7th International Workshop on the CKM Unitarity Triangle September 28 - October 2 2012, Cincinnati

Eli Ben-Haïm LPNHE-IN2P3- Université Pierre et Marie Curie (Paris) On behalf of the *BABAR* collaboration

Overview

General introduction

- The BaBar detector and dataset **CONTROL**
- Common analysis techniques
- Time dependent analysis and flavor tagging

The BaBar detector and dataset

Common analysis techniques

Variables are often combined to a likelihood function, used in a maximum likelihood fit for signal/background separation and to measure parameters of interest

Time dependent measurements, flavor tagging

CKM angle β **Time dependent CP asymmetry in b→ccs**

With the "Golden

Mode" $(B^0 \rightarrow J/\psi K^0_S)$: W^+ V_{cs} $\left\{\begin{array}{c} \overline{c} \\ \overline{S} \\ \overline{S} \\ \overline{A} \end{array}\right\}$ $\left\{\begin{array}{c} H^0 \\ H^0 \end{array}\right\}$ **Direct decay** B^0 $f_{\mathbb{C}P}$ "Golden" because there is **Mixing**~only one decay amplitude ē٥ $\Gamma[\bar{B}^0\to J/\psi K_{_{\mathrm{S}}}](\Delta t)\,-\,\Gamma[B^0\to J/\psi K_{_{\mathrm{S}}}](\Delta t)$ $=\frac{S}{\sin(\Delta m_d t)} - \frac{C}{\cos(\Delta m_d t)}$ A _{CP} (Δt) = $\Gamma[\bar{B}^0\to J/\psi K_{_{\mathrm{S}}}](\Delta t) + \Gamma[B^0\to J/\psi K_{_{\mathrm{S}}}](\Delta t)$ 0.4 ps) **indirect direct** \cdot B⁰ i **BAB** tags Events $/$ (tags $C_f = 0$ 200 $S_f = -\eta_{CP} \sin 2\beta$ Raw Asymmetry 0.4 \Rightarrow Extraction of sin2 β from A_{cp} BaBar, (PRD 79, 072009 (2009) Δt [ps]

β from b→qqs

- Time dependent CP asymmetry in $B^0 \rightarrow K_S K_S K_S$ arXiv:1111.3636 [hep-ex], Phys.Rev.D85:054023 (2012) (in the same paper: amplitude analysis)
- CP violation in amplitude analysis of $B^0 \rightarrow K^+K^-K_s$ arXiv:1201.5897 [hep-ex], Phys.Rev.D85:112010 (2012) (in the same paper: $B^+ \rightarrow K^+K^-K^+$ and $B^+ \rightarrow K_S K_S K^+$)

sin*2β* **from b**à**s penguins**

Within the standard model (SM): Theoretical prediction for ΔS_{SM} $S_{c\bar{c}s} = S_{q\bar{q}s} + \Delta S_{SM} = -\eta_{CP} \sin 2\beta$ $K_S^0K_S^0K^0$ $C_{\overline{\text{c}}\overline{\text{c}}\text{s}} \approx C_{\overline{\text{q}}\overline{\text{q}}\text{s}} = 0$ $f_0^0(980) K^0$ \blacksquare Not including LD amplitude (dominant phase is the same as in $b\rightarrow c\bar{c}s$) q ηK^0 معقعقعق **Standard** q \overline{b} \longrightarrow $\overline{v_{\omega}^*}$ $\overline{v_{\omega}^*}$ $\overline{v_{\omega}^*}$ $\rho^0 K^0$ **Model contribution** ωK^0 New physics in the loop may cause deviation $\pi^0 K^0_s$ in the values of S and C. ϕK^0 \approx $\mathrm{\widetilde{g}}$ η 'K 0 **New Physics** \overline{b} $\overline{}$ \overline{b} \otimes \overline{s} $\overline{}$ \overline{s} **contribution** 0.2 -0.3 -0.2 -0.1 0.1 $\left(\delta^d_{\;\; 23} \right)_{\!LR}$ QCDF Beneke, PLB620, 143 (2005) SCET/QCDF, Williamson and Zupan, PRD74, 014003 (2006) Definitions: QCDF Cheng, Chua and Soni, PRD72, 014006 (2005) SU(3) Gronau, Rosner and Zupan, PRD74, 093003 (2006) $\Delta S = S_{c\bar{c}s} - S_{q\bar{q}s}$ Precise predictions allow for $\sin 2\beta_{\text{eff}} = -\eta_{CP} S_{q\bar{q}s}$ powerful tests of the SM

 0.3

sin*2β* **from b**à**s penguins**

Within the standard model (SM):

$$
S_{c\bar{c}s} = S_{q\bar{q}s} + \Delta S_{SM} = -\eta_{CP} \sin 2\beta
$$

$$
C_{c\bar{c}s} \approx C_{q\bar{q}s} = 0
$$

(dominant phase is the same as in $b\rightarrow c\bar{c}s$)

New physics in the loop may cause deviation in the values of S and C.

New Physics

Standard

Charmonium

¥

η[·]Κ⁹

 \mathbb{R}^6

 π^0 K $_8^0$

 ω K^o

KKKS

BABAR 04 $0.722 \pm 0.040 \pm 0.023$ Belle 04 $0.728 \pm 0.056 \pm 0.023$

 0.726 ± 0.037 **BABAR 04**
 $0.50 \pm 0.25^{+0.07}_{-0.04}$

 $0.27 \pm 0.14 \pm 0.03$ Belle 04 $0.65 \pm 0.18 \pm 0.04$ **BABAR 04**

 $0.95^{+0.23}_{-0.32}$ ± 0.10

 $0.35^{+0.30}_{-0.33} \pm 0.04$ Belle 04 $0.30 \pm 0.59 \pm 0.11$ Belle 04

0.75 ± 0.64 $^{+0.13}_{-0.16}$ **BABAR 04**

 $0.55 \pm 0.22 \pm 0.12$ Belle 04 Delle 04
0.49 ± 0.18 + 0.17

Average (s-penguin)

 -1.5

 -1

 K^0 ₆ K^0 ₆ K^0 ₅ K^0 ₇ K^0 ₇ K^0 ₇ K^0 ₇

 -2

 0.41 ± 0.07

Belle 04 $-0.47 \pm 0.41 \pm 0.08$ BABAR 04

Belle 04 $0.06 \pm 0.33 \pm 0.09$ **BABAR 04**

Average (charmonium - all exps.)

Model

contribution

contribution

Definitions:

$$
\Delta S = S_{c\bar{c}s} - S_{q\bar{q}s}
$$

sin2 β _{eff} = - η_{CP} S_{q\bar{q}s}

Tensions between sin*2*β from $b \rightarrow c\bar{c}s$ and $b \rightarrow q\bar{q}s$ ($\Delta S < 0$)

 -0.5

 $-\eta_{\rm r} \times S_{\rm r}$

0

 0.5

In 2004:

HFAG

FPCP 2004

 1.5

 $\mathbf{1}$

sin*2β* **from b**à**s penguins**

The situation today is quite different

- **Fresh sin***2*β **world averages (HFAG):**
	- **b**→**cc**s: 0.68 ± 0.02
	- **b** \rightarrow **q** \bar{q} **s:** 0.64 \pm 0.04 (naïve!)
- Improvements:
	- hints of trends/deviations in previous measurements clarified by B factories
	- several results from (Time Dependent) Dalitz Plot analyses
- Still… **minor** tension persists

Results presented here marked with \bigstar

Eli Ben-Haim CKM Workshop, September 29th 2012

12

Small theoretical uncertainty \Rightarrow Comparison with b \rightarrow c \overline{c} s is more meaningful

Low background level (difficult to "imitate" $3 \text{ K}^0\text{s}$)

Inclusive time dependent analysis to extract CP asymmetries S and C $\mathsf{B}^0{\rightarrow}3\mathsf{K}^0_{8}(\pi^*\pi^-)$ $\mathsf{B}^0{\rightarrow}2\mathsf{K}^0_\mathsf{S}(\pi^*\pi^*)\;\mathsf{K}^0_\mathsf{S}(\pi^0\pi^0)$

overview and motivations

 $CP=+1$ eigenstate \Rightarrow possible

 $B^0 \rightarrow K_S K_S K_S$

Maximum likelihood fit, using: m_{ES} , ΔE , Neural network and Δt

$$
\begin{split} &\mathcal{P}_{\text{sig}}^{i}(\Delta t,\sigma_{\Delta t};q_{\text{tag}},c)= \\ &\frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}}\bigg\{1+q_{\text{tag}}\frac{\Delta D_{c}}{2} \\ &+q_{\text{tag}}\langle D\rangle_{c}\Big[\mathcal{S}\sin(\Delta m_{d}\Delta t)-\mathcal{C}\cos(\Delta m_{d}\Delta t)\Big]\bigg\} \\ &\otimes\mathcal{R}_{\text{sig}}(\Delta t,\sigma_{\Delta t}), \end{split}
$$

$$
B^0 \to K_S K_S K_S
$$

Results

Eli Ben-Haim CKM Workshop, September 29th 2012

0

1

2

3

no CPV

B→cc**s**

4

5

$B^0 \rightarrow K^+K^-K_s$ **overview and motivations**

- Time dependent analysis to measure the effective β
	- \rightarrow includes ϕK_s (small theoretical uncertainty)
	- \rightarrow not a CP eigenstate! CP content depends on the intermediate state
- Dalitz-plot (DP) analysis to separate intermediate (resonant) CP eigenstates
- DP structure of B⁺→K⁺K⁻K⁺K⁺ and B⁺→K_SK_S^{K+} used for B⁰→K⁺K⁻K_S

 \rightarrow Large sample (5269±84 signal events, purity = 43%)

 \rightarrow 2 K_S in the final state: helpful to study the nature of broad f_x(1500) (For details on B+→K+K-K+ and B+→K_sK_sK+: Eugenia Puccio, WG V, Sunday morning)

- Direct access to phases: no trigonometric ambiguities (next slide...)
- Reconstruction of both $K_S \rightarrow \pi^+\pi^-$ and $K_S \rightarrow \pi^0\pi^0$

Dalitz plot and the isobar model

B decays

 \overline{B} decays

- Each intermediate resonance in $P \rightarrow 123$ appears as a structure in the DP according to its mass, width and spin
- Parameterization of intermediate state amplitudes:

complex e.g. Breit-Wigner

 $A \sim \Sigma c_i \mathbf{F}(\text{m}^2_{13}, \text{m}^2)$

 $\overline{A} \sim \Sigma$ $\overline{\boldsymbol{c}}_{\boldsymbol{i}}$ $\textbf{F}(\text{m}^2_{13}, \text{m}^2)$

$$
\frac{d\Gamma}{ds_{12}ds_{23}d\Delta t} = \frac{1}{(2\pi)^3} \frac{1}{32m_{B^0}^3} \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}}
$$
\n
$$
\times [|\mathcal{A}|^2 + |\bar{\mathcal{A}}|^2 - Q(1 - 2w)(|\mathcal{A}|^2 - |\bar{\mathcal{A}}|^2)
$$
\n
$$
\times \cos\Delta m_d\Delta t + Q(1 - 2w)
$$
\n
$$
\times 2\text{Im}[e^{-2i\beta}\bar{\mathcal{A}}\mathcal{A}^*]\sin\Delta m_d\Delta t],
$$

Directly extracted parameters: isobar amplitudes *ci* Other parameters (S, C, A_{CP}, phases, Branching Fractions) are computed from them

 m^{2} ₁₃ **spin=1 spin=2** Superimposed resonant contributions

 \rightarrow Interference

 m^{2} ₂₃^{$\frac{1}{2}$}

access to phases with no ambiguity such as $\sin 2\beta$ _{eff} = $\sin(180^\circ - 2\beta$ _{eff})

spin=0

 dm_{13} $dm_{23} \propto \frac{d^3p}{F}$

"Cartoon" DP

∝

 $\mathsf{B}^0\!\rightarrow\!\mathsf{K}^*\mathsf{K}^*\!\mathsf{K}_\mathsf{S}$

3

E

$\mathsf{B}^0\!\rightarrow\!\mathsf{K}^*\mathsf{K}^*\!\mathsf{K}_\mathsf{S}$

Best

fits

Determining the signal model

- Prior to fitting CPV parameters, the nominal DP models are established
	- \rightarrow CPV parameters set to the SM ones
	- \rightarrow Legendre polynomial moments vs invariant masses, used to compare data and fit

$$
\langle P_{\ell}(\cos \theta_3) \rangle \equiv \int_{-1}^{1} d\Gamma P_{\ell}(\cos \theta_3) d\cos \theta_3
$$

- **K**⁺**K·K**⁺: ϕ (1020), f₀(980), f₀(1500), f₂'(1525), f₀(1710), χ _{c0}, poly. NR
- $K_S K_S K^+$: , f₀(980), f₀(1500), f₂'(1525), f₀(1710), χ_{c0} , poly. NR

Results

β from b→ccd

Time dependent CP asymmetry of partially reconstructed $B^0 \rightarrow D^{*+}D^{*-}$ decays arXiv:1208.1282 [hep-ex] (Submitted to Phys.Rev.D)

sin*2β* **from B0** → **D*+D*- decays**

In such b→ccd transitions, TD asymmetry is a measure of S_n ^{\cong} η sin(2β), provided that contribution from penguins can be neglected.

- VV final state \rightarrow admixture of CP=+1 and CP=-1 amplitudes.
- Theoretical calculations based on factorization and heavy quark symmetry: in the SM penguin contributions lead to corrections of \sim few $\%$ to the determination of sin2β from the TD CPV asymmetry

Z. Z. Xing, Phys. Lett. B443, 365 (1998).

Z. Z. Xing, Phys. Rev. D61, 014010 (1999).

Large deviation in S_n with respect to that measured in $b \rightarrow c\bar{c}s$ transitions could be an indication of physics beyond the SM

M. Gronau, J. L. Rosner and D. Pirjol, Phys. Rev. D 78, 033011 (2008).

Y. Grossman and M. P. Worah, Phys. Lett. B395, 241 (1997).

R. Zwicky, Phys. Rev. D 77, 036004 (2008).

Eli Ben-Haim CKM Workshop, September 29th 2012 19

 $B^0 \rightarrow D^{*+}$

Analysis strategy partial reconstruction

 $B^0 \rightarrow D^{*+}D$

- Angular analysis needed to separate CP eigenstates 1X) (possible with fully reconstructed events).
- BaBar and Belle full reconstruction analyses measured the CP even component 0. CP parameters S_+ and C_+ , and the fraction R_\perp of CP-odd amplitude: $R_1=0.158\pm0.028\pm0.006$
- In a partial reconstruction analysis, we measure average S and C parameters which are related to C_+ and S_+ by the relations $C=C_+$ and $S=S_+(1-2R_+)$

 \rightarrow One fully reconstruct one D*

- \rightarrow Match reconstructed D^{*} with a slow pion of opposite sign
- \rightarrow Powerful discriminating variable: recoiling D^0 mass m_{rec}
- \rightarrow Another useful extracted information: missing D^o direction
- Pros: gain in statistics (with an almost independent sample) Ö.

 Cons: Higher background, larger systematic uncertainty Eli Ben-Haim CKM Workshop, September 29th 2012 20

Analysis strategy Variables and maximum likelihood fit

- Recoil mass m_{rec} : Ō3 \rightarrow Signal peaks at D⁰ mass
- Other fit variables: Fisher discriminant, Δt
- Additional dilution due to tagging tracks from unreconstructed D^0 .
- Separate fits to two categories: Lepton or K
- Three stages in fit:
	- Kinematic fit (variable shapes, signal fraction)
	- Determining the mistag probabilities; determining the additional dilution (unreconstructed D^0) from data.
	- Time dependent fit, to extract the CP parameters S and C

Eli Ben-Haim CKM Workshop, September 29th 2012 21

 $B^0 \rightarrow D^{*+}D^*$

Results Kaon tags

Results Lepton tags

Summary and Conclusions

- BaBar continues to produce physics results, adding more information and using more sophisticated analysis techniques to improve the precision of measurements in hadronic B decays
- All measurements of $β$ presented here, in b→qqs and b→ccd processes**,** agree with β in b \rightarrow ccs processes (standard model prediction)
- Larger samples are needed to push further the comparisons with $b \rightarrow c\bar{c}s$, and tell whether or not there could be indications for new physics…

 $\sin(2\beta^{\rm eff}) \equiv \sin(2\phi_1^{\rm eff})$ HFA

Backup

More on B-Factories

- Data taking periods over for the B-Factories In April 2008 for BABAR In June 2010 for Belle
- Outstanding luminosity records BABAR: 433 fb⁻¹ @ Y(4S) + \sim 54 fb⁻¹ 40 MeV below Belle: 711 fb⁻¹ \sim 100 fb⁻¹

TD analysis - Backgrounds and Yields $B^0 \rightarrow K^0{}_S K^0{}_S K^0{}_S$

TABLE VI: Summary of B-background modes included in the fit model of the time-dependent analysis. The expected number of events takes into account the branching fractions (B) and efficiencies. In case there is no measurement, the branching fraction of an isospin-related channel is used. All the fixed yields are varied by $\pm 100\%$ for systematic uncertainties.

Submode	Background mode	Varied	\mathcal{B} [×10 ⁻⁶]	Number of events
$B^0 \to 3K_S^0(\pi^+\pi^-)$	$K_S^0 K_S^0 K_L^0$	\mathbf{no}	2.4	0.71
	$K_S^0 K_S^0 K^{*0}$	\mathbf{no}	27.5	9.55
	$K_{S}^{0}K_{S}^{0}K^{+}$	no	11.5	4.27
	$B^0 \rightarrow \{$ neutral generic decays}	yes	not applicable	21.7
	$B^+ \rightarrow \{charged\ generic\ decays\}$	yes	not applicable	15.5
$\overline{B^0 \to 2K_S^0(\pi^+\pi^-)K_S^0(\pi^0\pi^0)}$	$K_S^0 K_S^0 K_L^0$	$\mathbf{n}\mathbf{o}$	2.4	0.67
	$K_{S}^{0}K_{S}^{0}K^{*0}$	$\mathbf{n}\mathbf{o}$	27.5	5.3
	$K_S^0 K_L^0 K^{*0}$	$\mathbf{n}\mathbf{o}$	27.5	0.3
	$K_S^0 K_S^0 K^+$	\mathbf{no}	11.5	2.9
	$K_S^0 K_S^0 K^{*+}$	$\mathbf{n}\mathbf{o}$	27.5	7.2
	$B^0 \rightarrow \{$ neutral generic decays	yes	not applicable	73.6
	$B^+ \rightarrow \{charged\ generic\ decays\}$	yes	not applicable	73.8

TD analysis B decay vertex and K^o_s reconstruction

There are no charged particles coming from the primary vertex: no direct tracks

3 inner layers

Reconstruct vertex using **charged pions** from K^{θ} decay

Ensure quality of vertex by using only events where both pions of at least one K^0 have hits in the strips in both dimensions in the vertex detector (SVT).

Good quality K_s :

hits in both dimensions in 3 inner layers (class 1)

hits in both dimensions but not in 3 inner layers (class 2)

Bad quality K_s :

hits in only one dimension or no hits (classes 3 and 4).

Silicon Vertex Tracker DCH Eli Ben-Haim CKM Workshop, September 29th 2012

TD analysis

$B^0 \rightarrow K^0{}_S K^0{}_S K^0{}_S$

B decay vertex, K^o_s reconstruction, ∆t measurement

Usually the resolution function can be taken from $B \rightarrow c\bar{c}K(*)$ analyses, as when there are **direct** charged tracks from the signal B decay, it is tag-side dominated. Here we take it from simulation and assign a systematic uncertainty for simulation-data differences (see later).

TD analysis: systematic uncertainties

 $B^0 \rightarrow K^0{}_S K^0{}_S K^0{}_S$

Results of the amplitude analysis

 $B^0 \rightarrow K_S K_S K_S$

Likelihood scans

 $B^0 \rightarrow K^0{}_S K^0{}_S K^0{}_S$

Signal model

TABLE I. Parameters of the DP model used in the fit. Values are given in MeV ($/c²$) unless specified otherwise. All parameters are taken from Ref. [14], except for the $f_0(980)$ parameters, which are taken from Ref. [15].

Resonance	Parameters	Line shape
$\phi(1020)$	$m_0 = 1019.455 \pm 0.020$ $\Gamma_0 = 4.26 \pm 0.04$	RBW
$f_0(980)$	$m_0 = 965 \pm 10$ $g_{\pi} = (0.165 \pm 0.018) \text{GeV}^2/c^4$ $g_K/g_\pi = 4.21 \pm 0.33$	Flatté
$f_0(1500)$	$m_0 = 1505 \pm 6$ $\Gamma_0 = 109 \pm 7$	RBW
$f_0(1710)$	$m_0 = 1720 \pm 6$ $\Gamma_0 = 135 \pm 8$	RBW
$f'_2(1525)$	$m_0 = 1525 \pm 5$ $\Gamma_0 = 73^{+6}_{-5}$	RBW
NR decays		See text
χ_{c0}	$m_0 = 3414.75 \pm 0.31$ $\Gamma_0 = 10.3 \pm 0.6$	RBW

Interference fit fractions

TABLE XVIII. Values of the interference fit fractions FF_{ik} for $B^+ \to K^+K^-K^+$, solution I. The diagonal terms FF_{ij} are the ordinary fit fractions FF_i , which sum to 272%. The NR component is split into S-wave and P-wave parts for these calculations. Values are given in percent.

	$\phi(1020)$	$f_0(980)$	$f_0(1500)$	$f'_2(1525)$	$f_0(1710)$	χ_{c0}	NR(S wave)	NR(P wave)
$\phi(1020)$	12.9	-0.1	0.0	0.0	0.1	-0.0	-7.4	8.2
$f_0(980)$		27.2	-4.7	-0.0	-5.4	-1.0	-0.8	-3.7
$f_0(1500)$			2.1	0.0	2.3	0.1	3.1	-0.8
$f'_{2}(1525)$				2.0	0.1	-0.0	-0.0	0.7
$f_0(1710)$					3.2	-0.1	-13.5	4.9
χ_{c0}						3.2	3.3	-1.8
NR(S wave)							151.4	-155.0
NR(P wave)								69.4

Interference fit fractions

TABLE XX. Values of the interference fit fractions FF_{ik} for $B^+ \to K_S^0 K_S^0 K^+$, for the global minimum. The diagonal terms FF_{ji} are the ordinary fit fractions FF_j , which sum to 345%. Values are given in percent.

	$f_0(980)$	$f_0(1500)$	$f'_2(1525)$	$f_0(1710)$	χ_{c0}	NR(S wave)
$f_0(980)$	139.0	-19.2	0.0	-12.4	-1.0	-217.0
$f_0(1500)$		4.0	-0.0	4.1	0.2	9.5
$f'_{2}(1525)$			5.7	-0.0	-0.0	-0.0
$f_0(1710)$				4.5	0.1	-9.2
χ_{c0}					5.0	-0.0
NR(S wave)						186.5

TABLE XXI. Values of the interference fit fractions FF_{ik} for $B^0 \to K^+K^-K^0_S$, for the global minimum. The diagonal terms FF_{ij} are the ordinary fit fractions FF_i , which sum to 188%. The NR component is split into S-wave and P-wave parts for these calculations. Values are given in percent.

	$\phi(1020)$	$f_0(980)$	$f_0(1500)$	$f_2'(1525)$	$f_0(1710)$	χ_{c0}	NR(S wave)	NR(P wave)
$\phi(1020)$	13.1	0.0	$0.0\,$	0.0	$0.0\,$	0.0	0.0	0.2
$f_0(980)$		26.3	0.1	-0.0	14.4	-0.7	-81.2	$0.0\,$
$f_0(1500)$			2.1	-0.0	5.3	-0.1	-0.7	$0.0\,$
$f'_{2}(1525)$				0.5	-0.0	0.0	0.0	0.0
$f_0(1710)$					16.7	-0.2	-27.0	$0.0\,$
χ_{c0}						3.4	1.6	$0.0\,$
NR(S wave)							114.5	$0.0\,$
NR(P wave)								11.7

More results

TABLE VIII. Branching fractions (neglecting interference), CP asymmetries, and CP-violating phases [see Eq. (11)] for $B^+ \rightarrow$ $K^+K^-K^+$. The $\mathcal{B}(B^+\to RK^+)$ column gives the branching fractions to intermediate resonant states, corrected for secondary branching fractions obtained from Ref. [14]. Central values and uncertainties are obtained from solution I. In addition to quoting the overall NR branching fraction, we quote the S-wave and P-wave NR branching fractions separately.

Decay mode	$\mathcal{B}(B^+ \to K^+ K^- K^+) \times FF_i(10^{-6})$	$\mathcal{B}(B^+\to RK^+)(10^{-6})$	A_{CP} (%)	$\Delta \phi_i$ (deg)
$\phi(1020)K^+$	$4.48 \pm 0.22_{-0.24}^{+0.33}$	$9.2 \pm 0.4^{+0.7}_{-0.5}$	$12.8 \pm 4.4 \pm 1.3$	$23 \pm 13^{+4}_{-5}$
$f_0(980)K^+$	$9.4 \pm 1.6 \pm 2.8$		$-8 \pm 8 \pm 4$	$9 \pm 7 \pm 6$
$f_0(1500)K^+$	$0.74 \pm 0.18 \pm 0.52$	$17 \pm 4 \pm 12$		
$f'_{2}(1525)K^{+}$	$0.69 \pm 0.16 \pm 0.13$	$1.56 \pm 0.36 \pm 0.30$	$14 \pm 10 \pm 4$	$-2 \pm 6 \pm 3$
$f_0(1710)K^+$	$1.12 \pm 0.25 \pm 0.50$			
$\chi_{c0}K^+$	$1.12 \pm 0.15 \pm 0.06$	$184 \pm 25 \pm 14$		$-4 \pm 13 \pm 2$
NR	$22.8 \pm 2.7 \pm 7.6$		$6.0 \pm 4.4 \pm 1.9$	0 (fixed)
NR(S wave)	$52^{+23}_{-14} \pm 27$			
NR(P wave)	$24^{+22}_{-12} \pm 27$			

TABLE X. Branching fractions (neglecting interference) for $B^+ \to K_S^0 K_S^0 K^+$. The $\mathcal{B}(B^+ \to R K^+)$ column gives the branching fractions to intermediate resonant states, corrected for secondary branching fractions obtained from Ref. [14]. Central values and uncertainties are for the global minimum only. See the text for discussion of the variations between the local minima.

Likelihood scans

FIG. 9 (color online). Scan of $2\Delta \ln \mathcal{L}$, with (solid line) and without (dashed line) systematic uncertainties, as a function of $A_{CP}(\phi(1020))$ in $B^+ \to K^+K^-K^+$.

FIG. 14 (color online). Scan of $2\Delta \ln \mathcal{L}$, with (solid line) and without (dashed line) systematic uncertainties, as a function of A_{CP} in $B^+ \rightarrow K_S^0 K_S^0 K^+$.

FIG. 10 (color online). Scan of $2\Delta \ln \mathcal{L}$, with (solid line) and without (dashed line) systematic uncertainties, as a function of $A_{CP}(f_0(980))$ in $B^+ \to K^+K^-K^+$.

$Results (B⁺ → K⁺K⁺K⁺; K_sK_sK⁺)$ $N_{sig} = 5269 \pm 84$ (Purity = 43%) A_{CP}(inclusive) = $(-1.7^{+1.9}{}_{-1.4} \pm 1.4)\%$ Other $B \rightarrow 3K$ modes

 $BF = (33.4 \pm 0.5 \pm 0.9) \times 10^{-6} [\chi_{c0}K$ excluded] $\mathbf{A_{CP}}(\phi K) = (12.8 \pm 4.4 \pm 1.3)\%$

 $(2.8σ from 0, SM: ~ 0 - 4.7%)$

Beneke, Neubert, Nucl.Phys B675,333 (QCDF) ; Li, Mishima, PRD 74, 094020 (pQCD)

K $\boldsymbol{\Omega}$ **K** $\boldsymbol{\Omega}$ **K +** $N_{sig} = 632 \pm 28$ (Purity = 20%) $A_{CP} = (4 \pm 5 \pm 2)\%$ $BF = (10.1 \pm 0.5 \pm 0.3) \times 10^{-6}$ [χ_{c0} K excluded]

K+

K-K +

Other $B \rightarrow 3K$ modes

 $Results (B⁰ → K_sK_sK⁺)$

 $N_{sig} = 632 \pm 28$ (Purity = 20%) $BF = (10.1 \pm 0.5 \pm 0.3) \times 10^{-6}$ [χ_{c0} K excluded]

 $A_{CP} = (4 \pm 5 \pm 2)\%$

Systematic uncertainties

Other $B \rightarrow 3K$ modes

TABLE XV. Summary of systematic uncertainties for $B^+ \to K^+ K^- K^+$ parameters. Errors on phases, A_{CP} 's, and branching fractions are given in degrees, percent, and units of 10^{-6} , respectively.

Parameter	Line shape	Fixed PDF params Other Add resonances Fit bias				Total
$\Delta\phi(\phi(1020))$	3		0	2	$\overline{2}$	4
$\Delta \phi(f_0(980))$	$\overline{2}$		0	6		6
$\Delta \phi(f_2'(1525))$		0	0	3		3
$\Delta\phi(\chi_{c0})$			0			2
$A_{CP}(\phi(1020))$	0.2	0.2	1.0	0.3	0.7	1.3
$A_{CP}(f_0(980))$	3			$\overline{2}$	1	4
$A_{CP}(f'_{2}(1525))$				3	1	4
A_{CP} (NR)	1.1	0.4	$1.0\,$	0.8	0.7	1.9
$\mathcal{B}(\phi(1020))$	0.20	0.04	0.11	0.14	0.08	0.29
$\mathcal{B}(f_0(980))$	1.2	0.1	0.3	2.5	0.4	2.8
$\mathcal{B}(f_0(1500))$	0.06	0.02	0.02	0.52	0.02	0.52
$\mathcal{B}(f_2'(1525))$	0.05	0.01	0.02	0.07	0.10	0.13
$\mathcal{B}(f_0(1710))$	0.08	0.04	0.03	0.49	0.05	0.50
$\mathcal{B}(\chi_{c0})$	0.01	0.01	0.03	0.02	0.04	0.06
\mathcal{B} (NR)	1.0	0.2	0.5	7.4	0.3	7.6
\mathcal{B} (NR $(S$ wave))	13	2	1	23	2	27
\mathcal{B} (NR (P wave))	10	2		25	3	27
\mathcal{B} (total)	0.0	0.2	0.8	0.1	0.4	0.9
\mathcal{B} (charmless)	0.0	0.2	0.8	0.1	0.3	0.9

Systematic uncertainties

Other $B \rightarrow 3K$ modes

Parameter	Line shape	Fixed PDF params Other Add resonances Fit bias				Total
A_{CP}		Ω		Ω		$\overline{2}$
$\mathcal{B}(f_0(980))$	1.4	0.3	0.3	1.0	0.4	1.8
$\mathcal{B}(f_0(1500))$	0.05	0.03	0.01	0.57	0.04	0.58
$\mathcal{B}(f_2'(1525))$	0.06	0.02	0.02	0.07	0.03	0.10
$\mathcal{B}(f_0(1710))$	0.06	0.04	0.01	0.02	0.08	0.11
$\mathcal{B}(\chi_{c0})$	0.01	0.01	0.01	0.00	0.03	0.04
\mathcal{B} (NR (S wave))	$1.3\,$	0.6	0.4	2.0	0.2	2.5
\mathcal{B} (total)	0.0	0.2	0.2	0.0	0.0	0.3
\mathcal{B} (charmless)	0.0	0.2	0.2	0.0	0.0	0.3

TABLE XVII. Summary of systematic uncertainties for $B^0 \to K^+K^-K^0_S$ parameters. Errors on angles, A_{CP} 's, and branching fractions are given in degrees, percent, and units of 10^{-6} , respectively.

$B^0 \rightarrow D^{*+}D^{*-}$

Full TD amplitude and R[⊥]

$$
\frac{1}{\Gamma} \frac{d^4 \Gamma}{d \cos \theta_1 d \cos \theta_{tr} d\phi_{tr} dt} = \frac{9}{16\pi} \frac{1}{|A_0|^2 + |A_{\perp}|^2} \times \frac{\theta_1}{\sqrt{\theta_1^2 + \sin^2 \theta_1 \sin^2 \theta_{tr} \cos^2 \phi_{tr}|A_0|^2}} \times \frac{\theta_1}{\sqrt{\theta_1^2 + \sin^2 \theta_1 \sin^2 \theta_{tr} \cos^2 \phi_{tr}|A_0|^2}} \times \frac{\theta_1}{\sqrt{\theta_1^2 + \sin^2 \theta_1 \cos^2 \theta_{tr}|A_{\perp}|^2}} \times \frac{\theta_1}{\sqrt{\theta_1^2 + \sin^2 \theta_1 \sin^2 \theta_{tr} \sin^2 \phi_{tr}|A_{\perp}|^2}} \times \frac{\theta_1}{\sqrt{\theta_1^2 + \sin^2 \theta_1 \sin^2 \theta_{tr} \sin^2 \phi_{tr}|A_{\perp}|^2}} \times \frac{\theta_1}{\sqrt{\theta_1^2 + \sin^2 \theta_1 \sin^2 \theta_{tr} \sin^2 \phi_{tr}|A_{\perp}|^2}} \times \frac{\theta_1}{\sqrt{\theta_1^2 + \sin^2 \theta_1 \sin^2 \theta_{tr} \sin^2 \phi_{tr}|A_{\perp}|^2}} \times \frac{\theta_1}{\sqrt{\theta_1^2 + \sin^2 \theta_1 \sin^2 \theta_{tr} \sin^2 \phi_{tr}|A_{\perp}|^2}} \times \frac{\theta_1}{\sqrt{\theta_1^2 + \sin^2 \theta_1 \cos^2 \phi_{tr}|A_{\perp}|^2}} \times \frac{\theta_1}{\sqrt{\theta_1^2 + \sin^2 \theta_1 \cos^2 \phi_{tr}|A_{\perp}|^2}} \times \frac{\theta_1}{\sqrt{\theta_1^2 + \sin^2 \theta_1 \cos^2 \phi_{tr}|A_{\perp}|^2}}
$$

with $\kappa = \parallel, 0, \perp$, represent time-dependent amplitudes given by

$$
A_k(t) = \frac{\sqrt{2}A_k(0)}{1 + |\lambda_k|^2} e^{-imt} e^{-t/2\tau_B 0}
$$

$$
\times \left(\cos\frac{\Delta m_d t}{2} + i\eta_{CP}^k \lambda_k \sin\frac{\Delta m_d t}{2}\right). \tag{3}
$$

$$
R_{\perp} = \frac{|A_{\perp}^{0}|^{2}}{|A_{0}^{0}|^{2} + |A_{\parallel}^{0}|^{2} + |A_{\perp}^{0}|^{2}}
$$

CP = +1 for A_{||}, A₀
CP = -1 for A_{\perp}

PDFs

- Overall PDF for the on-Peak sample is the sum of three components BB combinatoric signal $P_{\text{on}} = f_{B\overline{B}} \left[\overline{f_{\text{sig}} P_{\text{sig}}} + \overline{(1 - f_{\text{sig}}) P_{\text{comb}}} \right] + (1 - f_{B\overline{B}}) P_{q\overline{q}}$ $P_{\text{off}} = P_{q\overline{q}}$ continuum BB
- Each component is the product of a kinematical and a **Δ**t part 0X

$$
P_i(m_{\text{rec}}, F, \Delta t, \sigma_{\Delta t}, S_{\text{tag}}) =
$$

$$
\frac{\mathcal{M}_i(m_{\text{rec}}) \mathcal{F}_i(F) T'_i(\Delta t, \sigma_{\Delta t}, S_{\text{tag}})}{\mathcal{K}|\mathcal{N}'|} \frac{\mathcal{K}'}{\mathcal{K}'} \frac{\
$$

 $T_{\text{sig}} = \frac{1}{4\tau_b} e^{-|\Delta t_{\text{true}}|/\tau_b} \cdot \left\{ (1 - S_{\text{tag}} \Delta \omega (1 - \alpha)) + \right\}$ Signal **Δ**t: $+S_{\text{tag}}(1-2\omega)(1-\alpha)$ $\cdot [C\cos(\Delta m_d \Delta t_{\text{true}}) + S\sin(\Delta m_d \Delta t_{\text{true}})]$

$$
S = -\frac{2\Im m(\lambda)}{1+|\lambda|^2} \quad C = \frac{1-|\lambda|^2}{1+|\lambda|^2} \quad \lambda = \frac{q}{p} \frac{\overline{A}}{\overline{A}}
$$

Mis-tag due to unreconstructed D^o tracks $B^0 \rightarrow D^{*+}D^{*-}$

- Partial reconstruction introduces an additional dilution $D = (1-\alpha)$, where α is the fraction of tags coming from the missing D^0
- This fraction can be obtained from data with some input from signal MC
- Can be reduced with a cut on the cosine of the opening angle between the tagging track and the missing D0 direction θ_{tag}

Figure 2.1: Signal Monte Carlo distributions of $cos(\theta_{\text{tag}})$ for tracks from the missed D^0 (black) and from the other B^0 (red); lepton tags on the left, kaon tags on the right. 45

Systematic uncertainties

TABLE V: Systematic uncertainties evaluated for C and S . Uncertainties in the top section are independent for kaon and lepton tags, those in the bottom section are correlated.

Eli Ben-Haim CKM Workshop, September 29th 2012 47

 $B^0 \rightarrow D^{*+}$