$|V_{us}|$ from hadronic au decays

Elvira Gámiz

Universidad de Granada / CAFPE

7th International Workshop on the CKM Unitarity Triangle

· Cincinnati, Ohio (USA) September 28-October 2, 2012·

Contents

- 1. Introduction
- 2. $|V_{us}|$ from inclusive Cabibbo-supressed hadronic τ decays
- 3. $|V_{us}|$ from exclusive $B(\tau \to K\pi\nu)$
- 4. $|V_{us}|$ from exclusive $B(\tau \to K\nu)/B(\tau \to \pi\nu)$ and $B(\tau \to K\nu)$
- 5. Summary of results and conclusions

Cabibbo-Kobayashi-Maskawa matrix element $|V_{us}|$

Fundamental parameter of the Standard Model

* Check unitarity in the first row of CKM matrix.

 $\Delta_{CKM} = |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = 0.9999(6) \text{ pdg2012}$

fits to K_{l3}, K_{l2} exper. data and lattice results for $f_+(0)^{K \to \pi}$ and f_K/f_{π}

 $\rightarrow \mathcal{O}(10~{\rm TeV})$ bound on the scale of new physics M. Antonelli *et al*, 1005.2323.

* Input in UT analysis.

Look for new physics effects in the comparison of $|V_{us}|$ extracted from different processes: helicity suppressed $K_{\mu 2}$, helicity allowed K_{l3} , hadronic τ decays.

The τ is the only lepton massive enough to decay into hadrons

 \rightarrow ideal ground to investigate hadronic weak currents.

Using high precision experimental measurements of ALEPH, OPAL, Belle, BaBar (See I. Nugent's talk)

$$R_{\tau} \equiv \frac{\Gamma[\tau^- \to \text{hadrons}(\gamma)]}{\Gamma[\tau^- \to e^- \overline{\nu_e} \nu_{\tau}(\gamma)]}$$

(and related observables $dR_{ au}/ds$)

The τ is the only lepton massive enough to decay into hadrons

 \rightarrow ideal ground to investigate hadronic weak currents.

Using high precision experimental measurements of ALEPH, OPAL, Belle, BaBar (See I. Nugent's talk)

$$R_{\tau} \equiv \frac{\Gamma[\tau^- \to \text{hadrons}(\gamma)]}{\Gamma[\tau^- \to e^- \overline{\nu_e} \nu_{\tau}(\gamma)]}$$

(and related observables $dR_{ au}/ds$)

* Determination of the strong coupling α_s : A. Pich, summary talk TAU12:

 $\alpha_s(m_{\tau}^2)_{\tau,av} = 0.334 \pm 0.014 \qquad \rightarrow \qquad \alpha_s(m_Z^2)_{\tau,av} = 0.1204 \pm 0.0016$

in perfect agreement with the value obtained from hadronic decays at the Z: $\alpha_s(m_Z^2)_{\rm Z\,width} = 0.1190 \pm 0.0027$

 \rightarrow the most precise test of Asymptotic Freedom

 $\alpha_s^{\tau}(M_Z^2) - \alpha_s^Z(M_Z^2) = 0.0014 \pm 0.0016_{\tau} \pm 0.0027_Z$

Sizeable corrections in the semi-inclusive τ -decay width into Cabbibo-suppressed modes due to SU(3) breaking.

$$\delta R_{\tau} \equiv \frac{R_{\tau,V+A}}{|V_{ud}|^2} - \frac{R_{\tau,s}}{|V_{us}|^2}$$

Dominated by m_s (flavour indep. uncertainties drop out in the difference) \rightarrow extraction of the strange quark mass Pich and Prades, hep-ph/9909244

Sizeable corrections in the semi-inclusive τ -decay width into Cabbibo-suppressed modes due to SU(3) breaking.

$$\delta R_{\tau} \equiv \frac{R_{\tau,V+A}}{|V_{ud}|^2} - \frac{R_{\tau,s}}{|V_{us}|^2}$$

Dominated by m_s (flavour indep. uncertainties drop out in the difference) \rightarrow extraction of the strange quark mass Pich and Prades, hep-ph/9909244

* Strong dependence of m_s on $|V_{us}|$

Determination of $|V_{us}|$ from a fixed m_s

E.G., Jamin, Pich, Prades,

Schwab, hep-ph/0212230,0408044

$$|V_{us}|^2 = \frac{R_{\tau,S}^{exp}}{\frac{R_{\tau,V+A}^{exp}}{|V_{ud}|^2} - \delta R_{\tau}^{theor}}$$

Sizeable corrections in the semi-inclusive τ -decay width into Cabbibo-suppressed modes due to SU(3) breaking.

$$\delta R_{\tau} \equiv \frac{R_{\tau,V+A}}{|V_{ud}|^2} - \frac{R_{\tau,s}}{|V_{us}|^2}$$

Dominated by m_s (flavour indep. uncertainties drop out in the difference) \rightarrow extraction of the strange quark mass Pich and Prades, hep-ph/9909244

* Strong dependence of m_s on $|V_{us}|$

Determination of $|V_{us}|$ from a fixed m_s

E.G., Jamin, Pich, Prades,

Schwab, hep-ph/0212230,0408044

$$|V_{us}|^2 = \frac{R_{\tau,S}^{exp}}{\frac{R_{\tau,V+A}^{exp}}{|V_{ud}|^2} - \delta R_{\tau}^{theor}}$$

Advantage: Final error dominated by experimental uncertainty

 \rightarrow potential to be competitive with best determinations

2. $|V_{us}|$ from inclusive Cabibbo-supressed hadronic τ decays

E.G., Jamin, Pich, Prades, Schwab

The hadronic decay rate of the τ is related to QCD correlators

$$R_{\tau} \equiv \frac{\Gamma[\tau^- \to hadrons(\gamma)]}{\Gamma[\tau^- \to e^- \overline{\nu_e} \nu_{\tau}(\gamma)]}$$

The hadronic decay rate of the τ is related to QCD correlators

$$R_{\tau} = 12\pi \int_{0}^{M_{\tau}^{2}} \frac{ds}{M_{\tau}^{2}} \left(1 - \frac{s}{M_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{M_{\tau}^{2}}\right) \operatorname{Im} \Pi^{T}(s) + \operatorname{Im} \Pi^{L}(s)\right]$$

The hadronic decay rate of the τ is related to QCD correlators

$$R_{\tau} = 12\pi \int_{0}^{M_{\tau}^{2}} \frac{ds}{M_{\tau}^{2}} \left(1 - \frac{s}{M_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{M_{\tau}^{2}}\right) \operatorname{Im} \Pi^{T}(s) + \operatorname{Im} \Pi^{L}(s)\right]$$

basic objects : Two-point correlation functions for vector and axial-vector two-quark currents (i, j = u, d, s).

$$\Pi_{V,ij}^{\mu\nu}(q) \equiv i \int \mathrm{d}^4 x \, e^{iq \cdot x} \langle 0 | T \left([V_{ij}^{\mu}]^{\dagger}(x) V_{ij}^{\nu}(0) \right) | 0 \rangle; \qquad V_{ij}^{\mu} \equiv \overline{q}_i \gamma^{\mu} q_j$$
$$\Pi_{A,ij}^{\mu\nu}(q) \equiv i \int \mathrm{d}^4 x \, e^{iq \cdot x} \langle 0 | T \left([A_{ij}^{\mu}]^{\dagger}(x) A_{ij}^{\nu}(0) \right) | 0 \rangle; \qquad A_{ij}^{\mu} \equiv \overline{q}_i \gamma^{\mu} \gamma_5 q_j$$

Lorentz decomposition

$$\Pi^{\mu\nu}_{ij,V/A}(q) = \left(-g_{\mu\nu}q^2 + q^{\mu}q^{\nu})\right) \Pi^T_{ij,V/A}(q^2) + q^{\mu}q^{\nu}\Pi^L_{ij,V/A}(q^2)$$

The hadronic decay rate of the τ is related to QCD correlators

$$R_{\tau} = 12\pi \int_{0}^{M_{\tau}^{2}} \frac{ds}{M_{\tau}^{2}} \left(1 - \frac{s}{M_{\tau}^{2}}\right)^{2} \left[\left(1 + 2\frac{s}{M_{\tau}^{2}}\right) \underbrace{\operatorname{Im} \Pi^{T}(s)}_{\text{proportional to}} + \underbrace{\operatorname{Im} \Pi^{L}(s)}_{\text{proportional to}} \right]$$

$$\frac{\mathsf{ALEPH,OPAL}}{\mathsf{BaBar,Belle}} \Longrightarrow \underbrace{\operatorname{spectral functions}}_{\tau \text{ decay data}}$$

We can decompose $R_{ au}$ (experimentally and theoretically) into

$$R_{\tau} = R_{\tau,V} + R_{\tau,A} + \frac{R_{\tau,S}}{R_{\tau,S}}$$

according to the quark content

$$\Pi^{J}(s) \equiv |V_{ud}|^{2} \left\{ \Pi^{J}_{V,ud}(s) + \Pi^{J}_{A,ud}(s) \right\} + |V_{us}|^{2} \left\{ \Pi^{J}_{V,us}(s) + \Pi^{J}_{A,us}(s) \right\}$$

We can decompose R_{τ} (experimentally and theoretically) into

$$R_{\tau} = R_{\tau,V} + R_{\tau,A} + \frac{R_{\tau,S}}{R_{\tau,S}}$$

according to the quark content

$$\Pi^{J}(s) \equiv |V_{ud}|^{2} \left\{ \Pi^{J}_{V,ud}(s) + \Pi^{J}_{A,ud}(s) \right\} + |V_{us}|^{2} \left\{ \Pi^{J}_{V,us}(s) + \Pi^{J}_{A,us}(s) \right\}$$

Sensitivity to the strange quark mass enhanced by considering the SU(3)-breaking quantity

$$\delta R_{\tau} = \frac{R_{\tau, V+A}}{|V_{ud}|^2} - \frac{R_{\tau, S}}{|V_{us}|^2}$$

* Dominated by the **strange quark mass**

* Flavour independent uncertainties drop out in the difference

Using the analytic properties of $\Pi^J(s)$

$$R_{\tau} = -i\pi \oint_{|s|=M_{\tau}^2} \frac{\mathrm{d}s}{s} \left[1 - \frac{s}{M_{\tau}^2} \right]^3 \left\{ 3 \left[1 + \frac{s}{M_{\tau}^2} \right] D^{L+T}(s) + 4 D^L(s) \right\}$$

$$\frac{D^{L+T}(s)}{ds} \equiv -s \frac{\mathrm{d}}{\mathrm{d}s} [\Pi^{L+T}(s)];$$

$$\frac{D^{L}(s)}{M_{\tau}^{2}} \equiv \frac{s}{M_{\tau}^{2}} \frac{\mathrm{d}}{\mathrm{d}s} [s \Pi^{L}(s)]$$

Using the analytic properties of $\Pi^{J}(s)$

$$R_{\tau} = -i\pi \oint_{|s|=M_{\tau}^2} \frac{\mathrm{d}s}{s} \left[1 - \frac{s}{M_{\tau}^2} \right]^3 \left\{ 3 \left[1 + \frac{s}{M_{\tau}^2} \right] D^{L+T}(s) + 4 D^L(s) \right\}$$

;

$$\frac{D^{L+T}(s)}{ds} \equiv -s\frac{d}{ds}[\Pi^{L+T}(s)]$$

- * Eliminate renormalization scheme dependent subtraction constants
- * phase space factor: order three zero in real axis

Using the analytic properties of $\Pi^{J}(s)$

$$R_{\tau} = -i\pi \oint_{|s|=M_{\tau}^2} \frac{\mathrm{d}s}{s} \left[1 - \frac{s}{M_{\tau}^2} \right]^3 \left\{ 3 \left[1 + \frac{s}{M_{\tau}^2} \right] D^{L+T}(s) + 4 D^L(s) \right\}$$

$$\frac{D^{L+T}(s)}{ds} \equiv -s \frac{d}{ds} [\Pi^{L+T}(s)]$$

$$\frac{D^{L}(s)}{M_{\tau}^{2}} \equiv \frac{s}{M_{\tau}^{2}} \frac{\mathrm{d}}{\mathrm{d}s} [s \Pi^{L}(s)]$$

- * Eliminate renormalization scheme dependent subtraction constants
- * phase space factor: order three zero in real axis

* large enough Euclidean $Q^2 = -s \implies D^{L+T}(Q^2)$ and $D^L(Q^2)$ organized in series of operators of increasing dimension using OPE

Theoretically, performing an OPE of the correlators, R_{τ} can be expressed

$$R_{\tau} = N_c S_{\rm EW} \left\{ (|V_{ud}|^2 + |V_{us}|^2) \left[1 + \delta^{(0)} \right] + \sum_{D \ge 2} \left[|V_{ud}|^2 \delta^{(D)}_{ud} + |V_{us}|^2 \delta^{(D)}_{us} \right] \right\}$$

*
$$\delta_{ud}^{(D)}$$
 and $\delta_{us}^{(D)}$ are corrections in the OPE

2.2. Theoretical Framework: OPE

$$\delta R_{\tau} = \frac{R_{\tau, V+A}}{|V_{ud}|^2} - \frac{R_{\tau, S}}{|V_{us}|^2} = N_c \, S_{EW} \sum_{D \ge 2} \left[\delta_{ud}^{(D)} - \delta_{us}^{(D)} \right]$$

* $\delta_{ij}^{(2)}$ are known to $\mathcal{O}(\alpha_s^3)$ for both J = L and J = L + T

Chetyrkin; Gorishny, Kataev, Larin, Sugurladze; Baikov, Chetyrkin, Kühn; Becchi, Narison, de Rafael; Bernreuther, Wetzel.

- * $\delta^{(4)}_{ij}$ fully included $(m_q^4/M_\tau^4, m_q\langle \bar{q}q\rangle/M_\tau^4)$
- * $\delta_{ij}^{(6)}$ estimated (VSA) to be of order or smaller than error of D = 4
- * we disregard **OPE** corrections of $D \ge 8$

2.2. Theoretical Framework: OPE

$$\delta R_{\tau} = \frac{R_{\tau, V+A}}{|V_{ud}|^2} - \frac{R_{\tau, S}}{|V_{us}|^2} = N_c \, S_{EW} \sum_{D>2} \left[\delta_{ud}^{(D)} - \delta_{us}^{(D)} \right]$$

* $\delta_{ij}^{(2)}$ are known to $\mathcal{O}(\alpha_s^3)$ for both J = L and J = L + T

Chetyrkin; Gorishny, Kataev, Larin, Sugurladze; Baikov, Chetyrkin, Kühn; Becchi, Narison, de Rafael; Bernreuther, Wetzel.

- * $\delta^{(4)}_{ij}$ fully included $(m_q^4/M_\tau^4, m_q\langle \bar{q}q\rangle/M_\tau^4)$
- * $\delta_{ij}^{(6)}$ estimated (VSA) to be of order or smaller than error of D = 4
- * we disregard **OPE** corrections of $D \ge 8$
- # Perturbative L series behave very badly ! \rightarrow

replace scalar/pseudoscalar QCD correlators with phenomenology

2.3. Theoretical Framework: Longitudinal contribution

* Scalar spectral functions from s-wave $K\pi$ scatt. data Jamin,Oller,Pich, 0605095

2.3. Theoretical Framework: Longitudinal contribution

* Scalar spectral functions from s-wave $K\pi$ scatt. data Jamin,Oller,Pich, 0605095

 \star Dominant contribution: pseudoscalar us spectral function

$$s^{2} \frac{1}{\pi} \operatorname{Im}\Pi_{us,A}^{L} = 2f_{K}^{2} m_{K}^{4} \delta(s - m_{K}^{2}) + 2f_{K(1460)} M_{K(1460)}^{4} BW(s)$$

BW(s): Normalized Breit-Wigner Kambor, Maltman

2.3. Theoretical Framework: Longitudinal contribution

* Scalar spectral functions from s-wave $K\pi$ scatt. data Jamin,Oller,Pich, 0605095

 \star Dominant contribution: pseudoscalar us spectral function

$$s^{2} \frac{1}{\pi} \operatorname{Im}\Pi_{us,A}^{L} = 2f_{K}^{2} m_{K}^{4} \delta(s - m_{K}^{2}) + 2f_{K(1460)} M_{K(1460)}^{4} BW(s)$$

BW(s): Normalized Breit-Wigner Kambor, Maltman

Comparison of these spectral functions with QCD

	$R^{00,L}_{us,A}$	$R^{00,L}_{us,V}$	$R_{ud,A}^{00,L}$
Theory:	-0.144 ± 0.024	-0.028 ± 0.021	$-(7.79\pm0.14)\cdot10^{-3}$
Phenom:	-0.135 ± 0.003	-0.028 ± 0.004	$-(7.77\pm0.08)\cdot10^{-3}$

→ Theory uncertainty much reduced using phenomenology for the J = L component in δR_{τ}

$$|V_{us}|^2 = \frac{R_{\tau,S}}{\frac{R_{\tau,V+A}}{|V_{ud}|^2} - \delta R_{\tau,th}}$$

Theoretically determined: **OPE** (L+T)+ **phenomenology** (L)

E.G., Jamin, Pich, Prades, Schwab (between two more recent estimates, E.G., Jamin, Pich, Prades, Schwab, 0709.0282, Maltman, 1011.6391)

$$\delta R_{\tau,th} = (\underbrace{0.1544 \pm 0.0037}_{\text{L}}) + \underbrace{(9.3 \pm 3.4)m_s^2(\overline{MS}, 2 \text{ GeV})}_{\text{L+T, D=2}} + (0.0034 \pm 0.0028)$$

$$|V_{us}|^2 = \frac{R_{\tau,S}}{\frac{R_{\tau,V+A}}{|V_{ud}|^2} - \delta R_{\tau,th}}$$

Theoretically determined: **OPE** (L+T)+ **phenomenology** (L)

E.G., Jamin, Pich, Prades, Schwab (between two more recent estimates, E.G., Jamin, Pich, Prades, Schwab, 0709.0282, Maltman, 1011.6391)

$$\delta R_{\tau,th} = (\underbrace{0.1544 \pm 0.0037}_{\text{L}}) + \underbrace{(9.3 \pm 3.4) m_s^2(\overline{MS}, 2 \text{ GeV})}_{\text{L+T, D=2}} + (0.0034 \pm 0.0028)$$

Experimental data HFAG 2012:

 $R_{\tau,V+A} = 3.4671 \pm 0.0084$ $R_{\tau,S} = 0.1612 \pm 0.0028$

$$|V_{us}|^2 = \frac{R_{\tau,S}}{\frac{R_{\tau,V+A}}{|V_{ud}|^2} - \delta R_{\tau,th}}$$

Theoretically determined: **OPE** (L+T)+ **phenomenology** (L)

E.G., Jamin, Pich, Prades, Schwab (between two more recent estimates, E.G., Jamin, Pich, Prades, Schwab, 0709.0282, Maltman, 1011.6391)

$$\delta R_{\tau,th} = (\underbrace{0.1544 \pm 0.0037}_{\text{L}}) + \underbrace{(9.3 \pm 3.4) m_s^2(\overline{MS}, 2 \text{ GeV})}_{\text{L+T, D=2}} + (0.0034 \pm 0.0028)$$

Experimental data HFAG 2012:

 $R_{\tau,V+A} = 3.4671 \pm 0.0084$ $R_{\tau,S} = 0.1612 \pm 0.0028$

Other inputs:

* $|V_{ud}| = 0.97425 \pm 0.0022$ Hardy and Towner 2008

* $m_s(2 \text{ GeV}) = 93.4 \pm 1.1$ (lattice average from Laiho, Lunghi, Van de Water)

$$|V_{us}|^{2} = \frac{R_{\tau,S}}{\frac{R_{\tau,V+A}}{|V_{ud}|^{2}} - \delta R_{\tau,th}}$$

$$\frac{\delta R_{\tau,th}}{L} = (\underbrace{0.1544 \pm 0.0037}_{L}) + \underbrace{(9.3 \pm 3.4) m_s^{\overline{MS}^2}(2 \text{ GeV})}_{L+T, D=2} + (0.0034 \pm 0.0028)$$
$$= 0.239 \pm 0.030$$

$$|V_{us}| = 0.2173 \pm 0.0020_{\text{exp}} \pm 0.0010_{\text{th}}$$

3. $|V_{us}|$ from $\tau \to K \pi \nu$

Alternative way of extracting $|V_{us}|$ using $\Gamma(\tau \rightarrow K\pi\nu)$ E. Passemar, talk at TAU12, work in progress, Antonelli, Banerjee, Cirigliano, Lusiani, Passemar

$$\Gamma(\tau \to K\pi\nu) = N |f_+(0)V_{us}|^2 I_K^{\tau}$$
 with $I_K^{\tau} = \int ds F(s, \bar{f}_+(s), \bar{f}_0(s))$

where the form factors $f_+(s)$ and $f_0(s)$ are the same as in $K \to \pi l \nu$.

* Parametrize $f_{+,0}$ using dispersion relations Bernard, Boito, Passemar (in progress) and fit to K_{l3} and $\tau \to K \pi \nu$ data \to constraints from different energy regions

- **3.** $|V_{us}|$ from $\tau \to K \pi \nu$
- # Alternative way of extracting $|V_{us}|$ using $\Gamma(\tau \rightarrow K\pi\nu)$ E. Passemar, talk at TAU12, work in progress, Antonelli, Banerjee, Cirigliano, Lusiani, Passemar

$$\Gamma(\tau \to K \pi \nu) = N |f_+(0)V_{us}|^2 I_K^{\tau}$$
 with $I_K^{\tau} = \int ds F(s, \bar{f}_+(s), \bar{f}_0(s))$

where the form factors $f_+(s)$ and $f_0(s)$ are the same as in $K \to \pi l \nu$.

- * Parametrize $f_{+,0}$ using dispersion relations Bernard, Boito, Passemar (in progress) and fit to K_{l3} and $\tau \to K \pi \nu$ data \to constraints from different energy regions
- * Using new Belle data for $B(\tau \to K \pi \nu)$ (S. Ryu's, talk at TAU12)

 $|f_{+}(0)V_{us}| = 0.2140 \pm 0.0041_{I_{k}^{\tau}} \pm 0.0031_{exp}$

and the lattice average $f_+(0)^{lattice} = 0.9584 \pm 0.0044$, Laiho, Lunghi, Van de Water, see A. Juettner's talk

 $|V_{us}| = 0.2233 \pm 0.0055$

Not competitive with other methods yet but it can be an interesting check to the extraction from Kl_3 and inclusive τ decays

3. $|V_{us}|$ from $\tau \to K\pi\nu$

A sizeable fraction of the strange branching ratio is due to the decay $\tau \to K \nu_{\tau}$, which can be predicted theoretically with smaller errors than the direct experimental measurements

* From $B(K \to \mu \nu_{\mu}(\gamma))$ Decker and Finkemeier, NPB438, PLB334 $\to B(\tau \to K \nu_{\tau}) = (0.715 \pm 0.004) \cdot 10^{-2}$ Davier, Höcker, Zhang, 0507078

3. $|V_{us}|$ from $\tau \to K\pi\nu$

A sizeable fraction of the strange branching ratio is due to the decay $\tau \to K \nu_{\tau}$, which can be predicted theoretically with smaller errors than the direct experimental measurements

- * From $B(K \to \mu \nu_{\mu}(\gamma))$ Decker and Finkemeier, NPB438, PLB334 $\to B(\tau \to K \nu_{\tau}) = (0.715 \pm 0.004) \cdot 10^{-2}$ Davier, Höcker, Zhang, 0507078
- # Several branching fractions can be predicted using form factors obtained by fitting to K_{l3} and $\tau \to K \pi \nu$ data and Kaon BR's very precisely measured E. Passemar TAU12

Branching fraction	HEAG Winter 2012 fit	Theory prediction
Dranching fraction	THAO WIITER 2012 III	Preliminary
$\Gamma_{10} = K^- \nu_{\tau}$	$(0.6955 \pm 0.0096) \cdot 10^{-2}$	$(0.713 \pm 0.003) \cdot 10^{-2}$
$\Gamma_{16} = K^- \pi^0 \nu_\tau$	$(0.4322 \pm 0.0149) \cdot 10^{-2}$	$(0.4473 \pm 0.0244) \cdot 10^{-2}$
$\Gamma_{35} = \pi^- \bar{K}^0 \nu_\tau$	$(0.8206 \pm 0.0182) \cdot 10^{-2}$	$(0.8627 \pm 0.0353) \cdot 10^{-2}$
$\Gamma_{110} = X_s^- \nu_\tau$	$(2.8746 \pm 0.0498) \cdot 10^{-2}$	$(2.9496 \pm 0.0571) \cdot 10^{-2}$

Preliminary, using only Belle $\tau \to K \pi \nu$ data in the form factors fits.

3. $|V_{us}|$ from $\tau \to K \pi \nu$

Shift in $R_{\tau,S}$, and then in $|V_{us}|$ from inclusive τ decays.

 $|V_{us}| = 0.2173 \pm 0.0022 \quad \rightarrow \quad |V_{us}| = 0.2203 \pm 0.0025$

3. $|V_{us}|$ from $\tau \to K \pi \nu$

Shift in $R_{\tau,S}$, and then in $|V_{us}|$ from inclusive τ decays.

 $|V_{us}| = 0.2173 \pm 0.0022 \rightarrow |V_{us}| = 0.2203 \pm 0.0025$

PDG2012: "Eighteen of the 20 B-factory branching fraction measurements are smaller than the non-B-factory values. The average normalized difference between the two sets of measurements is -1.30(-1.41 for the 11 Belle measurements and -1.24 for the 9 BaBar measurements)"

Missing modes?

$|V_{us}|$ can be extracted from the ratio:

$$\frac{B(\tau \to K\nu)}{B(\tau \to \pi\nu)} = \frac{f_K^2 |V_{us}|^2 (1 - m_K^2 / m_\tau^2)^2}{f_\pi^2 |V_{ud}|^2 (1 - m_\pi^2 / m_\tau^2)^2} \frac{r_{LD}(\tau^- \to K^- \nu_\tau)}{r_{LD}(\tau^- \to \pi^- \nu_\tau)}$$

where r_{LD} corresponds to the long-distance EW radiative correction, see HFAG2012, 1207.1158.

$|V_{us}|$ can be extracted from the ratio:

$$\frac{B(\tau \to K\nu)}{B(\tau \to \pi\nu)} = \frac{f_K^2 |V_{us}|^2 (1 - m_K^2 / m_\tau^2)^2}{f_\pi^2 |V_{ud}|^2 (1 - m_\pi^2 / m_\tau^2)^2} \frac{r_{LD}(\tau^- \to K^- \nu_\tau)}{r_{LD}(\tau^- \to \pi^- \nu_\tau)}$$

where r_{LD} corresponds to the long-distance EW radiative correction, see HFAG2012, 1207.1158.

* Using HFAG2012: $r_{LD}(\tau^- \to K^- \nu_{\tau})/r_{LD}(\tau^- \to \pi^- \nu_{\tau}) = 1.0003 \pm 0.0044$, $B(\tau \to K\nu)/B(\tau \to \pi\nu) = 0.0643 \pm 0.0009$

* $|V_{ud}| = 0.97425 \pm 0.0022$ from Hardy and Towner 2008

* and the lattice average $f_K/f_\pi = 1.1936 \pm 0.0053$, see J. Laiho's talk

 $|V_{us}|_{\tau K\pi} = 0.2229 \pm 0.0021$

$|V_{us}|$ can also be extracted from:

$$B(\tau \to K\nu) = \frac{G_F^2 f_K^2 |V_{us}|^2 m_\tau^3 \tau_\tau}{16\pi\hbar} \left(1 - \frac{m_K^2}{m_\tau^2}\right) S_{EW}$$

* Using again HFAG2012 averages for exp. quantities

* and the lattice average $f_K = (156.1 \pm 1.1) {
m MeV}$, see Laiho, Lunghi, Van de Water

$$|V_{us}|_{\tau K} = 0.2214 \pm 0.0022$$

$|V_{us}|$ can also be extracted from:

$$B(\tau \to K\nu) = \frac{G_F^2 f_K^2 |V_{us}|^2 m_\tau^3 \tau_\tau}{16\pi\hbar} \left(1 - \frac{m_K^2}{m_\tau^2}\right) S_{EW}$$

* Using again HFAG2012 averages for exp. quantities

* and the lattice average $f_K = (156.1 \pm 1.1)$ MeV, See Laiho, Lunghi, Van de Water

$$|V_{us}|_{\tau K} = 0.2214 \pm 0.0022$$

(Using instead the theory prediction from Antonelli, Banerjee, Cirigliano, Luisiani, Passemar for $B(\tau \to K \nu_{\tau})$)

 $(|V_{us}|_{\tau K} = 0.2242 \pm 0.0016$ **Preliminary**)

5. Summary of results and conclusions

From inclusive Cabibbo-suppressed hadronic τ decays: $|V_{us}| = 0.2173 \pm 0.0020_{exp} \pm 0.0010_{th}$

Error is dominated by experiment \rightarrow potential to be the most precise determination of $|V_{us}|$

5. Summary of results and conclusions

- # Need experimental improvement: BaBar, Belle, Belle II, SuperB, see I. Nugent's talk
 - Systematic uncertainties now greatly exceed the statistical uncertainties.
- # Some questions that remain to be studied.
 - * Branching fractions from B-factories systematically smaller than previous measurements.