Time-independent γ measurements using B^+ \rightarrow Dh⁺ at LHCb

Sneha Malde

University of Oxford, on behalf of the LHCb Collaboration

Sneha Malde, CKM, Cincinnati, OH, USA Sept 2012 1

Current experimental status

CKM matrix parameterises quark couplings

$$
\gamma = -\arg\left(\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right)
$$

Does α +β+γ = 180° ?

 γ is the least well know angle

Precision measurement of γ can be achieved at LHCb

Goal: Measure γ in tree and loop decays

Overview for this talk

This talk gives the results using the following decays:

```
B<sup>+</sup>\rightarrowDh<sup>+</sup>, where h= K,\pi
```
$D\rightarrow K_{\rm s}$ hh, D $\rightarrow \pi\pi$, D \rightarrow KK, D \rightarrow K $\pi\pi\pi$

Other time independent results using $\mathsf{B}^0\blacktriangleright \mathsf{DK}^*$, $\mathsf{B}^0\blacktriangleright \mathsf{DKK}$ B^+ DK $\pi\pi$ covered in Mike Williams talk tomorrow (WG V)

B-DK decays

 $b \rightarrow c$ (favoured)

Sensitivity to γ from b \rightarrow c and b \rightarrow u interference

Require D^0 and D^0 to decay to same final state

Number of D final states considered.

Similarities between modes - many common analysis themes in extracting the observables.

LHCb Detector

Vertex Locator RICH Detectors

Vertex Locator

Find B and D secondary vertices

RICH Detectors

Provide separation between kaons and pions

Selection

Similar selection for each mode

Every mass hypothesis combination $B\rightarrow [X]_D$ h, is reconstructed.

h=K,π ; X=hh^('),Κπππ, K_Shh

Analyses use full 2011 dataset 1.0 fb-1.

Useful variables include:

•Transverse momenta

•Impact parameters

•Flight distances

•Vertex quality

Further selection applied to remove specific backgrounds

e.g Cut on D flight distance to remove charmless bkg like $B\rightarrow hhh$.

Vetos to remove other B decays, and misreconstructed D decays as necessary.

Mass parameterisation

Similar parameterisation used for all modes. Here I show the favoured $D \rightarrow K_{\pi}$ final state

•Particle identification information on h from B divides the data.

•Favoured decay modes dominate statistics and constrain the shapes

•mis-ID rates fix the yield of the mis-ID component relative to the yield in the opposite plot.

•Very low combinatoric levels.

•Partially reconstructed low mass background shapes determined from MC. Same shape for all modes as the

B^{\pm} \rightarrow DK^{\pm}, D \rightarrow K $^{+}$ π^{\pm} "ADS"

Common final state Kπ favoured & suppressed combination

Construct observables of ratios of rates. Partial cancellation of systematic uncertainties

$$
R_{ADS} = \frac{\Gamma(B^{\pm} \to [\pi K]_D K^{\pm})}{\Gamma(B^{\pm} \to [K\pi]_D K^{\pm})} \qquad R_{ADS} = \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma}{1 + r_B^2 r_D^2 + 2r_B r_D \cos(\delta_B - \delta_D) \cos \gamma}
$$

Sneha Malde, CKM, Cincinnati, OH, USA Sept 2012 8

B^{\pm} \rightarrow DK⁺, D \rightarrow K⁺ π^{\pm} π^{\mp} π^{\pm} "ADS"

Similar to $D\rightarrow K\pi$

Multibody decay is treated inclusively which leads to introduction of different parameters r_D , δ_D , and R^{K3π}. Measured at CLEO (PRD 80 031105 (2009))

$$
R_{ADS}^{K3\pi} = \frac{r_B^2 + r_D^{K3\pi^2} + 2r_B r_D^{K3\pi} R^{K3\pi}}{1 + r_B^2 r_D^{K3\pi^2} + 2r_B r_D^{K3\pi} R^{K3\pi}} \cos(\delta_B + \delta_D^{K3\pi}) \cos\gamma
$$

$$
A_{ADS}^{K3\pi} = \frac{2r_B r_D^{K3\pi} R^{K3\pi}}{R_{ADS}^{K3\pi}} \sin(\delta_B + \delta_D^{K3\pi}) \sin\gamma
$$

Provides further information than $D\rightarrow K\pi$ alone and has ability to reduce the trigonometric ambiguities when considering just one decay mode

In addition, although CPV is expected to be small in $B\rightarrow D\pi$ similar observables can be measured in this mode for all D modes considered.

Observation of the suppressed decay in $B\rightarrow DK$ & $B\rightarrow D\pi$, $D\rightarrow K\pi\pi\pi$

LHCb-CONF-2012-30

Split by charge for CPV

LHCb-CONF-2012-30

B^{\pm} \rightarrow [π K]_Dh^{\pm} (ADS modes)

First observation of ADS (opposite side kaons) B \rightarrow DK [10σ significance] **Asymmetry in BDK ADS 4.0**σ

Hint of asymmetry in $B\rightarrow D\pi$ ADS 2.4 σ

Sneha Malde, CKM, Cincinnati, OH, USA Sept 2012 **12 PLB 712 203 (2002)** 12 12

PLB 712 203 (2002)

B^{\pm}] h h \bar{h}^{\pm} "GLW"

Results from the two body modes

$B\rightarrow DK, D\rightarrow K_shh$ "GGSZ"

•Both $D\rightarrow K_{\rm eff}$ and $D\rightarrow K_{\rm s}$ KK analysed.

•Analysis not treated as "inclusive". [very little sensitivity]

•Decay analysed on the Dalitz plot.

•Complication: The strong phase difference between D^0 and $\overline{D^0}$ varies over the plot.

•Model-independent approach taken where the strong phase information comes from analysis at CLEO.

•Well defined systematic errors compared to using an amplitude model for D decay

Sneha Malde, CKM, Cincinnati, OH, USA Sept 2012 **16 arxiv: 1209.5869** 15

Principles of measurement

Divide the Dalitz plot into regions, and determine the yield of B^+ & B^- in each.

 $N_{+i}^{+} = n_{B^{+}}[K_{-i} + (x_{+}^{2} + y_{+}^{2})K_{+i} + 2\sqrt{K_{+i}K_{-i}}(x_{+}c_{+i} - y_{+}s_{+i})]$ $x_{\pm} = r_B \cos(\delta_B \pm \gamma), y_{\pm} = r_B \sin(\delta_B \pm \gamma)$

 K_{i} - flavour tagged yield in bin i, $\mathsf{c}_{\mathsf{i}}\text{,}\mathsf{s}_{\mathsf{i}}$ - CLEO inputs

Essentially a counting experiment in each bin

Data from $D\rightarrow K_SKK$ easily added as two additional bins. x, y parameters are common to both modes.

Signal parameterisation

Sneha Malde, CKM, Cincinnati, OH, USA Sept 2012 **19 arxiv: 1209.5869** 17

arXiv: 1209.5869

Simultaneous binned fit & results on x and y

•Reconstruction efficiency varies over Dalitz plot

•Use $D\pi$ yield in each bin as a control and compare to flavour tagged expectation to derive the efficiency.

•Assumes no CPV - hence no observables determined in D_{π} modes.

•Don't determine the yield of DK in each bin separately:

•Simultaneous fit of each bin of $K_{\rm eff}$ and K_sKK data to determine best x and y to fit the distribution of events over the Dalitz plot.

•Likelihood scan of statistical error on x and y shown. Bisector between central points and origin is γ

Results & systematic uncertainties

Uncertainties: statistical, experimental systematics, CLEO inputs.

 $x_{-} = (0.0 \pm 4.3 \pm 1.5 \pm 0.6) \times 10^{-2}$, $y_{-} = (2.7 \pm 5.2 \pm 0.8 \pm 2.3) \times 10^{-2}$,

 $x_+ = (-10.3 \pm 4.5 \pm 1.8 \pm 1.4) \times 10^{-2}$, $y_+ = (-0.9 \pm 3.7 \pm 0.8 \pm 3.0) \times 10^{-2}$,

•Results on x, y have similar precision to those from Babar and Belle

•Leading source of experimental systematic uncertainty is the assumption of no CPV in $B\rightarrow D\pi$ when determining efficiency.

•Hints from the ADS analysis suggest this may be larger than predicted, hence we have been conservative.

> - Not limiting in future as intend to determine efficiency from flavour tagged samples directly in future.

•CLEO input uncertainty expected to reduce with increased B statistics.

Interpretation on γ

Use a frequentist Feldman-Cousins ordering to determine (stat+syst) confidence intervals for γ , r_B , δ_B set constraints

Results:
$$
\gamma = 44^{+43^{\circ}}_{-38}, \delta_B = 137^{+35^{\circ}}_{-46}, r_B = 0.07 \pm 0.04
$$

Two-fold ambiguity remains

Low r_B value increases the uncertainty on γ

arXiv: 1209.5869

Conclusions

- •**First observation** of the suppressed ADS decay in B \rightarrow DK and B \rightarrow D π where $D \rightarrow K \pi \pi \pi$
- •Measurement of observables related to γ in B \rightarrow Dh, D \rightarrow K $\pi\pi\pi$
- •Provides new information to add to previous $B\rightarrow Dh$, $D\rightarrow hh$ results
- **•Model independent analysis of B→DK, D→Kshh**
- •Can set loose constraints on γ alone with D \rightarrow K_shh
- •Each observable provides new and different information on the phyiscs parameters of interest.
- •**What would be the power of combining all these observables together?**
- •**Next talk….**

Sneha Malde, CKM, Cincinnati, OH, USA Sept 2012 22 22 22 22 22 22 22 22 23 24 25 26 27 27 27 27 27 27 22

Cross checks on the fit results

Use alternate fit to determine yield of $B\rightarrow DK$ in each bin separately & compare to the expectation from the fitted results.

Good agreement between fit and prediction

Difference B⁺ - B⁻; Grey shading shows no CPV hypothesis (scatter due to statistical uncertainty on efficiency)

B-DK, D->CP eigenstates "GLW"

Both D^0 and D^0 decay to CP eigenstates KK, $\pi\pi$ [CP even]

$$
\frac{\langle B^- \to \overline{D^0} K^- \rangle}{\langle B^- \to D^0 K^- \rangle} = r_B e^{i(\delta_B - \gamma)}
$$

 $r_{\rm B}$ ~0.1 Interference ~10%

$$
R_{CP+} = \frac{\langle \Gamma(B^* \to [\pi \pi]_D K^*), \Gamma(B^* \to [KK]_D K^*) \rangle}{\Gamma(B^* \to [K \pi]_D K^*)} \qquad A_{CP+} = \frac{\Gamma(B^- \to D_{CP} K^-) - \Gamma(B^* \to D_{CP} K^*)}{\Gamma(B^- \to D_{CP} K^-) + \Gamma(B^* \to D_{CP} K^*)}
$$

\nfavoured mode
\n
$$
R_{CP+} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma \qquad A_{CP+} = \frac{2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma}
$$