 - 1)^{3/2} [G(w)]^2$

What we know and expect about the FF

- $m_{b,c} \gg \Lambda_{QCD}$: Single universal Isgur-Wise function $\xi(w)$
- $\xi_2(1) = 0 \Rightarrow FF$ at w = 1 entirely determined by power corrections
- \Rightarrow For w > 1 no power suppression, but low kinematical range
 - \Rightarrow Potentially large $\Lambda_{QCD}/m_{b,c}$ corrections
- Naive expectation in quark model
 - Expectation value of wave function increases for $1S \rightarrow 2S$
 - $\Rightarrow \left. \frac{\mathrm{d}\xi_2}{\mathrm{d}w} \right|_{w=1} > 0$

Decay Rate

• Same quantum numbers as 1S ground state (\Rightarrow 6 form factors)

•
$$1 \le w \equiv v \cdot v' \lesssim 1.3$$

$$\frac{\mathrm{d}\Gamma_{D'^*}}{\mathrm{d}w} = \frac{G_F^2 |V_{cb}|^2 \, m_B^5}{48\pi^3} \, r^3 (1-r)^2 \, \sqrt{w^2 - 1} \, (w+1)^2 \left[1 + \frac{4w}{w+1} \, \frac{1 - 2rw + r^2}{(1-r)^2} \right] \left[F(w) \right]^2 \\ \frac{\mathrm{d}\Gamma_{D'}}{\mathrm{d}w} = \frac{G_F^2 |V_{cb}|^2 \, m_B^5}{48\pi^3} \, r^3 (1+r)^2 \, (w^2 - 1)^{3/2} \, \left[G(w) \right]^2$$

What we know and expect about the FF

- $m_{b,c} \gg \Lambda_{QCD}$: Single universal Isgur-Wise function $\xi(w)$
- $\xi_2(1) = 0 \Rightarrow \mathsf{FF}$ at w = 1 entirely determined by power corrections
- \Rightarrow For w > 1 no power suppression, but low kinematical range
 - \Rightarrow Potentially large $\Lambda_{QCD}/m_{b,c}$ corrections
 - Naive expectation in quark model
 - $\bullet\,$ Expectation value of wave function increases for 1S $\rightarrow\,$ 2S

$$\Rightarrow \left. \frac{\mathrm{d}\xi_2}{\mathrm{d}w} \right|_{w=1} > 0$$

Theoretical Considerations Viability

Quark Model Estimate at w = 1

[Ebert et. al., hep-ph/9912357]

Remarks

- Model for lightest excitation for given set of quantum numbers
- Calculates slope and value
- Rough estimate (no uncertainty quoted)
- Consistent with expectations from HQET

Theoretical Considerations Viability

Sum Rule Estimate at Wmax

Ansatz

- Model for lightest excitation for given set of quantum numbers
- 2S is first excitation with same quantum numbers as 1s
- QCD light-cone sum rules shown to work for 1s with non-perturbative input functions from *initial*-state

Sketch of Calculation

Modify existing calculation to project out ground-state

$$\frac{m_D^4 f_D^2}{m_c^2 (m_D^2 - q^2)} + \frac{m_{D'}^4 f_{D'}^2}{m_c^2 (m_{D'}^2 - q^2)} + \int_{s_0^{D'}}^{\infty} \mathrm{d}s \frac{\rho(s)}{s - q^2}$$

• Result sensitive to decay constant, Borel and duality parameters

• Check: Form factor vanishes for parameter set of ground-state

 $F(w_{\max}) = 0.25 \pm 0.15$ $G(w_{\max}) = 0.15 \pm 0.1$

Theoretical Considerations Viability

Sum Rule Estimate at *w*_{max}

Ansatz

- Model for lightest excitation for given set of quantum numbers
- 2S is first excitation with same quantum numbers as 1s
- QCD light-cone sum rules shown to work for 1s with non-perturbative input functions from *initial*-state

Sketch of Calculation

Modify existing calculation to project out ground-state

$$\frac{m_D^4 f_D^2}{m_c^2 (m_D^2 - q^2)} + \frac{m_{D'}^4 f_{D'}^2}{m_c^2 (m_{D'}^2 - q^2)} + \int_{s_0^{D'}}^{\infty} \mathrm{d}s \frac{\rho(s)}{s - q^2}$$

• Result sensitive to decay constant, Borel and duality parameters

• Check: Form factor vanishes for parameter set of ground-state

$F(w_{\max}) = 0.25 \pm 0.15$ $G(w_{\max}) = 0.15 \pm 0.1$

Theoretical Considerations Viability

Sum Rule Estimate at *w*_{max}

Ansatz

- Model for lightest excitation for given set of quantum numbers
- 2S is first excitation with same quantum numbers as 1s
- QCD light-cone sum rules shown to work for 1s with non-perturbative input functions from *initial*-state

Sketch of Calculation

Modify existing calculation to project out ground-state

$$\frac{m_D^4 f_D^2}{m_c^2 (m_D^2 - q^2)} + \frac{m_{D'}^4 f_{D'}^2}{m_c^2 (m_{D'}^2 - q^2)} + \int_{s_0^{D'}}^{\infty} \mathrm{d}s \frac{\rho(s)}{s - q^2}$$

• Result sensitive to decay constant, Borel and duality parameters

• Check: Form factor vanishes for parameter set of ground-state

 $F(w_{\max}) = 0.25 \pm 0.15$ $G(w_{\max}) = 0.15 \pm 0.1$

Theoretical Considerations Viability

Combining Estimate of Form Factor

Linear and Quadratic Interpolation

$$F(w) = \beta_0^* + (w-1)\beta_1^* + (w-1)^2\beta_2^*$$

$$G(w) = \beta_0 + (w-1)\beta_1 + (w-1)^2\beta_2.$$

• Linear interpolation (quark model only)

$$egin{array}{lll} eta_0^* &= 0.10 \ , & eta_1^* &= 2.1 \ eta_0 &= 0.13 \ , & eta_1 &= 1.6 \end{array}$$

Quadratic interpolation

$$\begin{aligned} \beta_0^* &= 0.10 \,, \quad \beta_1^* &= 2.3 - 2.5 \,, \quad \beta_2^* &= -(4.2 - 9.8) \\ \beta_0 &= 0.13 \,, \quad \beta_1 &= 1.9 - 2.0 \,, \quad \beta_2 &= -(5.1 - 8.2) \end{aligned}$$

Sascha Turczyk

A proposal to solve some puzzles in semileptonic B decays

Theoretical Considerations Viability

Estimated Branching Fraction

Linear Interpolation

$$\mathcal{B}ig(B
ightarrow (D'+D'^*)\ell
u_\ellig) \sim 1.4\,\%$$

Quadratic Interpolation

$$\mathcal{B}(B
ightarrow (D' + D'^*)\ell
u_\ell) \sim (0.3 - 0.7) \%$$

Comment

- Indication that a large radial contribution is plausible
- Decays to radially excited $D'^{(*)}$ may account for a substantial part of the observed '*Gap*' between *inclusive* and *exclusive* decays
- Rough estimate, no precision prediction
- ⇒ Needs to be verified experimentally

Theoretical Considerations Viability

Estimated Branching Fraction

Linear Interpolation

$$\mathcal{B}ig(B
ightarrow (D'+D'^*)\ell
u_\ellig) \sim 1.4$$
 %

Quadratic Interpolation

$$\mathcal{B}ig(B
ightarrow (D'+D'^*)\ell
u_\ellig) \sim (0.3-0.7)\,\%$$

Comment

- Indication that a large radial contribution is plausible
- Decays to radially excited $D'^{(*)}$ may account for a substantial part of the observed '*Gap*' between *inclusive* and *exclusive* decays
- Rough estimate, no precision prediction
- ⇒ Needs to be verified experimentally

Theoretical Considerations Viability

Estimated Branching Fraction

Linear Interpolation

$$\mathcal{B}ig(B o (D' + D'^*) \ell
u_\ellig) \sim 1.4$$
 %

Quadratic Interpolation

$$\mathcal{B}ig(B
ightarrow (D'+D'^*)\ell
u_\ellig) \sim (0.3-0.7)\,\%$$

Comment

- Indication that a large radial contribution is plausible
- Decays to radially excited $D'^{(*)}$ may account for a substantial part of the observed '*Gap*' between *inclusive* and *exclusive* decays
- Rough estimate, no precision prediction
- \Rightarrow Needs to be verified experimentally

Possible Way to Constraint Form Factors

Factorization in Non-Leptonic Decays

$$\Gamma(B \to D'^{(*)}\pi) = \frac{3\pi^2 C^2 |V_{ud}|^2 f_{\pi}^2}{m_B m_{D'^{(*)}}} \frac{\mathrm{d}\Gamma(B \to D'^{(*)}\ell\bar{\nu})}{\mathrm{d}w} \bigg|_{w_{\max}}$$

Analysis

- Proven to leading order in heavy mass limit [Bauer et. al.,hep-ph/0107002]
- Constrain form factors F(w) and G(w) at LCSR kinematical point
- Involves Dalitz plot analysis of $\bar{B}
 ightarrow D'^{(*)} \pi
 ightarrow [D^{(*)} \pi^+ \pi^-] \pi^-$
- \Rightarrow Valuable in understanding decay rates of $D^{\prime(st)}$ states
- Interesting Measurement for LHCb as well as future B factories

Possible Way to Constraint Form Factors

Factorization in Non-Leptonic Decays

$$\Gamma(B \to D'^{(*)}\pi) = \frac{3\pi^2 C^2 |V_{ud}|^2 f_{\pi}^2}{m_B m_{D'^{(*)}}} \left. \frac{\mathrm{d}\Gamma(B \to D'^{(*)}\ell\bar{\nu})}{\mathrm{d}w} \right|_{w_{\mathrm{max}}}$$

Analysis

- Proven to leading order in heavy mass limit [Bauer et. al.,hep-ph/0107002]
- Constrain form factors F(w) and G(w) at LCSR kinematical point
- Involves Dalitz plot analysis of $\bar{B}
 ightarrow D'^{(*)} \pi
 ightarrow [D^{(*)} \pi^+ \pi^-] \pi^-$
- \Rightarrow Valuable in understanding decay rates of $D'^{(*)}$ states

• Interesting Measurement for LHCb as well as future B factories

Possible Way to Constraint Form Factors

Factorization in Non-Leptonic Decays

$$\Gamma(B \to D'^{(*)}\pi) = \frac{3\pi^2 C^2 |V_{ud}|^2 f_{\pi}^2}{m_B m_{D'^{(*)}}} \left. \frac{\mathrm{d}\Gamma(B \to D'^{(*)}\ell\bar{\nu})}{\mathrm{d}w} \right|_{w_{\mathrm{max}}}$$

Analysis

- Proven to leading order in heavy mass limit [Bauer et. al.,hep-ph/0107002]
- Constrain form factors F(w) and G(w) at LCSR kinematical point
- Involves Dalitz plot analysis of $\bar{B}
 ightarrow D'^{(*)} \pi
 ightarrow [D^{(*)} \pi^+ \pi^-] \pi^-$
- \Rightarrow Valuable in understanding decay rates of $D'^{(*)}$ states

• Interesting Measurement for LHCb as well as future B factories

Summary of Proposal

If $\mathcal{B}(B \to D'^{(*)}\ell\bar{\nu}) \sim \mathcal{O}(1\%)$ is experimentally verified, it can be tested:

- Precise prediction of branching fraction
- Shape of form factors
- Oata on non-leptonic two-body decays with a pion

May yield a better understanding of

- The $b \rightarrow c$ background in
 - Inclusive $b \rightarrow u \Rightarrow$ more precise determination of $|V_{ub}|$
 - Exclusive $B \to D^{(*)} \ell \bar{\nu} \Rightarrow$ improve $|V_{cb}|$ measurements
- ② Missing exclusive contributions to the inclusive rate
- ③ Better measurement of semileptonic BF to the $s_l^{\pi_l} = \frac{1}{2}^+$ and $\frac{3}{2}^+$ states

 \Rightarrow May help to resolve the "1/2 vs. 3/2 puzzle"

- ④ Measured $B
 ightarrow D^{(*)} au ar{
 u}$ and tension w.r.t. to the SM [BaBar,arXiv:1205.5442]
-) Stronger sum rule bound on the $B o D^* \ell ar
 u$ form factor ${\cal F}(1)$

Summary of Proposal

If $\mathcal{B}(B \to D'^{(*)}\ell\bar{\nu}) \sim \mathcal{O}(1\%)$ is experimentally verified, it can be tested:

- Precise prediction of branching fraction
- Shape of form factors
- Oata on non-leptonic two-body decays with a pion

May yield a better understanding of

- **1** The $b \rightarrow c$ background in
 - Inclusive $b \rightarrow u \Rightarrow$ more precise determination of $|V_{ub}|$
 - Exclusive $B \to D^{(*)} \ell \bar{\nu} \Rightarrow$ improve $|V_{cb}|$ measurements
- Ø Missing exclusive contributions to the inclusive rate
- 3 Better measurement of semileptonic BF to the $s_l^{\pi_l} = \frac{1}{2}^+$ and $\frac{3}{2}^+$ states

 \Rightarrow May help to resolve the "1/2 vs. 3/2 puzzle"

- Measured $B \rightarrow D^{(*)}\tau\bar{\nu}$ and tension w.r.t. to the SM [BaBar,arXiv:1205.5442]
- **5** Stronger sum rule bound on the $B \to D^* \ell \bar{\nu}$ form factor $\mathcal{F}(1)$

Backup Slides