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isospin symmetry

among the questions left open by the
standard model there is the origin of flavour

the two lightest quarks, the up and the down,
have different masses and different electric
charges

nevertheless

md −mu
ΛQCD

� 1

(eu − ed)αem � 1

for these reasons the group of rotations in
this flavour space is a good and very useful
approximate symmetry of the real world



why isospin breaking?

we do have a lot of precise experimental measurements in the quark flavour sector of the standard model that, combined with
CKM unitarity (first row), allow us to measure hadronic matrix elements

M.Antonelli et al. Eur.Phys.J.C69 (2010)
G.Colangelo talk at Lattice2012
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8>><>>:
|Vud|2 + |Vus|2 = 1

|Vud| = 0.97425(22)

where |Vud| comes by combining 20 super-allowed nuclear β-decays and |Vub| has been neglected because smaller than the
uncertainty on the other terms, combine to give

|Vus| = 0.22544(95)
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lattice QCD is still needed to postdict these quantities and, in case, to falsify the standard model



FK/Fπ & FKπ+ (0) summary from FLAG

concerning theoretical predictions, and lattice QCD in particular, these matrix elements are among the well known quantities
FALG Eur.Phys.J. C71 (2011)

G.Colangelo talk at Lattice2012
J.Laiho and A.Juttner talks

Intro FLAG-2 Current status of the review Conclusions

Analysis assuming CKM unitarity
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Assuming unitarity lattice predicts |Vud | with the same precision
as super-allowed Fermi β-decays

F
Kπ
+ (0) = 0.956(8) ∼ 0.8%

FK

Fπ
= 1.193(5) ∼ 0.5%

to do better we should include effects that we have been neglecting up to now. . .



FK/Fπ & FKπ+ (q2) beyond the isospin limit

it is useful to divide the isospin breaking effects into strong and electromagnetic ones,

mu 6= md| {z }
QCD

eu 6= ed| {z }
QED

in the particular and (lucky) case of these observables, the correction to the isospin symmetric limit due to the difference of
the up and down quark masses (QCD) can be estimated in chiral perturbation theory,

8>>>>>><>>>>>>:

FKπ+ (0) = 0.956(8) ∼ 0.8%

0@ FK
+π0

+ (q2)

FK
0π−

+ (q2)
− 1

1A
QCD

= 0.029(4)

A. Kastner, H. Neufeld Eur.Phys.J.C57 (2008)

8>>>>><>>>>>:

FK
Fπ

= 1.193(5) ∼ 0.5%

„
F
K+/Fπ+
FK/Fπ

− 1

«
QCD

= −0.0022(6)

V. Cirigliano, H. Neufeld Phys.Lett. B700 (2011)

we need first principle lattice QCD calculations to avoid uncertainties coming from the effective theory

but the home message is: reducing the error on these quantities without taking into account isospin breaking is useless. . .



the collaboration

RM123
JHEP 1204 (2012)

Giulia M. de Divitiis Rome University “Tor Vergata” & INFN

Petros Dimopoulos Rome University “Tor Vergata” & INFN

Roberto Frezzotti Rome University “Tor Vergata” & INFN

Vittorio Lubicz Rome University “Roma Tre” & INFN

Guido Martinelli SISSA & INFN

Roberto Petronzio Rome University “Tor Vergata” & INFN

Giancarlo Rossi Rome University “Tor Vergata” & INFN

Francesco Sanfilippo LPT & Université Paris Sud
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isospin breaking on the lattice

the calculation of QED isospin breaking effects on the lattice it has been done for the first time in
Duncan, Eichten, Thacker, Phys. Rev. Lett. 76 (1996)

the gauge potential is sampled directly, the QED links are obtained by exponentiation and the QCD links are replaced by

Uµ(x)→ eiAµ(x) Uµ(x)
. . .

MILC Collaboration, PoS LATTICE2008 (2008) 127
T.Blum et al. Phys. Rev. D82 (2010)

[BMW Collaboration] PoS LATTICE2010 (2010) 121
[T. Ishikawa et al.] Phys. Rev. Lett. 109 (2012)

because the photons are massless and unconfined this approach may introduce large finite volume effects. . . we shall come
back on QED effects later in this talk

the calculation of QCD isospin breaking effects on the lattice poses a problem

Z =

Z
DUDψ e

−Sg [U]+Sf [U;mu,md]

=

Z
DU e

−Sg [U]
det(D[U ] +mu) det(D[U ] +md)| {z }

must be real and >0

furthermore the effect is very small and it can be extremely difficult to see it with limited statistical accuracy



our QCD isospin breaking on the lattice

our idea is to calculate QCD isospin corrections at first order in ∆mud = (md −mu)/2:

S = ū (D[U ] +mu)u + d̄ (D[U ] +md) d

= ū (D[U ] +mud)u + d̄ (D[U ] +mud) d| {z }
S0

−

∆mudŜz }| {
md −mu

2
(ūu− d̄d)

the calculation of an observable proceeds as follows

〈O〉 −∆〈O〉 =

R
DU e−Sg [U]−S0[U]+∆mudŜ OR
DU e−Sg [U]−S0[U]+∆mudŜ

=

R
DU e

−Sg [U]−S0
f [U]

(1 + ∆mudŜ) OR
DU e

−Sg [U]−S0
f

[U]
(1 + ∆mudŜ)

= 〈O〉 + ∆mud〈Ŝ O〉 −∆mud〈Ŝ〉| {z }
=0



our QCD isospin breaking on the lattice

to insert ūu− d̄d within a correlation function amounts (after fermionic Wick contractions) to calculate the same
observables but with light propagators squared

Su = 1
D[U]+mud−∆mud

=
1

D[U ] +mud
+

∆mud

(D[U ] +mud)2

Sd = 1
D[U]+mud+∆mud

=
1

D[u] +mud
−

∆mud

(D[U ] +mud)2

relations that can be represented diagrammatically as

u
= + + · · ·

d
= − + · · ·



our QCD isospin breaking on the lattice: two point functions

at first order in ∆mud pion mass and decay constants don’t get a correction (here π± but it works also for π0 because

〈π‖Ŝ‖π〉 = 〈1, I3‖1, 0‖1, I3〉 = 0)

u

d

= + − + · · · = +O(∆m
2
ud)

the kaons do get a correction

C
K+K− (t) = −

s

u

= − − +O(∆m
2
ud)

C
K0K0 (t) = −

s

d

= − + +O(∆m
2
ud)

this means that at first order (δ. stays for relative variation while ∆. for absolute variation),

δu

„
FK

Fπ

«
=

∆uFK

FK
−

∆uFπ

Fπ
=
FK − FK+

FK



what do we expect from “corrected” correlation functions?
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our QCD isospin breaking on the lattice: kaons two point functions
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by considering pseudoscalar-pseudoscalar correlators and by taking into account the finite time extent of the lattice, we fit
correlations at different ~p according to,

δCKK(~p, t) = δ
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2EK

!
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and extract FK and δFK according to
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δFK =
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extracting [md −mu]QCD: QED corrections

in order to extract 2∆m
QCD
ud

= [md −mu]QCD we need experimental inputs and we cannot neglect QED corrections

If we work at first order in the QED coupling constant and ∆mud and neglect terms of O(αem∆mud), some of the
relevant Feynman diagrams entering kaons two point functions are

∆CKK(t) = −
e2d − e

2
u

2
− es

ed − eu
2

+ · · ·

the electromagnetic corrections to CKK(t) are logarithmically divergent, corresponding to the renormalization of the
quark masses, and the separation of QED and QCD effects is ambiguous (prescription dependent)

in the chiral limit QED corrections to M2
K0 −M

2
K+ and M2

π0 −M
2
π+ are the same (Dashen’s theorem)

beyond the chiral limit violations to Dashen’s theorem are parametrized in term of small parameters

εγ = 0.7(5) from FLAG: Eur.Phys.J. C71 (2011) our prescription, for the time being

h
M

2
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2
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iQCD
=
h
M

2
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2
K+

iexp
− (1 + εγ)

h
M

2
π0 −M

2
π+

iexp
= 6.05(63)× 10

3 MeV2

εγ = 0 → 5.16× 10
3 MeV2



extracting [md −mu]QCD: chiral-continuum extrapolations
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chiral perturbation theory formulae can be derived from known results
nf = 2 + 1: Gasser and Leutwyler Nucl. Phys. B250(1985)

non unitary nf = 2: S.Sharpe Phys. Rev. D56(1997)
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2
0 )



calculating δFQCDK : chiral-continuum extrapolations
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calculating δfKπ+ (q2)

form factors parametrizing semileptonic decays can be calculated with good precision by considering double ratios of three point
correlation functions

〈π|V µsu|K〉
2
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=
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calculating δfKπ+ (q2)

the diagrammatic expansion in the K0 → π−`ν is

−

s u

d

= − + − +O(∆m
2
ud)

and is different, because of the disconnected diagrams, from the K+ → π0`ν case

− + − = − + −

− − +

+ − +

= − − − + 2 +O(∆m
2
ud)



calculating δfKπ+ (q2)
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what do we expect from corrected three point correlation functions?
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calculating δfKπ+ (q2)
δ f 
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24 fK0π−
+ (0)− fKπ+ (0)

fKπ+ (0)

35QCD = 0.85(18)(1)× 10
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−

s u

d

= − + − +O(∆m
2
ud)

in this work we have not calculated disconnected diagrams

we can only show results for the K0 → π−`ν case (above)

this is a quantity that cannot be measured directly and the missing contribution, according to χpt, is expected to be much
bigger

the results given here make us confident on the possibility of completing the calculation by including disconnected diagrams



outlooks

first results obtained by applying our method look very promising

the method is general and can be applied to many observables, even at second order: we plan to apply it to M
π+ −Mπ0

we shall also refine our results in the case of nucleon masses and form factors

first small steps toward the calculation of other observables that are relevant for phenomenological applications (long
distance effects, etc.)

U -spin corrections?

〈surface of the unitarity triangle〉 ∝ (m
2
s −m

2
d) (m

2
b −m

2
d) (m

2
b −m

2
s)

we are computing QED effects by ourself . . .



non-compact QED on the lattice: our approach

we include QED interactions perturbatively and calculate the photon propagator stochastically
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well, from the numerical point of view it seems to work. the physics will come soon!!



QED corrections to hadronic matrix elements: non factorable contributions

weak charged currents are, by definition, not invariant under QED
gauge transformations

gauge invariant observables are the decay rates

electromagnetic interactions include long distance contributions that
cannot be easily separated from factorable contributions because of
QED gauge dependence and infrared divergences

in the case of K`2 decays, one cannot define a “decay constant” at
O(αem)


