7th International Workshop on the CKM Unitarity Triangle September 28 - October 2 2012, Cincinnati

Eli Ben-Haïm LPNHE-IN2P3-Université Pierre et Marie Curie (Paris) On behalf of the *BABAR* collaboration

Overview

General introduction

- The BaBar detector and dataset
- Common analysis techniques
- Time dependent analysis and flavor tagging

The BaBar detector and dataset

Common analysis techniques

Variables are often combined to a likelihood function, used in a maximum likelihood fit for signal/background separation and to measure parameters of interest

Eli Ben-Haim

Time dependent measurements, flavor tagging

CKM angle β Time dependent CP asymmetry in $b \rightarrow c\bar{c}s$

With the "Golden

Mode" $(B^0 \rightarrow J/\psi K^0_s)$: $W^{+} \bigvee_{cs} \left\{ \begin{array}{c} c \\ c \\ \end{array} \right\} \int \psi \\ \overline{s} \\ \kappa^{0} \\ \end{array} \right\} = \left\{ \begin{array}{c} 0 \\ B^{0} \\ \end{array} \right\}$ **Direct decay** B^0 f_{CP} "Golden" because there is Mixing ~only one decay amplitude B⁰ $A_{CP}(\Delta t) = \frac{\Gamma[\overline{B}^0 \to J/\psi K_s](\Delta t) - \Gamma[B^0 \to J/\psi K_s](\Delta t)}{\Gamma[\overline{B}^0 \to J/\psi K_s](\Delta t) + \Gamma[B^0 \to J/\psi K_s](\Delta t)} = S \sin(\Delta m_d t) - C \cos(\Delta m_d t)$ 0.4 ps) indirect direct • B⁰ tags Events / ($C_f = 0$ $S_f = -\eta_{CP} \sin 2\beta$ tags Raw Asymmetry 0.4 0.2 \Rightarrow Extraction of sin2 β from A_{cp} BaBar, (PRD 79, 072009 (2009) $\Delta t [ps]$

β from b→q**q**s

- Time dependent CP asymmetry in $B^0 \rightarrow K_S K_S K_S$ arXiv:1111.3636 [hep-ex], Phys.Rev.D85:054023 (2012) (in the same paper: amplitude analysis)
- CP violation in amplitude analysis of $B^0 \rightarrow K^+K^-K_S$ arXiv:1201.5897 [hep-ex], Phys.Rev.D85:112010 (2012) (in the same paper: $B^+ \rightarrow K^+K^-K^+$ and $B^+ \rightarrow K_SK_SK^+$)

$sin 2\beta$ from b \rightarrow s penguins

Within the standard model (SM): Theoretical prediction for ΔS_{SM} $S_{c\bar{c}s} = S_{a\bar{a}s} + \Delta S_{SM} = -\eta_{CP} \sin 2\beta$ $K_{S}^{0}K_{S}^{0}K^{0}$ $C_{c\bar{c}s} \approx C_{a\bar{a}s} = 0$ $f_0^0(980) K^0$ Not including LD amplitude (dominant phase is the same as in $b \rightarrow c\bar{c}s$) ηK⁰ مفقققققو Standard $\rho^0 K^0$ b Model $\leq V_{ts} \sim -\lambda^2$ contribution mons ωK⁰ New physics in the loop may cause deviation $\pi^0 K_s^0$ in the values of S and C. ϕK^0 **New Physics** $\eta' K^0$ $\tilde{b} \otimes \tilde{s}$ contribution ħ 0.2 -0.3-0.2-0.10.1 0.3 $\left(\delta^{d}_{23}\right)$ QCDF Beneke, PLB620, 143 (2005) SCET/QCDF, Williamson and Zupan, PRD74, 014003 (2006) QCDF Cheng, Chua and Soni, PRD72, 014006 (2005) **Definitions**: SU(3) Gronau, Rosner and Zupan, PRD74, 093003 (2006) $\Delta S = S_{c\bar{c}s} - S_{q\bar{q}s}$ Precise predictions allow for $\sin 2\beta_{eff} = -\eta_{CP} S_{q\bar{q}s}$ powerful tests of the SM

$sin 2\beta$ from b \rightarrow s penguins

• Within the standard model (SM):

$$\begin{split} \mathbf{S}_{\mathrm{c}\bar{\mathrm{c}}\mathrm{s}} &= \mathbf{S}_{\mathrm{q}\bar{\mathrm{q}}\mathrm{s}} + \Delta \mathbf{S}_{\mathrm{SM}} = -\eta_{\mathrm{CP}} \sin 2\beta \\ \mathbf{C}_{\mathrm{c}\bar{\mathrm{c}}\mathrm{s}} &\approx \mathbf{C}_{\mathrm{q}\bar{\mathrm{q}}\mathrm{s}} = 0 \end{split}$$

(dominant phase is the same as in $b \rightarrow c\bar{c}s$)

New physics in the loop may cause deviation in the values of S and C.

Definitions:

$$\Delta \mathbf{S} = \mathbf{S}_{c\bar{c}s} - \mathbf{S}_{q\bar{q}s}$$
$$\sin 2\boldsymbol{\beta}_{eff} = -\eta_{CP} \mathbf{S}_{q\bar{q}s}$$

In 2004:

Tensions between $\sin 2\beta$ from $b \rightarrow c\bar{c}s$ and $b \rightarrow q\bar{q}s$ ($\Delta S < 0$)

$sin 2\beta$ from b \rightarrow s penguins

The situation today is quite different

- Fresh sin2β world averages (HFAG):
 - b \rightarrow ccs: 0.68 ± 0.02
 - $b \rightarrow q\bar{q}s: 0.64 \pm 0.04$ (naïve!)
- Improvements:
 - hints of trends/deviations in previous measurements clarified by B factories
 - several results from (Time Dependent) Dalitz Plot analyses
- Still... minor tension persists

Results presented here marked with ★

Eli Ben-Haim

CKM Workshop, September 29th 2012

12

- Small theoretical uncertainty \Rightarrow Comparison with $b \rightarrow c\bar{c}s$ is more meaningful
- Low background level (difficult to "imitate" 3 K⁰_S)

Inclusive time dependent analysis to extract CP asymmetries S and C $B^0 \rightarrow 3K^0_S(\pi^+\pi^-)$ $B^0 \rightarrow 2K^0_S(\pi^+\pi^-) K^0_S(\pi^0\pi^0)$

CP=+1 eigenstate \Rightarrow possible

• Maximum likelihood fit, using: m_{ES} , ΔE , Neural network and Δt

$$\begin{aligned} \mathcal{P}_{\mathrm{sig}}^{i}(\Delta t, \sigma_{\Delta t}; q_{\mathrm{tag}}, c) &= \\ & \frac{e^{-|\Delta t|/\tau_{B^{0}}}}{4\tau_{B^{0}}} \bigg\{ 1 + q_{\mathrm{tag}} \frac{\Delta D_{c}}{2} \\ & + q_{\mathrm{tag}} \langle D \rangle_{c} \bigg[\mathcal{S} \sin(\Delta m_{d} \Delta t) - \mathcal{C} \cos(\Delta m_{d} \Delta t) \bigg] \bigg\} \\ & \otimes \mathcal{R}_{\mathrm{sig}}(\Delta t, \sigma_{\Delta t}), \end{aligned}$$

Results

 $201 \pm \frac{16}{15}$ B⁰ \rightarrow 3K⁰_S($\pi^{+}\pi^{-}$) (Purity = 40%) $62 \pm \frac{13}{12}$ B⁰ \rightarrow 2K⁰_S($\pi^{+}\pi^{-}$) K⁰_S($\pi^{0}\pi^{0}$)

First evidence of CPV (at 3.8σ) Eli Ben-Haim CKM Workshop, September 29th 2012

13

2

$B^0 \rightarrow K^+K^-K_S$ overview and motivations

- Time dependent analysis to measure the effective β
 - \rightarrow includes ϕK_{S} (small theoretical uncertainty)
 - \rightarrow not a CP eigenstate! CP content depends on the intermediate state
- Dalitz-plot (DP) analysis to separate intermediate (resonant) CP eigenstates
- DP structure of $B^+ \rightarrow K^+ K^- K^+$ and $B^+ \rightarrow K_S K_S K^+$ used for $B^0 \rightarrow K^+ K^- K_S$

 \rightarrow Large sample (5269±84 signal events, purity = 43%)

→ 2 K_S in the final state: helpful to study the nature of broad $f_X(1500)$ (For details on B⁺→K⁺K⁻K⁺ and B⁺→K_SK_SK⁺: Eugenia Puccio, WG V, Sunday morning)

- Direct access to phases: no trigonometric ambiguities (next slide...)
- Reconstruction of both $K_S \rightarrow \pi^+ \pi^-$ and $K_S \rightarrow \pi^0 \pi^0$

Dalitz plot and the isobar model

B decays

 $\overline{\mathbf{B}}$ decays

- Each intermediate resonance in P → 1 2 3
 appears as a structure in the DP according to its mass, width and spin
- Parameterization of intermediate state amplitudes:

complex e.g. Breit-Wigner

 $A \sim \Sigma c_i \mathbf{F}(m_{13}^2, m_{23}^2)$

 $\overline{A} \sim \Sigma \ \overline{c}_i \mathbf{F}(m_{13}^2, m_{23}^2)$

$$\frac{d\Gamma}{ds_{12}ds_{23}d\Delta t} = \frac{1}{(2\pi)^3} \frac{1}{32m_{B^0}^3} \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}}$$
$$\times [|\mathcal{A}|^2 + |\bar{\mathcal{A}}|^2 - Q(1-2w)(|\mathcal{A}|^2 - |\bar{\mathcal{A}}|^2)$$
$$\times \cos\Delta m_d \Delta t + Q(1-2w)$$
$$\times 2\operatorname{Im}[e^{-2i\beta}\bar{\mathcal{A}}\mathcal{A}^*]\sin\Delta m_d \Delta t],$$

Directly extracted parameters: isobar amplitudes c_i Other parameters (S, C, A_{CP}, phases, Branching Fractions) are computed from them m_{23}^{2} "Cartoon" DP $dm_{13} dm_{23} \propto \frac{d^{\circ} p}{E}$ spin=0 spin=1 spin=2 m_{13}^2 Superimposed resonant contributions Interference \rightarrow access to phases \rightarrow

 $B^0 \rightarrow K^+ K^- K_S$

with no ambiguity such as $\sin 2\beta_{eff} = \sin(180^\circ - 2\beta_{eff})$

Determining the signal model

- Prior to fitting CPV parameters, the nominal DP models are established

 → CPV parameters set to the SM ones
 - \rightarrow Legendre polynomial moments vs invariant masses, used to compare data and fit

$$\langle P_{\ell}(\cos\theta_3)\rangle \equiv \int_{-1}^{1} d\Gamma P_{\ell}(\cos\theta_3) d\cos\theta_3$$

- **K**⁺**K**⁻**K**⁺: $\phi(1020)$, $f_0(980)$, $f_0(1500)$, $f_2'(1525)$, $f_0(1710)$, χ_{c0} , poly. NR
- $K_S K_S K^+$:, $f_0(980)$, $f_0(1500)$, $f_2'(1525)$, $f_0(1710)$, χ_{c0} , poly. NR

Eli Ben-Haım

CKM Workshop, September 29th 2012

 $B^0 \rightarrow K^+ K^- K_S$

Best

fits

Results

β from b→c**c**d

 Time dependent CP asymmetry of partially reconstructed B⁰ → D^{*+}D^{*-} decays arXiv:1208.1282 [hep-ex] (Submitted to Phys.Rev.D)

$sin 2\beta$ from $B^0 \rightarrow D^{*+}D^{*-}$ decays

 In such b→ccd transitions, TD asymmetry is a measure of S_η≅ η sin(2β), provided that contribution from penguins can be neglected.

- VV final state \rightarrow admixture of CP=+1 and CP=-1 amplitudes.
- Theoretical calculations based on factorization and heavy quark symmetry: in the SM penguin contributions lead to corrections of ~few % to the determination of sin2β from the TD CPV asymmetry

Z. Z. Xing, Phys. Lett. B443, 365 (1998).

Z. Z. Xing, Phys. Rev. D61, 014010 (1999).

• Large deviation in S_{η} with respect to that measured in b \rightarrow cc̄s transitions could be an indication of physics beyond the SM

M. Gronau, J. L. Rosner and D. Pirjol, Phys. Rev. D 78, 033011 (2008).

Y. Grossman and M. P. Worah, Phys. Lett. B395, 241 (1997).

R. Zwicky, Phys. Rev. D 77, 036004 (2008).

Eli Ben-Haim

CKM Workshop, September 29th 2012

 $B^0 \rightarrow D^{*+}$

Analysis strategy partial reconstruction

- Angular analysis needed to separate CP eigenstates (possible with fully reconstructed events).
- BaBar and Belle full reconstruction analyses measured the CP even component CP parameters S₊ and C₊, and the fraction R_⊥ of CP-odd amplitude: $R_{\perp}=0.158\pm0.028\pm0.006$
- In a partial reconstruction analysis, we measure average S and C parameters which are related to C_+ and S_+ by the relations $C=C_+$ and $S=S_+(1-2R_\perp)$

 \rightarrow One fully reconstruct one D*

- → Match reconstructed D* with a slow pion of opposite sign
- → Powerful discriminating variable: recoiling D⁰ mass m_{rec}
- → Another useful extracted information: missing D⁰ direction
- <u>Pros</u>: gain in statistics (with an almost independent sample)

Cons: Higher background, larger systematic uncertaintyEli Ben-HaimCKM Workshop, September 29th 2012

 $B^0 \rightarrow D^{*+}D$

Analysis strategy Variables and maximum likelihood fit

- Recoil mass m_{rec} :
 - \rightarrow Signal peaks at D⁰ mass
- Other fit variables: Fisher discriminant, Δt
- Additional dilution due to tagging tracks from unreconstructed D⁰.
- Separate fits to two categories: Lepton or K
- Three stages in fit:
 - Kinematic fit (variable shapes, signal fraction)
 - Determining the mistag probabilities; determining the additional dilution (unreconstructed D⁰) from data.
 - Time dependent fit, to extract the CP parameters S and C

 $B^0 \rightarrow D^{*+}D$

Eli Ben-Haim

Results

 $B^0 \to D^{**}D^{*-}$

Eli Ben-Haim

CKM Workshop, September 29th 2012

22

Results

 $B^0 \to D^{*+}D^{*-}$

Lepton tags

Eli Ben-Haim

Eli Ben-Haim

Summary and Conclusions

- BaBar continues to produce physics results, adding more information and using more sophisticated analysis techniques to improve the precision of measurements in hadronic B decays
- All measurements of β presented here, in b \rightarrow qqs and b \rightarrow ccd processes, agree with β in b \rightarrow ccs processes (standard model prediction)
- Larger samples are needed to push further the comparisons with b→cc̄s, and tell whether or not there could be indications for new physics...

$$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \frac{\text{HFAG}}{Moriond 2012}$$

Backup

Eli Ben-Haim

More on B-Factories

- Data taking periods over for the B-Factories In April 2008 for BABAR In June 2010 for Belle
- Outstanding luminosity records BABAR: 433 fb⁻¹ @ Y(4S) + ~54 fb⁻¹ 40 MeV below Belle: 711 fb⁻¹ ~100 fb⁻¹

Eli Ben-Haim

TD analysis - Backgrounds and Yields $B^0 \rightarrow K^0_S K^0_S K^0_S$

TABLE VI: Summary of *B*-background modes included in the fit model of the time-dependent analysis. The expected number of events takes into account the branching fractions (\mathcal{B}) and efficiencies. In case there is no measurement, the branching fraction of an isospin-related channel is used. All the fixed yields are varied by $\pm 100\%$ for systematic uncertainties.

Submode	Background mode	Varied	\mathcal{B} [×10 ⁻⁶]	Number of events
$B^0 \rightarrow 3K^0_S(\pi^+\pi^-)$	$K^0_S K^0_S K^0_L$	no	2.4	0.71
	$K^{0}_{S}K^{0}_{S}K^{*0}$	no	27.5	9.55
	$K^0_S K^0_S K^+$	no	11.5	4.27
	$B^0 \to \{\text{neutral generic decays}\}$	yes	not applicable	21.7
	$B^+ \to \{\text{charged generic decays}\}$	yes	not applicable	15.5
$B^0 \to 2K^0_S(\pi^+\pi^-)K^0_S(\pi^0\pi^0)$	$K^0_S K^0_S K^0_L$	no	2.4	0.67
	$K^{0}_{S}K^{0}_{S}K^{*0}$	no	27.5	5.3
	$K^0_S K^0_L K^{st 0}$	no	27.5	0.3
	$K^0_S K^0_S K^+$	no	11.5	2.9
	$K^0_S K^0_S K^{*+}$	no	27.5	7.2
	$B^0 \to \{\text{neutral generic decays}\}$	yes	not applicable	73.6
	$B^+ \to \{\text{charged generic decays}\}$	yes	not applicable	73.8

Species	$3K^0_S(\pi^+\pi^-)$	$2K_S^0(\pi^+\pi^-)K_S^0(\pi^0\pi^0)$
Signal	$201 {}^{+16}_{-15}$	62^{+13}_{-12}
Continuum	3086^{+56}_{-54}	7086^{+85}_{-83}
B^+B^- bkg	-54^{+29}_{-24}	$45 {}^{+34}_{-30}$
$B^0\overline{B}{}^0$ bkg	9^{+31}_{-30}	4^{+38}_{-29}

Eli Ben-Haim

TD analysis B decay vertex and K_{S}^{0} reconstruction

There are no charged particles coming from the primary vertex: no direct tracks

Reconstruct vertex using **charged pions** from **K**⁰ decay

Ensure quality of vertex by using only events where both pions of at least one K⁰_s have hits in the strips in both dimensions in the vertex detector (SVT).

Good quality K_s:

hits in both dimensions in 3 inner layers (class 1)

hits in both dimensions but not in 3 inner layers (class 2)

Bad quality K_s:

hits in only one dimension or no hits (classes 3 and 4).

3 inner layers Silicon Vertex Tracker DCH

Eli Ben-Haim

CKM Workshop, September 29th 2012

 $B^0 \rightarrow K^0_{\ S} K^0_{\ S} K^0_{\ S}$

TD analysis

$B^0 \rightarrow K^0_{\ S} K^0_{\ S} K^0_{\ S}$

B decay vertex, K_{S}^{0} reconstruction, Δt measurement

Usually the resolution function can be taken from $B \rightarrow c\bar{c}K(*)$ analyses, as when there are **direct charged tracks** from the signal B decay, it is tag-side dominated. Here we take it from **simulation** and assign a **systematic uncertainty for simulation-data differences** (see later).

Eli Ben-Haim

TD analysis: systematic uncertainties

Source	S	\mathcal{C}
$\mathrm{MC}_{\mathrm{stat}}$	0.002	0.001
$B_{ m reco}$	0.004	0.003
B-bkg	0.032	0.012
MC-Data: Δt	0.045	0.027
MC-Data: Discr. Vars	0.021	0.004
Fit Bias	0.022	0.018
Vetoes	0.006	0.004
Misc	0.004	0.015
Sum	0.064	0.038

 $B^0 \rightarrow K^0{}_S K^0{}_S K^0{}_S$

Results of the amplitude analysis

 $B^0 \rightarrow K_S K_S K_S$

Likelihood scans

CKM Workshop, September 29th 2012

 $B^0 \rightarrow K^0_{\ S} K^0_{\ S} K^0_{\ S}$

Signal model

TABLE I. Parameters of the DP model used in the fit. Values are given in $MeV(/c^2)$ unless specified otherwise. All parameters are taken from Ref. [14], except for the $f_0(980)$ parameters, which are taken from Ref. [15].

Resonance	Parameters	Line shape
<i>φ</i> (1020)	$m_0 = 1019.455 \pm 0.020$ $\Gamma_0 = 4.26 \pm 0.04$	RBW
<i>f</i> ₀ (980)	$m_0 = 965 \pm 10$ $g_{\pi} = (0.165 \pm 0.018) \text{GeV}^2/c^4$ $g_K/g_{\pi} = 4.21 \pm 0.33$	Flatté
$f_0(1500)$	$m_0 = 1505 \pm 6$ $\Gamma_0 = 109 \pm 7$	RBW
$f_0(1710)$	$m_0 = 1720 \pm 6$ $\Gamma_0 = 135 \pm 8$	RBW
$f'_2(1525)$	$m_0 = 1525 \pm 5$ $\Gamma_0 = 73^{+6}_{-5}$	RBW
NR decays		See text
Χ _c 0	$m_0 = 3414.75 \pm 0.31$ $\Gamma_0 = 10.3 \pm 0.6$	RBW

Interference fit fractions

TABLE XVIII. Values of the interference fit fractions FF_{jk} for $B^+ \rightarrow K^+ K^- K^+$, solution I. The diagonal terms FF_{jj} are the ordinary fit fractions FF_j , which sum to 272%. The NR component is split into S-wave and P-wave parts for these calculations. Values are given in percent.

	$\phi(1020)$	$f_0(980)$	$f_0(1500)$	$f_2'(1525)$	$f_0(1710)$	χ_{c0}	NR (S wave)	NR (P wave)
$\phi(1020)$	12.9	-0.1	0.0	0.0	0.1	-0.0	-7.4	8.2
$f_0(980)$		27.2	-4.7	-0.0	-5.4	-1.0	-0.8	-3.7
$f_0(1500)$			2.1	0.0	2.3	0.1	3.1	-0.8
$f_{2}^{\prime}(1525)$				2.0	0.1	-0.0	-0.0	0.7
$f_0(1710)$					3.2	-0.1	-13.5	4.9
χ_{c0}						3.2	3.3	-1.8
NR (S wave)							151.4	-155.0
NR (P wave)								69.4

Interference fit fractions

TABLE XX. Values of the interference fit fractions FF_{jk} for $B^+ \rightarrow K_S^0 K_S^0 K^+$, for the global minimum. The diagonal terms FF_{jj} are the ordinary fit fractions FF_j , which sum to 345%. Values are given in percent.

	$f_0(980)$	$f_0(1500)$	$f_2'(1525)$	$f_0(1710)$	χ_{c0}	NR (S wave)
$f_0(980)$	139.0	-19.2	0.0	-12.4	-1.0	-217.0
$f_0(1500)$		4.0	-0.0	4.1	0.2	9.5
$f_2'(1525)$			5.7	-0.0	-0.0	-0.0
$f_0(1710)$				4.5	0.1	-9.2
χ_{c0}					5.0	-0.0
NR (S wave)						186.5

TABLE XXI. Values of the interference fit fractions FF_{jk} for $B^0 \rightarrow K^+ K^- K_S^0$, for the global minimum. The diagonal terms FF_{jj} are the ordinary fit fractions FF_j , which sum to 188%. The NR component is split into S-wave and P-wave parts for these calculations. Values are given in percent.

	$\phi(1020)$	$f_0(980)$	$f_0(1500)$	$f_{2}^{\prime}(1525)$	$f_0(1710)$	χ_{c0}	NR (S wave)	NR (P wave)
$\phi(1020)$	13.1	0.0	0.0	0.0	0.0	0.0	0.0	0.2
$f_0(980)$		26.3	0.1	-0.0	14.4	-0.7	-81.2	0.0
$f_0(1500)$			2.1	-0.0	5.3	-0.1	-0.7	0.0
$f'_2(1525)$				0.5	-0.0	0.0	0.0	0.0
$f_0(1710)$					16.7	-0.2	-27.0	0.0
X c0						3.4	1.6	0.0
NR (S wave)							114.5	0.0
NR (P wave)								11.7

More results

TABLE VIII. Branching fractions (neglecting interference), *CP* asymmetries, and *CP*-violating phases [see Eq. (11)] for $B^+ \rightarrow K^+K^-K^+$. The $\mathcal{B}(B^+ \rightarrow RK^+)$ column gives the branching fractions to intermediate resonant states, corrected for secondary branching fractions obtained from Ref. [14]. Central values and uncertainties are obtained from solution I. In addition to quoting the overall NR branching fraction, we quote the S-wave and P-wave NR branching fractions separately.

Decay mode	$\mathcal{B}(B^+ \to K^+ K^- K^+) \times FF_j(10^{-6})$	$\mathcal{B}(B^+ \rightarrow RK^+)(10^{-6})$	A _{CP} (%)	$\Delta \phi_j$ (deg)
$\phi(1020)K^+$	$4.48 \pm 0.22 \substack{+0.33 \\ -0.24}$	$9.2 \pm 0.4^{+0.7}_{-0.5}$	$12.8 \pm 4.4 \pm 1.3$	$23 \pm 13^{+4}_{-5}$
$f_0(980)K^+$	$9.4 \pm 1.6 \pm 2.8$		$-8\pm 8\pm 4$	$9\pm7\pm6$
$f_0(1500)K^+$	$0.74 \pm 0.18 \pm 0.52$	$17 \pm 4 \pm 12$		
$f_2'(1525)K^+$	$0.69 \pm 0.16 \pm 0.13$	$1.56 \pm 0.36 \pm 0.30$	$14 \pm 10 \pm 4$	$-2 \pm 6 \pm 3$
$f_0(1710)K^+$	$1.12 \pm 0.25 \pm 0.50$			
$\chi_{c0}K^+$	$1.12 \pm 0.15 \pm 0.06$	$184 \pm 25 \pm 14$		$-4 \pm 13 \pm 2$
NR	$22.8 \pm 2.7 \pm 7.6$		$6.0 \pm 4.4 \pm 1.9$	0 (fixed)
NR (S wave)	$52^{+23}_{-14} \pm 27$			
NR (P wave)	$24^{+22}_{-12} \pm 27$			

Decay mode	$\begin{array}{c} \mathcal{B}(B^+ \rightarrow K^0_S K^0_S K^+) \\ \times FF_j(10^{-6}) \end{array}$	$\mathcal{B}(B^+ \rightarrow RK^+)(10^{-6})$
$f_0(980)K^+$	$14.7 \pm 2.8 \pm 1.8$	
$f_0(1500)K^+$	$0.42 \pm 0.22 \pm 0.58$	$20 \pm 10 \pm 27$
$f_2'(1525)K^+$	$0.61 \pm 0.21^{+0.12}_{-0.09}$	$2.8 \pm 0.9^{+0.5}_{-0.4}$
$f_0(1710)K^+$	$0.48^{+0.40}_{-0.24} \pm 0.11$	
$\chi_{c0}K^+$	$0.53 \pm 0.10 \pm 0.04$	$168 \pm 32 \pm 16$
NR (S wave)	$19.8 \pm 3.7 \pm 2.5$	

TABLE X. Branching fractions (neglecting interference) for $B^+ \rightarrow K_S^0 K_S^0 K^+$. The $\mathcal{B}(B^+ \rightarrow RK^+)$ column gives the branching fractions to intermediate resonant states, corrected for secondary branching fractions obtained from Ref. [14]. Central values and uncertainties are for the global minimum only. See the text for discussion of the variations between the local minima.

Likelihood scans

FIG. 9 (color online). Scan of $2\Delta \ln \mathcal{L}$, with (solid line) and without (dashed line) systematic uncertainties, as a function of $A_{CP}(\phi(1020))$ in $B^+ \rightarrow K^+ K^- K^+$.

FIG. 14 (color online). Scan of $2\Delta \ln \mathcal{L}$, with (solid line) and without (dashed line) systematic uncertainties, as a function of A_{CP} in $B^+ \rightarrow K_S^0 K_S^0 K^+$.

FIG. 10 (color online). Scan of $2\Delta \ln \mathcal{L}$, with (solid line) and without (dashed line) systematic uncertainties, as a function of $A_{CP}(f_0(980))$ in $B^+ \to K^+ K^- K^+$.

Eli Ben-Haim

Results ($B^+ \rightarrow K^+K^-K^+$; $K_SK_SK^+$)

Other $B \rightarrow 3K$ modes

N_{sig} = 632±28 (Purity = 20%) BF = $(10.1\pm0.5\pm0.3)\times10^{-6}$ [χ_{c0} K excluded]

Eli Ben-Haim

CKM Workshop, September 29th 2012

 $A_{CP} = (4 \pm 5 \pm 2)\%$

Other $B \rightarrow 3K$ modes

Results ($\mathbb{B}^0 \rightarrow K_S K_S K^+$)

 $N_{sig} = 632\pm28$ (Purity = 20%) BF = (10.1\pm0.5\pm0.3)×10⁻⁶ [χ_{c0} K excluded]

 $A_{CP} = (4 \pm 5 \pm 2)\%$

Systematic uncertainties

Other $B \rightarrow 3K$ modes

TABLE XV. Summary of systematic uncertainties for $B^+ \rightarrow K^+ K^- K^+$ parameters. Errors on phases, A_{CP} 's, and branching fractions are given in degrees, percent, and units of 10^{-6} , respectively.

Parameter	Line shape	Fixed PDF params	Other	Add resonances	Fit bias	Total
$\Delta \phi(\phi(1020))$	3	1	0	2	2	4
$\Delta \phi(f_0(980))$	2	1	0	6	1	6
$\Delta\phi(f_2'(1525))$	1	0	0	3	1	3
$\Delta \phi(\chi_{c0})$	1	1	0	1	1	2
$A_{CP}(\phi(1020))$	0.2	0.2	1.0	0.3	0.7	1.3
$A_{CP}(f_0(980))$	3	1	1	2	1	4
$A_{CP}(f'_2(1525))$	1	1	1	3	1	4
A_{CP} (NR)	1.1	0.4	1.0	0.8	0.7	1.9
$\mathcal{B}(\phi(1020))$	0.20	0.04	0.11	0.14	0.08	0.29
$\mathcal{B}(f_0(980))$	1.2	0.1	0.3	2.5	0.4	2.8
$\mathcal{B}(f_0(1500))$	0.06	0.02	0.02	0.52	0.02	0.52
$\mathcal{B}(f_{2}'(1525))$	0.05	0.01	0.02	0.07	0.10	0.13
$\mathcal{B}(f_0(1710))$	0.08	0.04	0.03	0.49	0.05	0.50
$\mathcal{B}(\chi_{c0})$	0.01	0.01	0.03	0.02	0.04	0.06
\mathcal{B} (NR)	1.0	0.2	0.5	7.4	0.3	7.6
\mathcal{B} (NR (S wave))	13	2	1	23	2	27
\mathcal{B} (NR (<i>P</i> wave))	10	2	1	25	3	27
${\mathcal B}$ (total)	0.0	0.2	0.8	0.1	0.4	0.9
\mathcal{B} (charmless)	0.0	0.2	0.8	0.1	0.3	0.9

Eli Ben-Haim

Systematic uncertainties

Other $B \rightarrow 3K$ modes

TABLE XV	I. Summary o	f systematic	uncertainties t	for $B^+ \rightarrow$	$K_{S}^{0}K_{S}^{0}K^{+}$	parameters.	Errors on
A_{CP} and bra	nching fraction	s are given i	n percent and	units of 1	10^{-6} , resp	ectively.	

Parameter	Line shape	Fixed PDF params	Other	Add resonances	Fit bias	Total
A _{CP}	0	0	1	0	1	2
$\mathcal{B}(f_0(980))$	1.4	0.3	0.3	1.0	0.4	1.8
$\mathcal{B}(f_0(1500))$	0.05	0.03	0.01	0.57	0.04	0.58
$\mathcal{B}(f_{2}'(1525))$	0.06	0.02	0.02	0.07	0.03	0.10
$\mathcal{B}(f_0(1710))$	0.06	0.04	0.01	0.02	0.08	0.11
$\mathcal{B}(\chi_{c0})$	0.01	0.01	0.01	0.00	0.03	0.04
\mathcal{B} (NR (S wave))	1.3	0.6	0.4	2.0	0.2	2.5
${\mathcal B}$ (total)	0.0	0.2	0.2	0.0	0.0	0.3
\mathcal{B} (charmless)	0.0	0.2	0.2	0.0	0.0	0.3

TABLE XVII. Summary of systematic uncertainties for $B^0 \rightarrow K^+ K^- K_S^0$ parameters. Errors on angles, A_{CP} 's, and branching fractions are given in degrees, percent, and units of 10^{-6} , respectively.

Parameter	Line shape	Fixed PDF params	Other	Add resonances	Fit bias	Total
$\beta_{\rm eff}(\phi(1020))$	2	1	0	2	0	2
$\beta_{\text{eff}}(f_0(980))$	1	1	0	4	0	4
$\beta_{\rm eff}$ (other)	0.7	0.4	0.2	0.8	0.4	1.2
$A_{CP}(\phi(1020))$	2	2	2	2	3	5
$A_{CP}(f_0(980))$	6	3	2	5	2	9
A_{CP} (other)	1	1	1	2	1	3
$\mathcal{B}(\phi(1020))$	0.13	0.05	0.08	0.05	0.03	0.18
$\mathcal{B}(f_0(980))$	1.3	0.3	0.1	2.0	0.1	2.4
$\mathcal{B}(f_0(1500))$	0.04	0.02	0.02	0.10	0.03	0.12
$\mathcal{B}(f_{2}'(1525))$	0.02	0.01	0.00	0.15	0.02	0.16
$\mathcal{B}(f_0(1710))$	0.3	0.1	0.1	0.4	0.1	0.5
$\mathcal{B}(\chi_{c0})$	0.02	0.02	0.02	0.01	0.04	0.06
\mathcal{B} (NR(total))	2	1	1	8	1	9
\mathcal{B} (NR (S wave))	2	1	1	8	1	8
\mathcal{B} (NR (<i>P</i> wave))	0.1	0.2	0.1	0.3	0.1	0.4
${\mathcal B}$ (total)	0.0	0.4	0.7	0.0	0.1	0.8
\mathcal{B} (charmless)	0.1	0.4	0.6	0.0	0.2	0.8

Eli Ben-Haim

$B^0 \rightarrow D^{**}D^{*-}$

Full TD amplitude and R_{\perp}

$$\frac{1}{\Gamma} \frac{\mathrm{d}^{4}\Gamma}{\mathrm{d}\cos\theta_{\mathrm{tr}}\mathrm{d}\cos\theta_{\mathrm{tr}}\mathrm{d}\phi_{\mathrm{tr}}\mathrm{d}t} = \frac{9}{16\pi} \frac{1}{|A_{0}|^{2} + |A_{\parallel}|^{2} + |A_{\perp}|^{2}} \times \left\{ 2\cos^{2}\theta_{1}\sin^{2}\theta_{\mathrm{tr}}\cos^{2}\phi_{\mathrm{tr}}|A_{0}|^{2} + \sin^{2}\theta_{1}\sin^{2}\theta_{\mathrm{tr}}\sin^{2}\phi_{\mathrm{tr}}|A_{\parallel}|^{2} + \sin^{2}\theta_{1}\cos^{2}\theta_{\mathrm{tr}}|A_{\perp}|^{2} - \sin^{2}\theta_{1}\sin^{2}\theta_{\mathrm{tr}}\sin\phi_{\mathrm{tr}}\operatorname{Im}(A_{\parallel}^{*}A_{\perp}) + \frac{1}{\sqrt{2}}\sin^{2}\theta_{\mathrm{tr}}\sin^{2}\theta_{\mathrm{tr}}\sin^{2}\phi_{\mathrm{tr}}\operatorname{Re}(A_{0}^{*}A_{\parallel}) - \frac{1}{\sqrt{2}}\sin^{2}\theta_{\mathrm{tr}}\cos\phi_{\mathrm{tr}}\operatorname{Im}(A_{0}^{*}A_{\perp}) \right\}, \quad (2)$$
where A_{tr} with $k = \parallel 0$ + represent time-dependent

where A_k , with $k = ||, 0, \bot$, represent time-dependent amplitudes given by

$$A_k(t) = \frac{\sqrt{2}A_k(0)}{1+|\lambda_k|^2} e^{-imt} e^{-t/2\tau_{B^0}} \\ \times \left(\cos\frac{\Delta m_d t}{2} + i\eta_{CP}^k \lambda_k \sin\frac{\Delta m_d t}{2}\right).$$
(3)

$$R_{\perp} = \frac{|A_{\perp}^{0}|^{2}}{|A_{0}^{0}|^{2} + |A_{\parallel}^{0}|^{2} + |A_{\perp}^{0}|^{2}}$$
$$CP = +1 \text{ for } A_{\parallel}, A_{0}$$
$$CP = -1 \text{ for } A_{\perp}$$

Eli Ben-Haim

PDFs

- Overall PDF for the on-Peak sample is the sum of three components $\begin{array}{l} \underline{\text{signal}} \\ P_{\text{on}} = f_{B\overline{B}} \overline{\left[f_{\text{sig}}P_{\text{sig}} + (1 - f_{\text{sig}})P_{\text{comb}}\right]} + (1 - f_{B\overline{B}})P_{q\overline{q}} \\ B\overline{B} \\ \hline \end{array} \qquad P_{\text{off}} = P_{q\overline{q}} \\ \hline \end{array}$
- Each component is the product of a kinematical and a Δt part

$$P_{i}(m_{\text{rec}}, F, \Delta t, \sigma_{\Delta t}, S_{\text{tag}}) = \mathcal{M}_{i}(m_{\text{rec}}) \mathcal{F}_{i}(F) T_{i}'(\Delta t, \sigma_{\Delta t}, S_{\text{tag}})$$

"KIN" "\Delta t"
• $\Delta t \text{ PDF}: T_{i}'(\Delta t, \sigma_{\Delta t}, S_{\text{tag}}) = \int d\Delta t_{\text{true}} T_{i}(\Delta t_{\text{true}}, S_{\text{tag}}) \mathcal{R}_{i}(\Delta t - \Delta t_{\text{true}}, \sigma_{\Delta t})$

■ Signal **∆**t:

$$T_{\text{sig}} = \frac{1}{4\tau_b} e^{-|\Delta t_{\text{true}}|/\tau_b} \cdot \left\{ (1 - S_{\text{tag}} \Delta \omega (1 - \alpha)) + S_{\text{tag}} (1 - 2\omega) (1 - \alpha) \right\}$$
$$\cdot \left[C \cos(\Delta m_d \Delta t_{\text{true}}) + S \sin(\Delta m_d \Delta t_{\text{true}}) \right] \right\}$$

$$S = -\frac{2\Im m(\lambda)}{1+|\lambda|^2} \qquad C = \frac{1-|\lambda|^2}{1+|\lambda|^2} \qquad \lambda = \frac{q}{p}\frac{A}{A}$$

Eli Ben-Haim

Mis-tag due to unreconstructed D^0 tracks $B^0 \rightarrow D^{*+}D^{*-}$

- Partial reconstruction introduces an additional dilution D = (1-α), where α is the fraction of tags coming from the missing D⁰
- This fraction can be obtained from data with some input from signal MC
- Can be reduced with a cut on the cosine of the opening angle between the tagging track and the missing D0 direction θ_{tag}

Figure 2.1: Signal Monte Carlo distributions of $\cos(\vartheta_{\text{tag}})$ for tracks from the missed D^0 (black) and from the other B^0 (red); lepton tags on the left, kaon tags on the right.

	# of	# of events			
	kaon tag	lepton tag			
on-peak	61179	20855			
off-peak	1025	51			
continuum	$9814 \pm 307 \pm 196$	$488 \pm 68 \pm 10$			
$B\overline{B}$	51365 ± 364	20367 ± 69			
$N_{ m sig}$	1129 ± 218	3843 ± 397			

Systematic uncertainties

TABLE V: Systematic uncertainties evaluated for C and S. Uncertainties in the top section are independent for kaon and lepton tags, those in the bottom section are correlated.

	kaon tags		lepto	lepton tags	
Systematic source	C	S	C	S	
Kinematic fit parameters	0.013	0.034	0.023	0.057	
Continuum Δt fit parameters	0.002	0.001	_	_	
Signal s_w	0.0002	0.0007	_	_	
$B\overline{B}$ combinatorial s_w	0.017	0.0007	0.001	0.005	
Signal tag side (ω)	0.012	0.045	0.002	0.002	
Mistag difference $(\Delta \omega)$	0.007	0.0004	0.007	0.0009	
Signal <i>CP</i> side (α_{D^0})	0.006	0.017	0.002	0.002	
Peaking background	0.0002	0.0003	0.0002	0.00004	
Fit bias (MC statistics)	0.011	0.018	0.012	0.019	
Tag interference from DCSD	0.030	0.002	_	_	
B^0 lifetime variation	0.0002	0.002	0.0003	0.004	
Δm_d variation	0.0003	0.001	0.0004	0.002	
SVT misalignment	0.003	0.007	0.002	0.004	
Boost uncertainty	0.002	0.006	0.005	0.007	
Total	0.042	0.062	0.028	0.061	

CKM Workshop, September 29th 2012

 $B^0 \rightarrow D^{*+}D^{*}$