$D^0-\overline{D}^0$ mixing in the SM (not assuming $m_c\gg\Lambda_{ m QCD}$)

Zoltan Ligeti

- Introduction
- Group theory, long and short distance
- Numerical estimates and caveats

See: A. Falk, Y. Grossman, Z.L., A. Petrov, PRD 65 (2002) 054034 [hep-ph/0110317]
A. Falk, Y. Grossman, Z.L., Y. Nir, A. Petrov, PRD 69 (2004) 114021 [hep-ph/0402204]
S. Bergmann, Y. Grossman, Z.L., Y. Nir, A. Petrov, PLB 486 (2000) 418 [hep-ph/0005181]

déjà vu

 Until two weeks ago I thought I was asked to talk about direct CP violation in D decays — I was shocked to see the title in the program

Alexey was right, and I remembered wrong... I can only guess that I only read "charm" in his email when accepting to give this talk

The last conference talk I gave on $D^0 - \overline{D}^0$ mixing was Moriond 2002, and my last seminar on it was at CERN in early 2003

 Until two weeks ago I thought I was asked to talk about direct CP violation in D decays — I was shocked to see the title in the program

Alexey was right, and I remembered wrong... I can only guess that I only read "charm" in his email when accepting to give this talk

The last conference talk I gave on $D^0 - \overline{D}^0$ mixing was Moriond 2002, and my last seminar on it was at CERN in early 2003

Improvements in 10 yrs: $y_{PDG,2002} = (0.3 \pm 2.2)\%$, $y_{CP,hep-ph/0205316} = (1.0 \pm 0.7)\%$

 Until two weeks ago I thought I was asked to talk about direct CP violation in D decays — I was shocked to see the title in the program

Alexey was right, and I remembered wrong... I can only guess that I only read "charm" in his email when accepting to give this talk

The last conference talk I gave on $D^0 - \overline{D}^0$ mixing was Moriond 2002, and my last seminar on it was at CERN in early 2003

Improvements in 10 yrs: $y_{PDG,2002} = (0.3 \pm 2.2)\%$, $y_{CP,hep-ph/0205316} = (1.0 \pm 0.7)\%$

Then: "... other large rates near threshold, e.g.: $\mathcal{B}(D^0 \to K^- a_1^+) = (7.3 \pm 1.1)\%$ " pdgLive on 9/15/2012: $\mathcal{B}(D^0 \to K^- a_1(1260)^+) = (7.8 \pm 1.1)\%$

 Until two weeks ago I thought I was asked to talk about direct CP violation in D decays — I was shocked to see the title in the program

Alexey was right, and I remembered wrong... I can only guess that I only read "charm" in his email when accepting to give this talk

The last conference talk I gave on $D^0 - \overline{D}^0$ mixing was Moriond 2002, and my last seminar on it was at CERN in early 2003

Improvements in 10 yrs: $y_{PDG,2002} = (0.3 \pm 2.2)\%$, $y_{CP,hep-ph/0205316} = (1.0 \pm 0.7)\%$

Then: "... other large rates near threshold, e.g.: $\mathcal{B}(D^0 \to K^- a_1^+) = (7.3 \pm 1.1)\%$ " pdgLive on 9/15/2012: $\mathcal{B}(D^0 \to K^- a_1(1260)^+) = (7.8 \pm 1.1)\%$

• The good news is that all of you probably forgot those talks, just like I have...

For almost a year...

SLAC | Library | Other Databases | Conferences | Institutions | Experiments

Questions/Comments Help Search HEP

Database: HEP (USPIRES-SLAC)

Modify your search. Press ENTER to run search again. FIND KEY 4391080

Result: 1 document found:

LESSONS FROM CLEO AND FOCUS MEASUREMENTS OF D0 - ANTI-D0 MIXING PARAMETERS.

PARAIVIE LERS.
By Focus Collaboration (Sven Bergmann *et al.*). SLAC-PUB-8457, WIS-8-00-DPP,
WIS-8-00-MAY-DPP, FERMILAB-PUB-00-102-T, IASSNS-HEP-00-42, JHU-TIPAC-200003, May 2000. 15pp.
Published in Phys.Lett.B486:418-425,2000
e-Print Archive: hep-ph/0005181

List of Authors References | LaTeX(US) | LaTeX(EU) | BibTeX | Keywords | Citation Search Abstract and Postscript from Los Alamos (mirrors: au br cn de es fr il in it jp kr ru tw uk aps) Fermilab Library Server SLAC Document Server CERN Library Record Nuclear Physics Electronic EXP CESR-CLEO-II EXP FNAL-E-0831

Link to the main HEP (SPIRES-SLAC) page

Search HEP | Other Databases | Conferences | Institutions | Experiments | Help | Comments SLAC | SLAC Library | Stanford University

d Questions and Comments to library@slac.stanford.edu Location: SPIRES HEP Results Display

For almost a year...

SLAC | Library | Other Databases | Conferences | Institutions | Experiments

SPIRES HEP

Database: HEP (USPIRES-SLAC)

Modify your search. Press ENTER to run search again. FIND KEY 4391080 $\,$

Result: 1 document found:

LESSONS FROM CLEO AND FOCUS MEASUREMENTS OF D0 - ANTI-D0 MIXING PARAMETERS.

By Focus Collaboration (Sven Bergmann *et al.*). SLAC-PUB-8457, WIS-8-00-DPP, WIS-8-00-MAY-DPP, FERMILAB-PUB-00-102-T, IASSNS-HEP-00-42, JHU-TIPAC-200003, May 2000. 15pp.

Published in **Phys.Lett.B486:418-425,2000** e-Print Archive: **hep-ph/0005181**

List of Authors

References | LaTeX(US) | LaTeX(EU) | BibTeX | Keywords | Citation Search Abstract and Postscript from Los Alamos (mirrors: au br cn de es fr il in it jp kr ru tw uk aps) Fermilab Library Server SLAC Document Server CERN Library Record Nuclear Physics Electronic EXP CESR-CLEO-II EXP FNAL-E-0831

Link to the main HEP (SPIRES-SLAC) page

Search HEP | Other Databases | Conferences | Institutions | Experiments | Help | Comments SLAC | SLAC Library | Stanford University

d Questions and Comments to library@slac.stanford.edu

Questions/Comments Help Search HEP SLAC | Library | Other Databases | Conferences | Institutions | Experiments

Questions/Comments Help Search HEP

Weizmann Inst.: Sven Bergmann SLAC: Yuval Grossman Fermilab: Zoltan Ligeti Princeton, Inst. Advanced Study & Weizmann Inst.: Yosef Nir Johns Hopkins U.: Alexey A. Petrov (5 authors listed)

Search HEP | Other Databases | Conferences | Institutions | Experiments | Help | Comments SLAC | SLAC Library | Stanford University

Questions and Comments to library@slac.stanford.edu Location: SPIRES HEP Results Display

... unfortunately fixed eventually

First page of my last talk (CERN, 2003)

Summary

It is usually stated that $D^0 - \overline{D}^0$ mixing is small in the SM and therefore sensitive to new physics; i.e., $\Delta M, \Delta \Gamma \lesssim \text{ few} \times 10^{-3} \Gamma$ in the SM, and NP can easily enhance ΔM but would not affect $\Delta \Gamma$

In this talk I argue that:

- It is likely that the SM predicts $\Delta\Gamma\sim 1\%$
- Then it is likely that $\Delta \Gamma > \Delta M$ in the SM
- If this is the case then the sensitivity to NP is reduced
- The central values of recent experimental results may be due to SM physics

Differences between B and D mixing

Evolution:
$$i \frac{d}{dt} \begin{pmatrix} |B^{0}(t)\rangle \\ |\overline{B}^{0}(t)\rangle \end{pmatrix} = \begin{pmatrix} M - \frac{i}{2} \Gamma \end{pmatrix} \begin{pmatrix} |B^{0}(t)\rangle \\ |\overline{B}^{0}(t)\rangle \end{pmatrix}$$

 $M, \Gamma: 2 \times 2$ Hermitian matrices
Mass eigenstates: $|B_{H,L}\rangle = p|B^{0}\rangle \mp q|\overline{B}^{0}\rangle$ $|B_{H,L}(t)\rangle =$

 $|B_{H,L}(t)\rangle = e^{-(iM_{H,L}+\Gamma_{H,L}/2)t} |B_{H,L}\rangle$

• General solution for q/p:

$$\frac{q^2}{p^2} = \frac{2M_{12}^* - i\Gamma_{12}^*}{2M_{12} - i\Gamma_{12}}$$

- $B_{d,s}^0$: $|\Gamma_{12}| \ll |M_{12}|$ model independently, so $q/p = e^{iX}$ to a good approximation X determined by M_{12} (up to phase conventions) \Rightarrow sensitive to NP
- D^0 : $|\Gamma_{12}/M_{12}| = \mathcal{O}(1)$, so q/p depends on both Γ_{12} and M_{12}
- In the D^0 system, |q/p| 1 is much less constrained than in B^0 and K^0 mixing

D^0 : mixing in up sector

- Complementary to K, B: CPV, FCNC both GIM & CKM suppressed \Rightarrow tiny in SM
- 2007: observation of mixing, now $\gtrsim 10\sigma$ [HFAG combination] Only meson mixing generated by down-type quarks (SUSY: up-type squarks)

SM suppression: Δm_D , $\Delta \Gamma_D \lesssim 10^{-2} \Gamma$, since doubly-Cabibbo-suppressed & vanish in SU(3) limit

•
$$y = (0.75 \pm 0.12)\%$$
 and $x = (0.63 \pm 0.20)\%$
... suggest long distance dominance

• How small CPV would unambiguously establish NP?

D^0 : mixing in up sector

- Complementary to K, B: CPV, FCNC both GIM & CKM suppressed \Rightarrow tiny in SM
- 2007: observation of mixing, now $\gtrsim 10\sigma$ [HFAG combination] Only meson mixing generated by down-type quarks (SUSY: up-type squarks)

SM suppression: Δm_D , $\Delta \Gamma_D \lesssim 10^{-2} \Gamma$, since doubly-Cabibbo-suppressed & vanish in SU(3) limit

• $y = (0.75 \pm 0.12)\%$ and $x = (0.63 \pm 0.20)\%$... suggest long distance dominance

Strong motivation to look for non-SM flavor and CP violation in c and t decays
 Can discover or rule out classes of well motivated models

$$D^0 - \overline{D}{}^0$$
 mixing

SU(3) analysis of D mixing

• Want to study: $\langle \overline{D}^0 | T\{H_w, H_w\} | D^0 \rangle = \langle 0 | D T\{H_w, H_w\} D | 0 \rangle$ the field operator $D \in 3$ creates a D^0 or annihilates a \overline{D}^0 $H(\Delta C = -1) = (\overline{q}_i c)(\overline{q}_j q_k) \in 3 \times \overline{3} \times \overline{3} = \overline{15} + 6 + \overline{3} + \overline{3}$ Neglecting 3rd generation, only $\overline{15}$ and 6 appear in H ($\overline{3} =$ "penguins") SU(3) breaking is introduced by $\mathcal{M}_i^i = \operatorname{diag}(m_u, m_d, m_s) \sim \operatorname{diag}(0, 0, m_s)$

A pair of *D* operators is symmetric, so D_iD_j ∈ 6
A pair of *H* is symmetric, so H^{ij}_kH^{lm}_n ∈ [(15+6) × (15+6)]_S → 60+42+15'
0. Since 6 ∉ H_wH_w ⇒ mixing vanishes in SU(3) limit
1. DDM ∈ 6 × 8 = 24 + 15 + 6 + 3 ⇒ no invariants with HH at O(m_s)
2. DDMM ∈ 6 × (8 × 8)_S = 6 × (27 + 8 + 1) = 60 + 24 + 15' + ...
⇒ D⁰-D⁰ mixing only arises at O(m²_s)

Operator product expansion for *D* **mixing**

• It is hard to estimate x, y in the SM: vanish in the SU(3) limit and doubly Cabibbo suppressed: $x, y \sim \sin^2 \theta_C \epsilon_{SU(3)}^2$

Short distance box diagram: $x \propto \frac{m_s^2}{m_W^2} \times \frac{m_s^2}{m_c^2} \to 10^{-5}$ (4-quark operator) *y* has additional m_s^2/m_c^2 helicity suppression

• Higher orders in OPE suppressed by fewer powers of $m_{m{s}}$ [Georgi '92; Ohl, Ricciardi, Simmons '93]

	4-quark	6-quark	8-quark
$\frac{\Delta M}{\Delta M_{\rm box}}$	1	$rac{\Lambda^2}{m_sm_c}$	${\Lambda^4\over m_s^2m_c^2}{lpha_s\over 4\pi}$
$\frac{\Delta\Gamma}{\Delta M}$	$\frac{m_s^2}{m_c^2}$	$\frac{\alpha_s}{4\pi}$	${ \alpha_s \over 4\pi} eta_0$

[Bigi & Uraltsev claimed ('00) that $x, y \propto m_s$ is possible; ... In conflict with our general proof from group theory]

Dim. analysis ($\Lambda \sim 4\pi f_{\pi}$) and estimates of matrix elements [Golowich & Petrov, Bobrowski *et al.*] give significant enhancements but still yield $x, y \lesssim 10^{-3}$

Long distance contributions to D mixing

- Maybe large, but hard to estimate SU(3) breaking has been argued to be $\mathcal{O}(1)$, based on $\mathcal{B}(D^0 \to K^+K^-)/\mathcal{B}(D^0 \to \pi^+\pi^-) \simeq 2.8$
 - Cancellations sensitively depend on poorly known strong phases and DCS rates: $y \approx \mathcal{B}(D \to \pi^+\pi^-) + \mathcal{B}(D \to K^+K^-) - 2\cos\delta\sqrt{\mathcal{B}(D \to K^-\pi^+)\mathcal{B}(D \to K^+\pi^-)}$ Current central values yield: $y \approx (5.36 - 4.78\cos\delta) \times 10^{-3}$ In the SU(3) limit $\cos\delta \sim 1$, and assuming that these intermediate states are
 - representative, it was often stated that $x \lesssim y < \text{few} \times 10^{-3}$
- The most important long distance effect may be due to phase space:
 - Contrary to SU(3) breaking in matrix elements, this source of SU(3) violation is calculable for certain final states with mild assumptions
 - Negligible for lightest PP states; important for states with mass near m_D

The saga whether m_c is heavy or light?

- Heavy quark limit works reasonably well for inclusive semileptonic charm decay
- Worse behavior expected for nonleptonic decays (confirmed by lifetime data)
- Recent ΔA_{CP} data + growing literature on theorists' inability to unambiguously conclude (yet?) if central value would imply NP An enhancement as large as $\Delta I = \frac{1}{2}$ rule in *K* decay would be surprising
- If heavy quark limit is completely broken down at μ = m_c, even limited successes at μ = m_b ~ 3m_c would be surprising
 Theory for B → Dπ uses m_{c,b} ≫ Λ_{QCD} [relation of phases in B → Dπ & D^{*}π]
- Phase space differences are "threshold effects" exponentially suppressed in the formal heavy quark limit, not included by dimension-9 and 12 terms in OPE

$\Delta\Gamma$ from SU(3) breaking in phase space

- Phase space difference between final states containing fewer or more s quarks is a calculable source of SU(3) breaking
- Let F_R denote final state F in representation R (e.g., PP can be in 8 or 27)

Define:
$$y_{F,R} = \frac{\sum_{n \in F_R} \langle \overline{D}^0 | H_w | n \rangle \rho_n \langle n | H_w | D^0 \rangle}{\sum_{n \in F_R} \Gamma(D^0 \to n)}$$

This is the "would-be" value of y, if D only decayed to the states in F_R

 If the decay rates to all representations are known, we can reconstruct the value of y from y_{F,R}:

$$y = rac{1}{\Gamma} \sum_{F,R} y_{F,R} \left[\sum_{n \in F_R} \Gamma(D^0 \to n) \right]$$

Simplest example: $D^0 \rightarrow PP$

• PP must be in $(8 \times 8)_S = 27 + 8 + 1$ — possible amplitudes:

- $PP \in 27$ and $\mathcal{H}_w \in \overline{15}$: $A_{27} (PP_{27})_{ij}^{km} H_k^{ij} D_m$
- $-PP \in 8 \text{ and } \mathcal{H}_w \in \overline{15}: A_8^{\overline{15}} (PP_8)_i^k H_k^{ij} D_j \\ -PP \in 8 \text{ and } \mathcal{H}_w \in 6: A_8^6 (PP_8)_i^k H_k^{ij} D_j \end{cases}$ proportional to each other

So effectively there are only two amplitudes — for example, we obtain for $y_{PP,8}$:

$$s_{1}^{2} \left[\frac{1}{2} \Phi(\eta, \eta) + \frac{1}{2} \Phi(\pi^{0}, \pi^{0}) + \frac{1}{3} \Phi(\eta, \pi^{0}) + \Phi(\pi^{+}, \pi^{-}) + \Phi(K^{+}, K^{-}) - \frac{1}{6} \Phi(\eta, K^{0}) - \frac{1}{6} \Phi(\eta, K^{0}) - \Phi(K^{+}, \pi^{-}) - \Phi(K^{-}, \pi^{+}) - \frac{1}{2} \Phi(K^{0}, \pi^{0}) - \frac{1}{2} \Phi(\bar{K}^{0}, \pi^{0}) \right] \times \left[\frac{1}{6} \Phi(\eta, \bar{K}^{0}) + \Phi(K^{-}, \pi^{+}) + \frac{1}{2} \Phi(\bar{K}^{0}, \pi^{0}) + \mathcal{O}(s_{1}^{2}) \right]^{-1}$$

• Result is explicitly proportional to $s_1^2 \equiv \sin^2 \theta_C$ and vanishes in SU(3) limit as m_s^2

Two-body final states

Final state representation $y_{F,R}/s^2$		$y_{F,R}/s_1^2$	Results for lightest multiplets, assuming	
(PP)s-wave	8	-0.0038	no $SU(3)$ breaking in matrix elements	
	27	-0.00071	Contribution of <i>PP</i> final states is	
(PV)p-wave	8_{S}	0.031	"anomalously" small	
	$8_{oldsymbol{A}}$	0.032		
	10	0.020	Widths of vector mesons are important	
	$\overline{10}$	0.016	and taken into account (straightforward)	
	27	0.040	PV and VV channels effectively	
(VV)s-wave	8	-0.081	include resonant part of 3- and 4-body	
	27	-0.061	final states	
(VV)p-wave	8	-0.10		
	27	-0.14	Larger $SU(3)$ breaking expected in	
(VV)d-wave	8	0.51	heavier multiplets when some final	
	27	0.57	states are not allowed at all	

Multi-body final states

Final state representation		$y_{F,R}/s_1^2$
$(3P)_s$ -wave	8	-0.48
	27	-0.11
(3P)p-wave	8	-1.13
	27	-0.07
$^{(3P)}$ form-factor	8	-0.44
	27	-0.13
4P	8	3.3
	27	2.2
	27'	1.9

Consider simplest representations only

Smaller representations tend to give larger effects

Assuming a "form factor suppression" in the matrix element, $\Pi_{i\neq j}(1-m_{ij}^2/Q^2)^{-1}$, where $m_{ij}^2 = (p_i + p_j)^2$ and $Q = 2 \,\text{GeV}$, changes the results only moderately

For 4P, only consider fully symmetric final state

For many final state representations, especially those close to threshold, "large" effects are possible, i.e., $y_{F,R}$ at the percent level is not unusual

Conclusions for $\Delta\Gamma$

• The 2-, 3-, and 4-body final states account for a large fraction of the *D* width Rounded to nearest 5%:

Final state	fraction	
PP	5%	
PV	10%	
$(VV)_s$ -wave	5%	
$(VV)_d$ -wave	5%	
3P	5%	
4P	10%	

There are other large rates near threshold, e.g.: $\mathcal{B}(D^0 \to K^- a_1^+) = (7.8 \pm 1.1)\%$

- There are final states that can contribute to y at the 1% level
- It would require cancellations to suppress y much below 1%

Dispersion relation for Δm_D

- Consider correlator (Only physical at $q = p_D$) $\Sigma_{p_D}(q) = i \int d^4 z \langle \overline{D}(p_D) | T[\mathcal{H}(z)\mathcal{H}(0)] | D(p_D) \rangle e^{i(q-p_D)\cdot z}$
- Can show, going over to HQET that

$$\Delta m_D = -\frac{1}{2\pi} \operatorname{P} \int_{2m_{\pi}}^{\infty} \mathrm{d}E \, \frac{\Delta \Gamma(E)}{E - m_D} \left[1 + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}}{E}\right) \right]$$

Allows using the phase space model for $\Delta\Gamma$ to make a prediction for Δm_D

Need assumptions about behavior of form factors; larger uncertainty than for $\Delta\Gamma$

Concentrating on the 4P final states, we wrote:

"if y is in the ballpark of +1% as expected if the 4P final states dominate y, then we should expect |x| between 10^{-3} and 10^{-2} , and that x and y are of opposite sign."

• Clearly, we cannot predict the sign of x/y, only draw qualitative conclusions

Conclusions

- Identified a calculable source of long distance effects, and predicted that y and x can naturally be at the 1% level in the SM, without ad hoc assumptions
- I would like to see single measurements of y and especially x reach 5σ ; x/y = ?
- Look for *CP* violation in mixing, which remains a potentially robust signal of NP
- There is still a lot to be learned from future data!

Exciting journey ahead!