

PHYSICS WITH EW PENGUINS AT LHCb 7th International Workshop on the CKM Unitarity Triangle, Cincinnati, Ohio, USA 28. September - 2. October 2012

MICHEL DE CIAN ON BEHALF OF THE LHCb COLLABORATION

The LHCB detector

- LHCb covers a pseudorapidity $\eta=2-5$.
- Excellent momentum resolution: $\Delta p/p = 0.4\% 0.6\%$ in $5-140\,{\rm GeV}/c.$

- $K \pi$ separation up to 100 GeV/c.
- All presented analyses with \approx 1 fb⁻¹ collected in 2011.

 $B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Rare decay with \mathcal{B} = $(1.05^{+0.16}_{-0.13}) imes10^{-6}_{ ext{[PDG]}}$
- Decay only possible via penguin- or box diagrams, "new physics" can enter at the same level as SM physics.
- Four-particle final state: Plenty of observables in angular distributions.

[LHCb-CONF-2012-008]

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: Angular distribution (I)

• Decay can be fully described by three angles ($\cos \theta_\ell, \cos \theta_K, \phi$) and the dimuon invariant mass (square) q^2 .

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: Angular distribution (II)

- Apply "folding": $\phi \to \phi + \pi$ for $\phi < 0$: Cancels four terms.
- And leaves...

$$\frac{\mathrm{d}^4(\Gamma+\bar{\Gamma})}{\mathrm{d}\cos\theta_\ell\,\mathrm{d}\cos\theta_K\,\mathrm{d}\phi\,\mathrm{d}q^2} \propto F_L\cos^2\theta_K + \frac{3}{4}(1-F_L)(1-\cos^2\theta_K) + F_L\cos^2\theta_K(2\cos^2\theta_\ell) + \frac{1}{4}(1-F_L)(1-\cos^2\theta_K)(2\cos^2\theta_\ell-1) + \frac{3}{4}(1-F_L)(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\cos 2\phi + \frac{4}{3}A_{FB}(1-\cos^2\theta_K)\cos\theta_\ell + \frac{5}{3}(1-\cos^2\theta_K)(1-\cos^2\theta_\ell)\sin 2\phi$$

- This expression was simultaneously fitted to the angles and the invariant mass in 2011 dataset.
- The S_i expressions are the \mathcal{CP} averaged I_i expressions.
- Neglect lepton masses and S-wave contribution (\rightarrow systematics).

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: Experimental aspects

- Some experimental details:
 - Cut out $B^0 \rightarrow J/\psi K^{*0}$ and $B^0 \rightarrow \psi(2S)K^{*0}$, veto peaking background, e.g. $B^0_s \rightarrow \phi \mu^+ \mu^-$.
 - Select signal events with a BDT.
 - Correct for acceptance effects with event-by-event correction using simulation.
 - Correct for simulation \leftrightarrow data differences with control channels (e.g. $J/\psi \to \mu^+\mu^-$ for particle identification)

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: Angular observables

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: Differential branching fraction

- Differential branching fraction determined with normalisation to $B^0 \to J/\psi \, K^{*0}.$

Theory prediction from [C. Bobeth et al., JHEP 07 (2011) 067] and references therein

Measuring the zero-crossing point in A_{FB} of $B^0 \rightarrow K^{*0}\mu^+\mu^-$ (I)

- Zero-crossing point of A_{FB} has a very clean prediction, as the form factors cancel (to first order).
- Zero-crossing point was extracted using "unbinned counting" technique:
 - Split dataset in "forward" and "backward" events (with respect to $\cos \theta_\ell$).
 - Perform a 2D unbinned extended maximum likelihood fit to $(q^2, \text{ mass})$ for forward and backward.

• Extract
$$A_{FB} = \frac{N_F \cdot PDF_F(q^2) - N_B \cdot PDF_B(q^2)}{N_F \cdot PDF_F(q^2) + N_B \cdot PDF_B(q^2)}$$

Measuring the zero-crossing point in A_{FB} of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (II)

• Standard Model theory predicts zero-crossing in 4.0 - 4.3 $\,{\rm GeV}^2/c^4$ (central values)

e.g. [C. Bobeth et al., JHEP 1201 (2012) 107][M. Beneke et al., Eur. Phys. J. C41 (2005), 173][A. Ali et al., Eur. Phys. J. C47 (2006) 625]

• LHCb preliminary result: 4.9^{+1.1} ${
m GeV}^2/c^4$

\mathcal{CP} -Asymmetry in $B^0 \to K^{*0} \mu^+ \mu^-$ (I)

- Predicted to be $\mathcal{O}(10^{-3})$ in SM, very clean prediction due to form factor suppression.
- Asymmetry up to 15% in certain models.
- Use the same corrections / selection / binning-scheme as for the $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ angular analysis.
- Additional difficulty: Measured is

$$\begin{split} \mathcal{A}_{raw} &= \mathcal{A}_{\mathcal{CP}} + \mathcal{A}_{\text{Detector}} + \kappa \mathcal{A}_{\text{Production}} \\ \bullet & \kappa = \frac{\int_0^\infty \epsilon(t) e^{-\Gamma t} \cos \Delta m t \, \mathrm{d} t}{\int_0^\infty \epsilon(t) e^{-\Gamma t} \cosh \frac{\Delta m t}{2} \, \mathrm{d} t} \end{split}$$

\mathcal{CP} -Asymmetry in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ (II)

- $\mathcal{A}_{\text{Detector}}$: Detector asymmetries cancel when taking the average between the two magnet polarities.
- $\mathcal{A}_{\mathrm{Detector}}/\mathcal{A}_{\mathrm{Production}}$: Use $B^0 \to J/\psi \, K^{*0}$ as a control channel.
- $\mathcal{A}_{\mathcal{CP}} \approx \mathcal{A}_{\mathrm{raw}}(B^0 \to K^{*0} \mu^+ \mu^-) \mathcal{A}_{\mathrm{raw}}(B^0 \to J/\psi K^{*0})$
- Residual differences due to kinematical differences are accounted for in the systematic uncertainty.

•
$${\cal A_{CP}}=-0.072\pm 0.040$$
 (stat) ± 0.005 (sys)

Measurement of $B^+ \rightarrow K^+ \mu^+ \mu^-$

- Rare decay, $\mathcal{B}\text{=}(4.36\pm0.15\pm0.18)\times10^{-7}\text{}_{\text{[arXiv:1209.4284]}}$
- Use a loose preselection and a BDT for the final selection. Training on $B^+ \to J/\psi K^+$ (signal) and $B^+ \to K^+ \mu^+ \mu^-$ sidebands (background).
- Cut out resonant regions of $B^+ \to J/\psi \, K^+$ and $B^+ \to \psi(2S) K^+$.
- Remaining peaking background accounted for in the fit.

14

Measurement of $B^+ \rightarrow K^+ \mu^+ \mu^-$: Branching fraction

Theory predictions from [C. Bobeth et al., JHEP 07 (2011) 067] and [C. Bobeth et al., JHEP 01 (2012) 107]

- Determine branching fraction in 7 bins of q^2 , using $B^+ \rightarrow J/\psi K^+$ as a normalisation channel and accounting for differences in the efficiencies.
- \mathcal{B} = (4.36 ± 0.15 ± 0.18) × 10⁻⁷, taking excluded charmonium resonance regions into account.
- World's best measurement of $\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$.

Measurement of $B^+ \rightarrow K^+ \mu^+ \mu^-$: Angular analysis

Theory predictions from [C. Bobeth et al., JHEP 07 (2011) 067] and [C. Bobeth et al., JHEP 01 (2012) 107]

•
$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma(B^+ \to K^+ \mu^+ \mu^-)}{\mathrm{d}\cos\theta_\ell} = \frac{3}{4} (1 - F_H) (1 - \cos^2\theta_\ell) + \frac{1}{2} F_H + A_{FB} \cos\theta_\ell$$

- Acceptance correction using simulation in q^2 and $\cos heta_\ell$.
- Simultaneous fit to mass and $\cos \theta_{\ell}$. Background modeled with second-order polynomial in angles.

ISOSPIN ASYMMETRY (I)

Theory predictions from [C. Bobeth et al., JHEP 01 (2012) 107] and [M. Beneke et al., Nucl. Phys. B612 (2001) 25-58]

- Measure "Isospin asymmetry": $\frac{\Gamma(B^0 \rightarrow K^{*0}\mu^+\mu^-) \Gamma(B^+ \rightarrow K^{*+}\mu^+\mu^-)}{\Gamma(B^0 \rightarrow K^{*0}\mu^+\mu^-) + \Gamma(B^+ \rightarrow K^{*+}\mu^+\mu^-)}$
- Predicted to be very small.
- Use $B \rightarrow J/\psi K^*$ as a normalisation channel.
- $B^+ \to K^{*+} \mu^+ \mu^-$ is challenging due to $K^0_{\rm s}$ reconstruction from $K^{*+} \to K^0_{\rm s} \pi^+$.
- Results for $B \rightarrow K^* \mu^+ \mu^-$ agree well with prediction.

ISOSPIN ASYMMETRY (II)

Theory predictions from [C. Bobeth et al., JHEP 01 (2012) 107] and [M. Beneke et al., Nucl. Phys. B612 (2001) 25-58]

• Measure "Isospin asymmetry":
$$\frac{\Gamma(B^0 \rightarrow K^0 \mu^+ \mu^-) - \Gamma(B^+ \rightarrow K^+ \mu^+ \mu^-)}{\Gamma(B^0 \rightarrow K^0 \mu^+ \mu^-) + \Gamma(B^+ \rightarrow K^+ \mu^+ \mu^-)}$$

- Predicted to be very small.
- Use $B \rightarrow J/\psi K$ as a normalisation channel.
- $B^0
 ightarrow K^0 \mu^+ \mu^-$ is challenging due to $K^0_{
 m s}$ reconstruction.
- A_I shows a 4.4 σ deviation from 0, driven by low $\mathcal{B}(B^0 \to K^0 \mu^+ \mu^-)$.

Branching Fraction Measurement of $B^+\!\to\pi^+\mu^+\mu^-$

- Fit four distributions simultaneously: $B^+ \rightarrow J/\psi K^+$, misidentified $B^+ \rightarrow J/\psi K^+$, $B^+ \rightarrow K^+ \mu^+ \mu^-$, $B^+ \rightarrow \pi^+ \mu^+ \mu^-$
- Measured branching fraction: \mathcal{B} = $(2.3\pm0.6(\mathrm{stat})\pm0.1(\mathrm{sys})) imes10^{-8}$
- In good agreement with SM expectation: $(1.96 \pm 0.21) \times 10^{-8}$.

[S. Hai-Zen et al., 2008 Commun. Theor. Phys. 50 696]

- Also determine: $R = \frac{\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)} = f^2 \frac{|V_{td}|^2}{|V_{ts}|^2}$
- Which leads to: $rac{|V_{td}|}{|V_{ts}|}=0.266\pm0.035$ (stat) \pm 0.007 (sys)

SUMMARY

- EW penguins are a very active area in LHCb.
- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ is a "golden-channel" and allows measurment of many observables: angular analysis, zero-crossing point of A_{FB} , differential branching fraction, Isospin asymmetry, $C\mathcal{P}$ asymmetry.
- $B^+ \to K^+ \mu^+ \mu^-$: Angular analysis, differential branching fraction and Isospin asymmetry.
- Discovery of $B^+\!
 ightarrow\pi^+\mu^+\mu^-$, rarest B decay ever observed.
- 2011+2012 (\approx 3.2 fb⁻¹) data will allow more precision, more observables and (hopefully) conclusions on discrepancies.

Bachup

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$: Full angular distribution

• If we neglect lepton masses and S-wave component, the angular distribution of $B^0 \to K^{*0} \mu^+ \mu^-$ is:

$$\frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}\cos\theta_{K}\,\mathrm{d}\phi\,\mathrm{d}q^{2}} \propto I_{1}^{s}\sin^{2}\theta_{K} + I_{1}^{c}\cos^{2}\theta_{K} \\ + \left(I_{2}^{s}\sin^{2}\theta_{K} + I_{2}^{c}\cos^{2}\theta_{K}\right)\cos2\theta_{\ell} \\ + I_{3}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\cos2\phi \\ + I_{4}\sin2\theta_{K}\sin2\theta_{\ell}\cos\phi \\ + I_{5}\sin2\theta_{K}\sin\theta_{\ell}\cos\phi \\ + \left(I_{6}^{s}\sin^{2}\theta_{K} + I_{6}^{c}\cos^{2}\theta_{K}\right)\cos\theta_{\ell} \\ + I_{7}\sin2\theta_{K}\sin\theta_{\ell}\sin\phi \\ + I_{8}\sin2\theta_{K}\sin2\theta_{\ell}\sin\phi \\ + I_{9}\sin^{2}\theta_{K}\sin^{2}\theta_{\ell}\sin^{2}\phi_{\ell}\sin2\phi$$

- The I_i depend on q^2 and contain the (transversity) amplitudes of the $K^{st 0}$
- All I_i are observables, 8 of them are independent.