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Hadronic top quark pair production is a “QCD process” 

2 Calculational basis

At leading order the production of tt̄ pairs in pp̄ collisions originates, via the strong interaction,
from the partonic processes qq̄ → tt̄ and gg → tt̄, which yield the O(α2

s) of the (integrated) cross
section, i.e. the denominator of AFB in (1) and (2). The antisymmetric cross section, the numerator
of AFB , starts at O(α3

s) and gets contributions from qq̄ → tt̄(g) with q = u, d (the processes from
other quark species, after convolution with the parton distributions and summation, are symmetric
under yt → −yt and thus do not contribute to AFB) as well as from qg → tt̄q and q̄g → tt̄q̄.

Writing the numerator and the denominator of AFB (for either of the definitions (1) and (2))
in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (5)

The terms up to one-loop (D0, D1, N1) have been calculated [9, 10, 11, 12, 13, 14], [15, 16, 17, 18],
[5], whereas only some parts of N2 are currently known [19, 20]. The inclusion of the N1D1/D0

term without N2 would hence be incomplete, and we have chosen to use only the lowest order cross
section in the denominator and the O(α3

s) term in the numerator, as done in [5].
Rewriting N and D to include the EW contributions yields the following expression for the

leading terms,

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (6)

where the incomplete O(α2
s) part has been dropped. In the following we (re-)evaluate the three

contributions on the r.h.s. of (6).
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Figure 1: Electroweak and QCD Born diagrams

Figure 1 contains all the tree level diagrams for the partonic subprocesses qq̄ → tt̄ and gg → tt̄
(Higgs exchange is completely negligible). The squared terms |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 yield
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sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1
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D0 of the LO cross section; the O(α2) terms arise from |Mqq̄→γ→tt̄ +Mqq̄→Z→tt̄|
2, which generate

a purely-electroweak antisymmetric differential cross section, in the parton cms given by

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

, (7)

κ =
1

4 sin2(θW ) cos2(θW )
, Vq = T 3

q − 2Qq sin
2(θW ), Aq = T 3

q .

In AFB (6) this leads to the term Ñ0. The complementary symmetric cross section provides the D̃0

term in the denominator, which does not contribute in the order under consideration. Interference
of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because of the color structure1.

The O(α3
s) terms that contributes to N arise from four classes of partonic processes: qq̄ → tt̄,

qq̄ → tt̄g, qg → tt̄q and q̄g → tt̄q̄. In the first case the origin is the interference of QCD one-loop
and Born amplitudes; the other processes correspond to real-particle emissions. All one-loop vertex
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Figure 2: QCD box diagrams

corrections and self-energies do not generate any asymmetric term, hence only the box diagrams
(Figure 2) are relevant. The box integrals are free of ultraviolet and collinear divergences, but they
involve infrared singularities which are cancelled after adding the integrated real-gluon emission
contribution qq̄ → tt̄g, shown in Figure 3. For the corresponding relevant gluon-radiation part
only the interference of initial and final state gluon radiation has to be taken into account, yielding
another antisymmetric cross section. The processes of real-quark radiation qg → tt̄q and q̄g → tt̄q̄

q

q

t

t

g
g

t q

q

t

t
g

g

t

q

q

t

t

g

q

g q

q

t
t

g
q

g

Figure 3: Real emission of gluons at O(α3
s)

1For qq̄ → tt̄ there are also O(α) W -mediated t-channel diagrams with q = d, s, b, but they are strongly suppressed
by the CKM matrix or by parton distributions (q = b).
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Ñ0

D0
+ · · · (6)

where the incomplete O(α2
s) part has been dropped. In the following we (re-)evaluate the three

contributions on the r.h.s. of (6).

q

q

t

tγ
q

q

t

tZ

q

q

t

tg

g

g

t

tg

g

g

t

t
t

g

g

t

tt

Figure 1: Electroweak and QCD Born diagrams

Figure 1 contains all the tree level diagrams for the partonic subprocesses qq̄ → tt̄ and gg → tt̄
(Higgs exchange is completely negligible). The squared terms |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
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sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1
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corrections and self-energies do not generate any asymmetric term, hence only the box diagrams
(Figure 2) are relevant. The box integrals are free of ultraviolet and collinear divergences, but they
involve infrared singularities which are cancelled after adding the integrated real-gluon emission
contribution qq̄ → tt̄g, shown in Figure 3. For the corresponding relevant gluon-radiation part
only the interference of initial and final state gluon radiation has to be taken into account, yielding
another antisymmetric cross section. The processes of real-quark radiation qg → tt̄q and q̄g → tt̄q̄
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1For qq̄ → tt̄ there are also O(α) W -mediated t-channel diagrams with q = d, s, b, but they are strongly suppressed
by the CKM matrix or by parton distributions (q = b).
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Figure 1 contains all the tree level diagrams for the partonic subprocesses qq̄ → tt̄ and gg → tt̄
(Higgs exchange is completely negligible). The squared terms |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
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The EW contribution to top pair production
- Cross section, charge asymmetry

- LHC, Tevatron

- QED, Weak

- Differential and integrated quantities

-           ,            , ... D0 of the LO cross section; the O(α2) terms arise from |Mqq̄→γ→tt̄ +Mqq̄→Z→tt̄|
2, which generate

a purely-electroweak antisymmetric differential cross section, in the parton cms given by
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)[

κ
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, (7)
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1

4 sin2(θW ) cos2(θW )
, Vq = T 3

q − 2Qq sin
2(θW ), Aq = T 3

q .

In AFB (6) this leads to the term Ñ0. The complementary symmetric cross section provides the D̃0

term in the denominator, which does not contribute in the order under consideration. Interference
of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because of the color structure1.

The O(α3
s) terms that contributes to N arise from four classes of partonic processes: qq̄ → tt̄,

qq̄ → tt̄g, qg → tt̄q and q̄g → tt̄q̄. In the first case the origin is the interference of QCD one-loop
and Born amplitudes; the other processes correspond to real-particle emissions. All one-loop vertex

q

q

t

t

q

g

g

t

q

q

t

t

q

g

g

t

Figure 2: QCD box diagrams

corrections and self-energies do not generate any asymmetric term, hence only the box diagrams
(Figure 2) are relevant. The box integrals are free of ultraviolet and collinear divergences, but they
involve infrared singularities which are cancelled after adding the integrated real-gluon emission
contribution qq̄ → tt̄g, shown in Figure 3. For the corresponding relevant gluon-radiation part
only the interference of initial and final state gluon radiation has to be taken into account, yielding
another antisymmetric cross section. The processes of real-quark radiation qg → tt̄q and q̄g → tt̄q̄
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Figure 3: Real emission of gluons at O(α3
s)

1For qq̄ → tt̄ there are also O(α) W -mediated t-channel diagrams with q = d, s, b, but they are strongly suppressed
by the CKM matrix or by parton distributions (q = b).
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yield contributions to AFB which are numerically not important [5].
In order to analyze the electroweak O(α2

sα) terms, it is useful to separate the QED contributions
involving photons from the weak contributions with Z bosons. In the QED sector we obtain the
O(α2

sα) contributions to N from three classes of partonic processes: qq̄ → tt̄, qq̄ → tt̄g and qq̄ → tt̄γ.
The first case is the virtual-photon contribution, which can be obtained from the QCD analogue,
namely the O(α3

s) interference of box and tree-level amplitudes, by substituting successively each
one of the three internal gluons by a photon, as displayed in Figure 4.
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Figure 4: Different ways of QED–QCD interference at O(α2
sα)

The essential differences between the calculation of the O(α3
s) and of QED O(α2

sα) terms are
the coupling constants and the appearance of the SU(3) generators in the strong vertices. Summing
over color in the final state and averaging in the initial state we find for the virtual contributions
to the antisymmetric cross section the following ratio,
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that can be expressed in terms of two factors F tt̄
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QCD depending only on coupling constants

and color traces,
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6g4se

2

9
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F tt̄
QCD contains two different color structures and the result depends on d2 = dABCdABC = 40

3 ,

which arises from Tr(tAtBtC) = 1
4 (if

ABC + dABC). F tt̄
QED instead depends on the charges of the

incoming quarks (Qq) and of the top quark (Qt), together with ntt̄ = 3 corresponding to Figure 4.
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2 Calculational basis

At leading order the production of tt̄ pairs in pp̄ collisions originates, via the strong interaction,
from the partonic processes qq̄ → tt̄ and gg → tt̄, which yield the O(α2

s) of the (integrated) cross
section, i.e. the denominator of AFB in (1) and (2). The antisymmetric cross section, the numerator
of AFB , starts at O(α3

s) and gets contributions from qq̄ → tt̄(g) with q = u, d (the processes from
other quark species, after convolution with the parton distributions and summation, are symmetric
under yt → −yt and thus do not contribute to AFB) as well as from qg → tt̄q and q̄g → tt̄q̄.

Writing the numerator and the denominator of AFB (for either of the definitions (1) and (2))
in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
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sD1 + · · ·
=

αs

D0
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The terms up to one-loop (D0, D1, N1) have been calculated [9, 10, 11, 12, 13, 14], [15, 16, 17, 18],
[5], whereas only some parts of N2 are currently known [19, 20]. The inclusion of the N1D1/D0

term without N2 would hence be incomplete, and we have chosen to use only the lowest order cross
section in the denominator and the O(α3

s) term in the numerator, as done in [5].
Rewriting N and D to include the EW contributions yields the following expression for the

leading terms,

AFB =
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D
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where the incomplete O(α2
s) part has been dropped. In the following we (re-)evaluate the three

contributions on the r.h.s. of (6).
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yield contributions to AFB which are numerically not important [5].
In order to analyze the electroweak O(α2

sα) terms, it is useful to separate the QED contributions
involving photons from the weak contributions with Z bosons. In the QED sector we obtain the
O(α2

sα) contributions to N from three classes of partonic processes: qq̄ → tt̄, qq̄ → tt̄g and qq̄ → tt̄γ.
The first case is the virtual-photon contribution, which can be obtained from the QCD analogue,
namely the O(α3

s) interference of box and tree-level amplitudes, by substituting successively each
one of the three internal gluons by a photon, as displayed in Figure 4.
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The essential differences between the calculation of the O(α3
s) and of QED O(α2

sα) terms are
the coupling constants and the appearance of the SU(3) generators in the strong vertices. Summing
over color in the final state and averaging in the initial state we find for the virtual contributions
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apart from the physical fields, also unphysical fields contribute. In particular we have
to consider the contribution from the fields denoted by !, ", which are related to the
longitudinal degrees of freedom of the gauge bosons. In principle in the R#-gauge also
ghosts need to be considered to cancel unphysical degrees of freedom. To the order
where we are working, the ghosts do not contribute. In addition, given that we neglect
the masses of the u,d,c,s quarks the unphysical fields " and ! only contribute in the
vertex corrections to the final gluon–top–antitop vertex. The renormalization is done in
renormalized perturbation theory. That is the bare Lagrangian L is rewritten in terms
of renormalized fields and couplings:

L ($0,A0,m0,g0) = L (Z1/2$ $R,Z
1/2
A AR,ZmmR,ZggR)

= L ($R,AR,mR,gR)+L ct($R,AR,mR,gR). (II.1)

The contribution L ($R,AR,mR,gR) gives just the ordinary Feynman rules, but with
the bare couplings replaced by the renormalized ones. Some sample diagrams are
shown in Fig. II.1. The complete list of Feynman rules can be found for example in

W,Z W,Z,H,",!

Z

Figure II.1: Sample diagrams for the virtual corrections.

Ref. [19]. The second contribution in Eq. (II.1) L ct($R,AR,mR,gR) yields the counter-
terms, which render the calculation ultraviolet (UV)-finite. The diagrams needed here
are shown in Fig. II.2. Note that although the electroweak corrections appear here
in one-loop approximation, they are the leading-order electroweak contribution. The
interference term of the amplitude M (qq̄→ %,Z → tt̄) with the corresponding QCD
amplitude vanishes as a consequence of the specific colour structure. Terms of order
&s& are therefore absent. Thus no renormalization of the coupling constants is required
at the order under consideration here. This is different from an electroweak correction

2

III. Real corrections

Z Z

Figure III.1: Sample diagrams for the real corrections.

As mentioned in the previous section the contribution from the box diagrams is IR-
divergent. To render the corrections to the total cross section finite we need to include
the real corrections at the same order. A few sample diagrams are shown in Fig. III.1.
The diagram containing the triple gluon vertex (see Fig. III.2) does not contribute be-
cause of the colour structure. The calculation of the real corrections is straightforward.
The phase-space integration over the regions where the emitted gluon is soft will pro-
duce the IR singular contribution needed to cancel the corresponding singularities in
the virtual corrections. Note that owing to the colour structure no collinear singularities
appear, because the interference between the two diagrams, where the gluon is emitted
from the initial state, vanishes. As a consequence no factorization of initial-state sin-
gularities is required. To extract the IR divergences, we use the so-called subtraction
method [21, 22, 23]. The basic idea of the subtraction method is to add and subtract a
term in such a way that the singularities appearing in the real corrections are matched
point-wise and that the term is simple enough to be integrated analytically in d dimen-
sions over the full phase space. Given that the same term is added and subtracted, this
procedure does not change the result. The analytically integrated term is combined
with the virtual corrections, while the unintegrated term is combined with the real cor-
rections. Given that the term combined with the real corrections match point-wise the
singularities of the squared matrix element, the integration can be done numerically
in 4 dimensions. Because of the universal structure of soft and mass singularities in
QCD, the subtraction terms can be constructed in a very general way. For further de-
tails on the subtraction method, we refer to Refs. [21, 23]. Here we just reproduce the
necessary equations required for the case at hand.

Using the subtraction method the NLO contribution to the cross section can be sym-

11

obtain the well-known leading order differential cross section:

d!LO
dz

= !0
N2(1+"2z2)−2
N(1−"2z2)2

(

1−"4z4 +2"2(1−"2)(1− z2)
)

. (II.1)

where N is the number of colours, #s the strong coupling constant and " the velocity
of the top-quark in the partonic centre-of-mass system:

"=

√

1− 4mt2
s

(II.2)

(s denotes the partonic centre-of-mass energy squared). The cosine of the scattering
angle is denoted by z. Here and in what follows it is convenient to use the abbreviation

!0 =
$#2

s
4

1
N2 −1

"
s
. (II.3)

A factor 1/(4(N2−1)2) from averaging over the incoming spins and colour is included
in the result above.

%

a)

%

b)

%

c)

%

d)

Z, &, H
t, b

e)

Figure II.2: Sample diagrams for the virtual corrections. % stands for all contributions
from gauge boson, goldstone boson and Higgs exchange.

For the calculation of the next-to-leading order weak corrections we use the ’t Hooft-
Feynman gauge (R'-gauge) with the gauge parameters 'i set to 1. The longitudinal

3

2 Calculational basis

At leading order the production of tt̄ pairs in pp̄ collisions originates, via the strong interaction,
from the partonic processes qq̄ → tt̄ and gg → tt̄, which yield the O(α2

s) of the (integrated) cross
section, i.e. the denominator of AFB in (1) and (2). The antisymmetric cross section, the numerator
of AFB , starts at O(α3

s) and gets contributions from qq̄ → tt̄(g) with q = u, d (the processes from
other quark species, after convolution with the parton distributions and summation, are symmetric
under yt → −yt and thus do not contribute to AFB) as well as from qg → tt̄q and q̄g → tt̄q̄.

Writing the numerator and the denominator of AFB (for either of the definitions (1) and (2))
in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (5)

The terms up to one-loop (D0, D1, N1) have been calculated [9, 10, 11, 12, 13, 14], [15, 16, 17, 18],
[5], whereas only some parts of N2 are currently known [19, 20]. The inclusion of the N1D1/D0

term without N2 would hence be incomplete, and we have chosen to use only the lowest order cross
section in the denominator and the O(α3

s) term in the numerator, as done in [5].
Rewriting N and D to include the EW contributions yields the following expression for the

leading terms,

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (6)

where the incomplete O(α2
s) part has been dropped. In the following we (re-)evaluate the three

contributions on the r.h.s. of (6).
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Figure III.4: Electroweak corrections to top-quark pair production at the Tevatron
(upper figure) and the LHC (lower figure) for three different Higgs masses (mH =
120 GeV (full line), mH = 200 GeV (dashed), mH = 1000 GeV (dashed-dotted)).
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Figure III.4: Electroweak corrections to top-quark pair production at the Tevatron
(upper figure) and the LHC (lower figure) for three different Higgs masses (mH =
120 GeV (full line), mH = 200 GeV (dashed), mH = 1000 GeV (dashed-dotted)).
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−24
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σNLO, leading 5.49+0.78
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−31

σNNLO, approx (scheme A) 6.14+0.49
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+0.31
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−8 369+34

−30
+16
−16 821+71

−65
+27
−29

σNNLO, approx (scheme B) 6.05+0.43
−0.50

+0.31
−0.23 139+9

−9
+7
−7 349+23

−23
+15
−15 773+47

−50
+25
−27

Table 3: Results for the total cross section in pb, using the default choice µf = 400GeV.
The first set of errors refers to perturbative uncertainties associated with scale variations, the
second to PDF uncertainties. The most advanced prediction is the NLO+NNLL expansion
highlighted in gray.
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−32
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σNNLO, approx (scheme B) 6.55+0.32
−0.41
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+8
−8 377+28

−23
+16
−18 832+65
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+31
−29

Table 4: Same as Table 3, but with the “educated” scale choice µf = mt.

10–15% enhancement over the fixed-order NLO result. A more important effect is that the
resummation stabilizes the scale dependence significantly. Concerning the approximate NNLO
schemes, the results from scheme A are noticeably higher than those from scheme B, but these
differences are well inside the quoted errors. Since the two schemes differ only by terms
proportional to δ(1− z), this gives an indication of the size of the unknown constant terms.

To some extent, the enhancement effect resulting from the resummation of the leading
threshold terms can be mimicked using fixed-order results evaluated at a significantly lower
factorization and renormalization scale µf . Such an “educated” scale choice, which is often
adopted in the literature on fixed-order calculations, is µf = mt. Table 4 shows the cross-
section predictions obtained in this case. The fixed-order results are indeed significantly
enhanced with this scale choice. The resummed predictions, on the other hand, do not change
much compared to those shown in Table 3.
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enhanced with this scale choice. The resummed predictions, on the other hand, do not change
much compared to those shown in Table 3.
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Errors from scale variation and PDFs are bigger than EW corrections  



Differential distributions
10

-7

10
-5

10
-3

10
-1

10

1000 2000 3000 4000 5000

sum

gg ! tt–

qq– ! tt–

Mtt [GeV]

d"
 / 

dM
tt  

  [
pb

 / 
G

eV
]

LHC

10
-7

10
-5

10
-3

10
-1

10

0 500 1000 1500 2000

sum

gg ! tt–

qq– ! tt–

pT [GeV]

d"
 / 

dp
T  

  [
pb

 / 
G

eV
]

LHC

Figure III.5: Leading-order differential cross section for LHC as a function of pT and
Mtt̄ . Shown is the sum (full) and the contributions from gluon fusion (dashed) and
quark–antiquark annihilation (dotted).
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Figure III.6: Leading-order differential cross section for Tevatron as a function of pT
and Mtt̄ . Shown is the sum (full) and the contributions from gluon fusion (dashed) and
quark–antiquark annihilation (dotted).
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QED corrections to the cross section
Hollik, Kollar  ’07

yield contributions to AFB which are numerically not important [5].
In order to analyze the electroweak O(α2

sα) terms, it is useful to separate the QED contributions
involving photons from the weak contributions with Z bosons. In the QED sector we obtain the
O(α2

sα) contributions to N from three classes of partonic processes: qq̄ → tt̄, qq̄ → tt̄g and qq̄ → tt̄γ.
The first case is the virtual-photon contribution, which can be obtained from the QCD analogue,
namely the O(α3

s) interference of box and tree-level amplitudes, by substituting successively each
one of the three internal gluons by a photon, as displayed in Figure 4.
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Figure 4: Different ways of QED–QCD interference at O(α2
sα)

The essential differences between the calculation of the O(α3
s) and of QED O(α2

sα) terms are
the coupling constants and the appearance of the SU(3) generators in the strong vertices. Summing
over color in the final state and averaging in the initial state we find for the virtual contributions
to the antisymmetric cross section the following ratio,

|Mtt̄|
2

O(α2
s
α),asym

|Mtt̄|
2

O(α3
s
),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s
)

)

asym
+ 2Re

(
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O(αsα)

)

asym

2Re
(
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Mtt̄ ∗
O(α2

s
)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(8)
that can be expressed in terms of two factors F tt̄

QED and F tt̄
QCD depending only on coupling constants

and color traces,

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2, (9a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq. (9b)

F tt̄
QCD contains two different color structures and the result depends on d2 = dABCdABC = 40

3 ,

which arises from Tr(tAtBtC) = 1
4 (if

ABC + dABC). F tt̄
QED instead depends on the charges of the

incoming quarks (Qq) and of the top quark (Qt), together with ntt̄ = 3 corresponding to Figure 4.

4

2 Calculational basis

At leading order the production of tt̄ pairs in pp̄ collisions originates, via the strong interaction,
from the partonic processes qq̄ → tt̄ and gg → tt̄, which yield the O(α2

s) of the (integrated) cross
section, i.e. the denominator of AFB in (1) and (2). The antisymmetric cross section, the numerator
of AFB , starts at O(α3

s) and gets contributions from qq̄ → tt̄(g) with q = u, d (the processes from
other quark species, after convolution with the parton distributions and summation, are symmetric
under yt → −yt and thus do not contribute to AFB) as well as from qg → tt̄q and q̄g → tt̄q̄.

Writing the numerator and the denominator of AFB (for either of the definitions (1) and (2))
in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (5)

The terms up to one-loop (D0, D1, N1) have been calculated [9, 10, 11, 12, 13, 14], [15, 16, 17, 18],
[5], whereas only some parts of N2 are currently known [19, 20]. The inclusion of the N1D1/D0

term without N2 would hence be incomplete, and we have chosen to use only the lowest order cross
section in the denominator and the O(α3

s) term in the numerator, as done in [5].
Rewriting N and D to include the EW contributions yields the following expression for the

leading terms,

AFB =
N

D
=
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sαÑ1 + α4
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= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (6)

where the incomplete O(α2
s) part has been dropped. In the following we (re-)evaluate the three

contributions on the r.h.s. of (6).
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Figure 1: Electroweak and QCD Born diagrams

Figure 1 contains all the tree level diagrams for the partonic subprocesses qq̄ → tt̄ and gg → tt̄
(Higgs exchange is completely negligible). The squared terms |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 yield
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=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (5)

The terms up to one-loop (D0, D1, N1) have been calculated [9, 10, 11, 12, 13, 14], [15, 16, 17, 18],
[5], whereas only some parts of N2 are currently known [19, 20]. The inclusion of the N1D1/D0

term without N2 would hence be incomplete, and we have chosen to use only the lowest order cross
section in the denominator and the O(α3

s) term in the numerator, as done in [5].
Rewriting N and D to include the EW contributions yields the following expression for the

leading terms,

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (6)

where the incomplete O(α2
s) part has been dropped. In the following we (re-)evaluate the three

contributions on the r.h.s. of (6).
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Figure 1 contains all the tree level diagrams for the partonic subprocesses qq̄ → tt̄ and gg → tt̄
(Higgs exchange is completely negligible). The squared terms |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 yield
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s ) contributions to qq annihilation.

UV singularities in the sum of vertex functions and corresponding counter terms with
quark field and mass renormalization constants cancel, hence, no coupling constant
renormalization is needed.

To obtain finite vertices and propagators, it is thus sufficient to perform field and
mass renormalization for the quarks. In case of top quarks, the substitution

Ψt →
(

1 +
1

2
δZt

)

Ψt ,

mt → mt − δmt , (2)

yields the counter term for the gtt-vertex, δΛµ, and for the top self-energy, δΣ, as
follows:
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To obtain finite vertices and propagators, it is thus sufficient to perform field and
mass renormalization for the quarks. In case of top quarks, the substitution
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yields the counter term for the gtt-vertex, δΛµ, and for the top self-energy, δΣ, as
follows:
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2.2 Real corrections

According to the Bloch-Nordsieck theorem [39], the IR singularities in the virtual
corrections cancel against their counterparts from the real photon contributions after
integration over the photon phase space. Therefore we have to include all contributions
of the real photon radiation off the external particles to obtain an IR finite result. The
corresponding diagrams are shown in Figs. 3 and 4.

Moreover, we have to include also gluon bremsstrahlung to compensate the IR
singularities related to the gluons in the box graphs of Fig. 2. They consist of two
types of diagrams: gluon radiation off the QED-mediated and off the QCD-mediated
qq annihilation, as depicted in Fig. 5.

At O(αα2
s ), it is the interference of these two classes of diagrams that is required,

yielding a new type of QED–QCD interference. Still, not all of the interference terms
contribute. Owing to the color structure, only the interference of the initial and final
state gluon radiation graphs is non-zero, yielding the structure required to cancel the
IR singular parts in the box corrections of Fig. 2. Nevertheless, the cancellation is not
yet complete. The missing piece is the pure QCD box correction interfering with the
QED qq annihilation Born level diagram, as displayed in Fig. 6, which gives another
non-zero contribution of the same order. Only after combining all these various parts
the O(αα2

s ) result is IR finite.
In Fig. 6, only the photon-mediated Born-level diagram is shown. In principle, also

the interference of the QCD box and Z-boson exchange tree-level diagram has to be
taken into account. This contribution belongs to the IR-singular gluon–Z corrections,
which also contain the gluon–Z box graphs and gluon bremsstrahlung off Z-mediated
tree-level diagrams. The IR-singular structure of these contributions is simplified by the
fact that there are no IR-singularities related to the Z-boson. The gluon–Z interference
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To obtain finite vertices and propagators, it is thus sufficient to perform field and
mass renormalization for the quarks. In case of top quarks, the substitution

Ψt →
(

1 +
1

2
δZt

)

Ψt ,

mt → mt − δmt , (2)

yields the counter term for the gtt-vertex, δΛµ, and for the top self-energy, δΣ, as
follows:
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To obtain finite vertices and propagators, it is thus sufficient to perform field and
mass renormalization for the quarks. In case of top quarks, the substitution

Ψt →
(

1 +
1

2
δZt

)

Ψt ,
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yields the counter term for the gtt-vertex, δΛµ, and for the top self-energy, δΣ, as
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To obtain finite vertices and propagators, it is thus sufficient to perform field and
mass renormalization for the quarks. In case of top quarks, the substitution

Ψt →
(
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)

Ψt ,
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yields the counter term for the gtt-vertex, δΛµ, and for the top self-energy, δΣ, as
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To obtain finite vertices and propagators, it is thus sufficient to perform field and
mass renormalization for the quarks. In case of top quarks, the substitution

Ψt →
(
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)

Ψt ,
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yields the counter term for the gtt-vertex, δΛµ, and for the top self-energy, δΣ, as
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2.2 Real corrections

According to the Bloch-Nordsieck theorem [39], the IR singularities in the virtual
corrections cancel against their counterparts from the real photon contributions after
integration over the photon phase space. Therefore we have to include all contributions
of the real photon radiation off the external particles to obtain an IR finite result. The
corresponding diagrams are shown in Figs. 3 and 4.

Moreover, we have to include also gluon bremsstrahlung to compensate the IR
singularities related to the gluons in the box graphs of Fig. 2. They consist of two
types of diagrams: gluon radiation off the QED-mediated and off the QCD-mediated
qq annihilation, as depicted in Fig. 5.

At O(αα2
s ), it is the interference of these two classes of diagrams that is required,

yielding a new type of QED–QCD interference. Still, not all of the interference terms
contribute. Owing to the color structure, only the interference of the initial and final
state gluon radiation graphs is non-zero, yielding the structure required to cancel the
IR singular parts in the box corrections of Fig. 2. Nevertheless, the cancellation is not
yet complete. The missing piece is the pure QCD box correction interfering with the
QED qq annihilation Born level diagram, as displayed in Fig. 6, which gives another
non-zero contribution of the same order. Only after combining all these various parts
the O(αα2

s ) result is IR finite.
In Fig. 6, only the photon-mediated Born-level diagram is shown. In principle, also

the interference of the QCD box and Z-boson exchange tree-level diagram has to be
taken into account. This contribution belongs to the IR-singular gluon–Z corrections,
which also contain the gluon–Z box graphs and gluon bremsstrahlung off Z-mediated
tree-level diagrams. The IR-singular structure of these contributions is simplified by the
fact that there are no IR-singularities related to the Z-boson. The gluon–Z interference

5

g

g

t

t

!

g

t g

g

t

t

!

g

t

g

g

t

t

!

t

t

g

g

t

t

!

t

t

Figure 3: Real QED O(αα2
s) contributions of photon bremsstrahlung to the gg fusion

(u-channel diagrams are not explicitly shown).

q

q

t

t

!

g

t q

q

t

t

!

g

t

q

q

t

t

!

q

g q

q

t

t

!

q
g

Figure 4: Real QED O(αα2
s ) contributions of photon bremsstrahlung to the qq anni-

hilation.

2.2 Real corrections

According to the Bloch-Nordsieck theorem [39], the IR singularities in the virtual
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integration over the photon phase space. Therefore we have to include all contributions
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yielding a new type of QED–QCD interference. Still, not all of the interference terms
contribute. Owing to the color structure, only the interference of the initial and final
state gluon radiation graphs is non-zero, yielding the structure required to cancel the
IR singular parts in the box corrections of Fig. 2. Nevertheless, the cancellation is not
yet complete. The missing piece is the pure QCD box correction interfering with the
QED qq annihilation Born level diagram, as displayed in Fig. 6, which gives another
non-zero contribution of the same order. Only after combining all these various parts
the O(αα2

s ) result is IR finite.
In Fig. 6, only the photon-mediated Born-level diagram is shown. In principle, also

the interference of the QCD box and Z-boson exchange tree-level diagram has to be
taken into account. This contribution belongs to the IR-singular gluon–Z corrections,
which also contain the gluon–Z box graphs and gluon bremsstrahlung off Z-mediated
tree-level diagrams. The IR-singular structure of these contributions is simplified by the
fact that there are no IR-singularities related to the Z-boson. The gluon–Z interference
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p19MSSM1 ũL ũR d̃L d̃R g̃ χ̃0

1

mass (GeV) 339.6 394.8 348.3 392.7 414.7 299.1

Table 3: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.
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Figure 8: Feynman diagrams for photon induced tt production at lowest order.

2.3 Photon-induced tt production

In addition to the previously mentioned NLO QED contributions we also have to
inspect the photon-induced production channels. These comprise at lowest order the
gluon–photon fusion amplitudes illustrated in Fig. 8.

In general, photon-induced partonic processes vanish at the hadronic level unless
the NLO QED effects are taken into account. A direct consequence of including these
effects into the evolution of parton distribution functions (PDFs) is the non-zero photon
density in the proton, which leads to photon-induced contributions at the hadronic level
by convoluting the photon-induced partonic cross sections with the PDFs at NLO QED.
Since the photon distribution function is of order α they are formally not of the same
overall order as the other NLO QED contributions. Numerically, however, they turn
out to be sizeable, and we therefore include them in our discussion.

As the PDFs at NLO QED have become available only recently [42], the photon-
induced hadronic processes have not yet been investigated. Here we present the first
study of these effects on the top pair production.

3 Hadronic cross section for pp, pp → ttX

For obtaining the hadronic cross section we have to convolute the various partonic
cross sections with the corresponding parton densities and sum over all contributing
channels, adding up contributions of the non-radiative and radiative processes. As
already mentioned, only the sum of all virtual and real corrections is IR finite. Final
step is the factorization of the remaining mass singularities.

3.1 Mass factorization

The mass-singular logarithmic terms proportional to lnmq are not canceled in the sum
of virtual and real corrections. They originate from collinear photon emission off the
incoming light quarks. In analogy to the factorization of collinear gluon contributions,
they have to be absorbed into the parton densities.

This can be formally achieved by replacing the bare quark distributions qi(x) for
each flavor by the appropriate scale dependent distributions qi(x, Q2) in the following
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QED corrections to the cross sectionTable 1: Integrated hadronic cross section for tt̄ production at the LHC, at NLO QED
in different production subprocesses, without and with cuts.

Process σtot without cuts [pb] σtot with cuts [pb]

Born correction Born correction

uū 34.25 -1.41 18.64 -0.770

dd̄ 21.61 -0.228 11.54 -1.68

ss̄ 4.682 -0.0410 2.253 -0.0304

cc̄ 2.075 -0.0762 0.9630 -0.0446

gg 407.8 2.08 213.6 0.524

gγ 4.45 2.29

pp 470.4 4.78 247.0 1.80

Table 2: Integrated hadronic cross section for tt̄ production at the Tevatron, at NLO
QED in different production subprocesses, without and with cuts.

Process σtot without cuts [pb] σtot with cuts [pb]

Born correction Born correction

uū 3.411 -0.117 3.189 -0.118

dd̄ 0.5855 -2.89×10−3 0.5432 -2.91×10−3

ss̄ 8.063×10−3 -1.21×10−5 7.343×10−3 -1.79×10−5

cc̄ 2.044×10−3 -5.06×10−5 1.857×10−3 -5.00×10−5

gg 0.4128 3.17×10−3 0.3803 2.69×10−3

gγ 0.0154 0.0143

pp̄ 4.420 -0.102 4.121 -0.104

with cross section at NLO, dσNLO, and the Born cross section dσB.
In Fig. 9 the pT and

√
ŝ distributions are shown (left), as well as the relative QED

corrections (right), for the gg and qq parton channel at the LHC. The effect of the
NLO QED corrections in the dominant gg fusion channel is rather small, less than 1%
over most of the pT range and also over most of the

√
ŝ range. Differently from the gg

channel, the NLO contributions for qq annihilation are negative over the whole pT and√
ŝ range, reaching the 5% level for pT ! 400 GeV and

√
ŝ ! 1200 GeV. They further

grow in size with increasing pT and
√

ŝ and for very high pT the qq channel starts to
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gγ 0.0154 0.0143

pp̄ 4.420 -0.102 4.121 -0.104

with cross section at NLO, dσNLO, and the Born cross section dσB.
In Fig. 9 the pT and

√
ŝ distributions are shown (left), as well as the relative QED

corrections (right), for the gg and qq parton channel at the LHC. The effect of the
NLO QED corrections in the dominant gg fusion channel is rather small, less than 1%
over most of the pT range and also over most of the

√
ŝ range. Differently from the gg

channel, the NLO contributions for qq annihilation are negative over the whole pT and√
ŝ range, reaching the 5% level for pT ! 400 GeV and

√
ŝ ! 1200 GeV. They further

grow in size with increasing pT and
√

ŝ and for very high pT the qq channel starts to
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Figure 3: The ratio of the Mtt̄ distribution evaluated at NLOW and NLO with µ = mt (left
panel) and the corresponding ratio of the pT distribution (right panel) for the LHC (14 TeV).

Next we consider the asymmetry with respect to interchange of the the t and t̄ charges, which
is known to be relatively large at the Tevatron. This asymmetry is generated at NLO QCD by
the interference of even and odd terms under t ↔ t̄ in the amplitudes for qq̄ annihilation and,
likewise, for gq and gq̄ fusion [2, 4, 42–46]. (The contribution of the latter two processes to the
charge asymmetry is one order of magnitude below the qq̄ contribution.) The weak interaction
corrections to the qq̄ and flavor excitation processes contribute, too. The conventionally defined
differential and integrated charge asymmetry, A(y) and A, are:

A(y) =
Nt(y)−Nt̄(y)

Nt(y) +Nt̄(y)
, A =

∫

y>0

Nt(y)−
∫

y>0

Nt̄(y)

∫

y>0

Nt(y) +
∫

y>0

Nt̄(y)
, (III.2)

where y denotes the rapidities yt, yt̄ of the t and t̄ quark defined in the laboratory frame, and
N(y) = dσtt̄/dy.
As the pp̄ state at the Tevatron is a CP eigenstate in the laboratory frame, CP invariance of
the SM corrections2 implies that Nt̄(yt̄) = Nt(−yt), which in turn implies that A is equal to the
forward-backward asymmetry of the top quark:

At
FB =

∫

y>0

Nt(y)−
∫

y<0

Nt(y)

∫

y>0

Nt(y) +
∫

y<0

Nt(y)
. (III.3)

2The CP-violating terms in the matrix elements for pp̄ → tt̄ → final state induced by the non-zero SM KM
phase δKM in higher orders of perturbation theory are of course numerically irrelevant.
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The physics of top quarks at the Tevatron and at the upcoming Large Hadron Collider (LHC)
offers the unique possibility to explore the interactions of the heaviest known fundamental
particle. At the LHC one expects to investigate with some precision also the so-far unknown
high-energy regime, i.e., single top-quark and top antitop-quark (tt̄) events with transverse
momenta and/or pair-invariant masses in the TeV range. The analysis and interpretation
of such events will require, in particular, precise standard model (SM) predictions. In this
context the electroweak corrections to hadronic tt̄ production were recently determined: the
O (!2s!) contributions of W,Z and Higgs boson exchange to quark-antiquark annihilation
qq̄→ tt̄ [1, 2] and to gluon fusion gg→ tt̄ [3–5], extending earlier work of1 [6], and the
photonic corrections to hadronic top-quark pair production [7].
In this addendum to [3] we analyze a further set of weak-interaction corrections which we
found to have some impact on a few kinematic distributions: i) the contributions of order !2

and !s! to
bb̄→ tt̄ , (1)

and ii) the O (!s!2) and O (!2s!) contributions to the reactions

gq (q̄) → tt̄q (q̄) (q= u,d,s,c,b) . (2)

We employ here the so-called 5-flavor scheme [13], where the (anti)proton is considered to
contain also b and b̄ quarks in its partonic sea. Thus the reaction (1) is a leading-order (LO)
process in this scheme, while (2), q = b, is a next-to-leading order (NLO) QCD correction
to (1). The O (!2s!) corrections to the processes (2) were calculated already in [3] which
we include here for completeness. For several top quark observables – in particular, for
the tt̄ cross section – the contributions i) and ii) are insignificant. However, here we show
that for the pair-invariant mass distribution and for the top-quark helicity asymmetry, which
are among the key observables in the tool-kit for search of new physics in tt̄ events, these
corrections do matter if one aims at predictions with a precision at the percent level.
The amplitude of (1) receives, in Born approximation and putting mb = 0, the following
contributions: a) t-channel W boson exchange bb̄ W−→tt̄, b) s-channel photon and Z boson
exchanges bb̄ ",Z−→tt̄ and c) s-channel gluon exchange bb̄ g−→tt̄. The t-channel W boson ex-
change contribution a) is not suppressed by a small Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix element, in contrast to the corresponding t-channel amplitudes bd̄,bs̄→ tt̄ +
c.c. channels.
The lowest order weak-interaction induced contribution to the squared transition matrix el-
ement |M (bb̄→ tt̄)|2 are of order !2 and !s!; the latter arises from the interference of the
amplitudes a) and c).

1The supersymmetric QCD corrections to tt̄ production were recently reexamined in [8]. The computation
of [9] includes also electroweak MSSM effects, which were analyzed before in [10–12].
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Ratio (NLOQCD+electroweak)/NLOQCD 

2 Calculational basis

At leading order the production of tt̄ pairs in pp̄ collisions originates, via the strong interaction,
from the partonic processes qq̄ → tt̄ and gg → tt̄, which yield the O(α2

s) of the (integrated) cross
section, i.e. the denominator of AFB in (1) and (2). The antisymmetric cross section, the numerator
of AFB , starts at O(α3

s) and gets contributions from qq̄ → tt̄(g) with q = u, d (the processes from
other quark species, after convolution with the parton distributions and summation, are symmetric
under yt → −yt and thus do not contribute to AFB) as well as from qg → tt̄q and q̄g → tt̄q̄.

Writing the numerator and the denominator of AFB (for either of the definitions (1) and (2))
in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (5)

The terms up to one-loop (D0, D1, N1) have been calculated [9, 10, 11, 12, 13, 14], [15, 16, 17, 18],
[5], whereas only some parts of N2 are currently known [19, 20]. The inclusion of the N1D1/D0

term without N2 would hence be incomplete, and we have chosen to use only the lowest order cross
section in the denominator and the O(α3

s) term in the numerator, as done in [5].
Rewriting N and D to include the EW contributions yields the following expression for the

leading terms,

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (6)

where the incomplete O(α2
s) part has been dropped. In the following we (re-)evaluate the three

contributions on the r.h.s. of (6).
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Figure 1: Electroweak and QCD Born diagrams

Figure 1 contains all the tree level diagrams for the partonic subprocesses qq̄ → tt̄ and gg → tt̄
(Higgs exchange is completely negligible). The squared terms |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 yield
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Table 3: On-shell masses of the squarks, the gluino, and the lightest neutralino within the different SUSY

scenarios considered. All masses are given in GeV.
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The physics of top quarks at the Tevatron and at the upcoming Large Hadron Collider (LHC)
offers the unique possibility to explore the interactions of the heaviest known fundamental
particle. At the LHC one expects to investigate with some precision also the so-far unknown
high-energy regime, i.e., single top-quark and top antitop-quark (tt̄) events with transverse
momenta and/or pair-invariant masses in the TeV range. The analysis and interpretation
of such events will require, in particular, precise standard model (SM) predictions. In this
context the electroweak corrections to hadronic tt̄ production were recently determined: the
O (!2s!) contributions of W,Z and Higgs boson exchange to quark-antiquark annihilation
qq̄→ tt̄ [1, 2] and to gluon fusion gg→ tt̄ [3–5], extending earlier work of1 [6], and the
photonic corrections to hadronic top-quark pair production [7].
In this addendum to [3] we analyze a further set of weak-interaction corrections which we
found to have some impact on a few kinematic distributions: i) the contributions of order !2

and !s! to
bb̄→ tt̄ , (1)

and ii) the O (!s!2) and O (!2s!) contributions to the reactions

gq (q̄) → tt̄q (q̄) (q= u,d,s,c,b) . (2)

We employ here the so-called 5-flavor scheme [13], where the (anti)proton is considered to
contain also b and b̄ quarks in its partonic sea. Thus the reaction (1) is a leading-order (LO)
process in this scheme, while (2), q = b, is a next-to-leading order (NLO) QCD correction
to (1). The O (!2s!) corrections to the processes (2) were calculated already in [3] which
we include here for completeness. For several top quark observables – in particular, for
the tt̄ cross section – the contributions i) and ii) are insignificant. However, here we show
that for the pair-invariant mass distribution and for the top-quark helicity asymmetry, which
are among the key observables in the tool-kit for search of new physics in tt̄ events, these
corrections do matter if one aims at predictions with a precision at the percent level.
The amplitude of (1) receives, in Born approximation and putting mb = 0, the following
contributions: a) t-channel W boson exchange bb̄ W−→tt̄, b) s-channel photon and Z boson
exchanges bb̄ ",Z−→tt̄ and c) s-channel gluon exchange bb̄ g−→tt̄. The t-channel W boson ex-
change contribution a) is not suppressed by a small Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix element, in contrast to the corresponding t-channel amplitudes bd̄,bs̄→ tt̄ +
c.c. channels.
The lowest order weak-interaction induced contribution to the squared transition matrix el-
ement |M (bb̄→ tt̄)|2 are of order !2 and !s!; the latter arises from the interference of the
amplitudes a) and c).

1The supersymmetric QCD corrections to tt̄ production were recently reexamined in [8]. The computation
of [9] includes also electroweak MSSM effects, which were analyzed before in [10–12].

1

The physics of top quarks at the Tevatron and at the upcoming Large Hadron Collider (LHC)
offers the unique possibility to explore the interactions of the heaviest known fundamental
particle. At the LHC one expects to investigate with some precision also the so-far unknown
high-energy regime, i.e., single top-quark and top antitop-quark (tt̄) events with transverse
momenta and/or pair-invariant masses in the TeV range. The analysis and interpretation
of such events will require, in particular, precise standard model (SM) predictions. In this
context the electroweak corrections to hadronic tt̄ production were recently determined: the
O (!2s!) contributions of W,Z and Higgs boson exchange to quark-antiquark annihilation
qq̄→ tt̄ [1, 2] and to gluon fusion gg→ tt̄ [3–5], extending earlier work of1 [6], and the
photonic corrections to hadronic top-quark pair production [7].
In this addendum to [3] we analyze a further set of weak-interaction corrections which we
found to have some impact on a few kinematic distributions: i) the contributions of order !2

and !s! to
bb̄→ tt̄ , (1)

and ii) the O (!s!2) and O (!2s!) contributions to the reactions

gq (q̄) → tt̄q (q̄) (q= u,d,s,c,b) . (2)

We employ here the so-called 5-flavor scheme [13], where the (anti)proton is considered to
contain also b and b̄ quarks in its partonic sea. Thus the reaction (1) is a leading-order (LO)
process in this scheme, while (2), q = b, is a next-to-leading order (NLO) QCD correction
to (1). The O (!2s!) corrections to the processes (2) were calculated already in [3] which
we include here for completeness. For several top quark observables – in particular, for
the tt̄ cross section – the contributions i) and ii) are insignificant. However, here we show
that for the pair-invariant mass distribution and for the top-quark helicity asymmetry, which
are among the key observables in the tool-kit for search of new physics in tt̄ events, these
corrections do matter if one aims at predictions with a precision at the percent level.
The amplitude of (1) receives, in Born approximation and putting mb = 0, the following
contributions: a) t-channel W boson exchange bb̄ W−→tt̄, b) s-channel photon and Z boson
exchanges bb̄ ",Z−→tt̄ and c) s-channel gluon exchange bb̄ g−→tt̄. The t-channel W boson ex-
change contribution a) is not suppressed by a small Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix element, in contrast to the corresponding t-channel amplitudes bd̄,bs̄→ tt̄ +
c.c. channels.
The lowest order weak-interaction induced contribution to the squared transition matrix el-
ement |M (bb̄→ tt̄)|2 are of order !2 and !s!; the latter arises from the interference of the
amplitudes a) and c).

1The supersymmetric QCD corrections to tt̄ production were recently reexamined in [8]. The computation
of [9] includes also electroweak MSSM effects, which were analyzed before in [10–12].

1

The physics of top quarks at the Tevatron and at the upcoming Large Hadron Collider (LHC)
offers the unique possibility to explore the interactions of the heaviest known fundamental
particle. At the LHC one expects to investigate with some precision also the so-far unknown
high-energy regime, i.e., single top-quark and top antitop-quark (tt̄) events with transverse
momenta and/or pair-invariant masses in the TeV range. The analysis and interpretation
of such events will require, in particular, precise standard model (SM) predictions. In this
context the electroweak corrections to hadronic tt̄ production were recently determined: the
O (!2s!) contributions of W,Z and Higgs boson exchange to quark-antiquark annihilation
qq̄→ tt̄ [1, 2] and to gluon fusion gg→ tt̄ [3–5], extending earlier work of1 [6], and the
photonic corrections to hadronic top-quark pair production [7].
In this addendum to [3] we analyze a further set of weak-interaction corrections which we
found to have some impact on a few kinematic distributions: i) the contributions of order !2

and !s! to
bb̄→ tt̄ , (1)

and ii) the O (!s!2) and O (!2s!) contributions to the reactions

gq (q̄) → tt̄q (q̄) (q= u,d,s,c,b) . (2)

We employ here the so-called 5-flavor scheme [13], where the (anti)proton is considered to
contain also b and b̄ quarks in its partonic sea. Thus the reaction (1) is a leading-order (LO)
process in this scheme, while (2), q = b, is a next-to-leading order (NLO) QCD correction
to (1). The O (!2s!) corrections to the processes (2) were calculated already in [3] which
we include here for completeness. For several top quark observables – in particular, for
the tt̄ cross section – the contributions i) and ii) are insignificant. However, here we show
that for the pair-invariant mass distribution and for the top-quark helicity asymmetry, which
are among the key observables in the tool-kit for search of new physics in tt̄ events, these
corrections do matter if one aims at predictions with a precision at the percent level.
The amplitude of (1) receives, in Born approximation and putting mb = 0, the following
contributions: a) t-channel W boson exchange bb̄ W−→tt̄, b) s-channel photon and Z boson
exchanges bb̄ ",Z−→tt̄ and c) s-channel gluon exchange bb̄ g−→tt̄. The t-channel W boson ex-
change contribution a) is not suppressed by a small Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix element, in contrast to the corresponding t-channel amplitudes bd̄,bs̄→ tt̄ +
c.c. channels.
The lowest order weak-interaction induced contribution to the squared transition matrix el-
ement |M (bb̄→ tt̄)|2 are of order !2 and !s!; the latter arises from the interference of the
amplitudes a) and c).

1The supersymmetric QCD corrections to tt̄ production were recently reexamined in [8]. The computation
of [9] includes also electroweak MSSM effects, which were analyzed before in [10–12].

1

The physics of top quarks at the Tevatron and at the upcoming Large Hadron Collider (LHC)
offers the unique possibility to explore the interactions of the heaviest known fundamental
particle. At the LHC one expects to investigate with some precision also the so-far unknown
high-energy regime, i.e., single top-quark and top antitop-quark (tt̄) events with transverse
momenta and/or pair-invariant masses in the TeV range. The analysis and interpretation
of such events will require, in particular, precise standard model (SM) predictions. In this
context the electroweak corrections to hadronic tt̄ production were recently determined: the
O (!2s!) contributions of W,Z and Higgs boson exchange to quark-antiquark annihilation
qq̄→ tt̄ [1, 2] and to gluon fusion gg→ tt̄ [3–5], extending earlier work of1 [6], and the
photonic corrections to hadronic top-quark pair production [7].
In this addendum to [3] we analyze a further set of weak-interaction corrections which we
found to have some impact on a few kinematic distributions: i) the contributions of order !2

and !s! to
bb̄→ tt̄ , (1)

and ii) the O (!s!2) and O (!2s!) contributions to the reactions

gq (q̄) → tt̄q (q̄) (q= u,d,s,c,b) . (2)

We employ here the so-called 5-flavor scheme [13], where the (anti)proton is considered to
contain also b and b̄ quarks in its partonic sea. Thus the reaction (1) is a leading-order (LO)
process in this scheme, while (2), q = b, is a next-to-leading order (NLO) QCD correction
to (1). The O (!2s!) corrections to the processes (2) were calculated already in [3] which
we include here for completeness. For several top quark observables – in particular, for
the tt̄ cross section – the contributions i) and ii) are insignificant. However, here we show
that for the pair-invariant mass distribution and for the top-quark helicity asymmetry, which
are among the key observables in the tool-kit for search of new physics in tt̄ events, these
corrections do matter if one aims at predictions with a precision at the percent level.
The amplitude of (1) receives, in Born approximation and putting mb = 0, the following
contributions: a) t-channel W boson exchange bb̄ W−→tt̄, b) s-channel photon and Z boson
exchanges bb̄ ",Z−→tt̄ and c) s-channel gluon exchange bb̄ g−→tt̄. The t-channel W boson ex-
change contribution a) is not suppressed by a small Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix element, in contrast to the corresponding t-channel amplitudes bd̄,bs̄→ tt̄ +
c.c. channels.
The lowest order weak-interaction induced contribution to the squared transition matrix el-
ement |M (bb̄→ tt̄)|2 are of order !2 and !s!; the latter arises from the interference of the
amplitudes a) and c).
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Figure 1: Cut diagrams representing the QCD contribution to the charge asymmetry.

Diagrams similar to those depicted in Fig. 1, where one of the gluons has been substituted by
a photon, also lead to a contribution to the charge asymmetry from mixed QED-QCD corrections.
The relative factor between QCD and QED asymmetries amounts to

fQEDq = 3
!QEDQt Qq

!S
2

(

d2abc
4

)2 =
!QED
!S

36
5
Qt Qq (2.1)

for one quark species, and to

fQED =
4 fQEDu + fQEDd

5
=
!QED
!S

56
25

≈ 0.18 , (2.2)

after convolution with the PDFs if one considers as a first approximation that the relative impor-
tance of uū versus dd̄ annihilation at the Tevatron is 4 : 1. Thus, to an enhancement of nearly
twenty percent of the QCD asymmetry, in good agreement with the more detailed numerical stud-
ies of [18, 19]. At the LHC, the relative importance of uū versus dd̄ annihilation is approximately
2 : 1, thus reducing fQED by a factor 5/7 down to 0.13. Similarly, weak contributions with the
photon replaced by the Z boson should be considered at the same footing. However, as a con-
sequence of the cancellation between up and down quark contributions, and the smallness of the
weak coupling, the weak corrections at the Tevatron are smaller by more than a factor 10 than
the corresponding QED result. For proton-proton collisions the cancellation between up and down
quark contributions is even stronger and the total weak correction is completely negligible.

3. Tevatron

Assuming that the rapidities of t and t̄ have been measured simultaneously, one defines the
asymmetry

Att̄ (Y ) =
N(yt > yt̄)−N(yt̄ > yt)
N(yt > yt̄)+N(yt̄ > yt)

, (3.1)

where Y = (yt + yt̄)/2 has been fixed. An almost flat asymmetry Att̄(Y ) of around 8% is predicted
at Tevatron as a function of Y (Fig. 2 left). Two versions of the integrated asymmetry have been
introduced in Refs. [2, 3, 4]: the forward–backward asymmetry in the laboratory frame

Alab =
N(yt > 0)−N(yt < 0)
N(yt > 0)+N(yt < 0)

=
N(yt > 0)−N(yt̄ > 0)
N(yt > 0)+N(yt̄ > 0)

, (3.2)
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Figure 2: Pair charge asymmetry Att̄(Y ) as a function of the mean rapidity Y = (yt + yt̄)/2. Solid line:
without cut on ptt̄⊥, dotted/dashed lines: with cut on p

tt̄
⊥.

Table 1: Predicted asymmetries in the laboratory Alab and the tt̄ rest frame Att̄ at Tevatron. Predictions
are given also for samples with the top quark pair invariant mass mtt̄ above and below 450 GeV, and with
|!y|= |yt − yt̄ | larger or smaller than one in the tt̄ rest frame.

laboratory Alab mtt̄ < 450 GeV mtt̄ > 450 GeV
SM 0.056 (7) 0.029 (2) 0.102 (9)

MCFM [8] 0.038 (6)
tt̄ rest frame Att̄ mtt̄ < 450 GeV mtt̄ > 450 GeV |!y|< 1 |!y|> 1

SM 0.087 (10) 0.062 (4) 0.128 (11) 0.057 (4) 0.193 (15)
MCFM [8] 0.058 (9) 0.040 (6) 0.088 (13) 0.039 (6) 0.123 (18)

and the asymmetry in the tt̄ rest frame

Att̄ =
N(yt > yt̄)−N(yt̄ > yt)
N(yt > yt̄)+N(yt̄ > yt)

. (3.3)

Results for both of them in the SM are listed in Table 1. These predictions include also the QED
and weak (strongly suppressed) corrections. Those corrections enhance the QCD asymmetry by
an overall factor 1.21, which is slightly different from Eq. (2.2) due to the deviation of the relative
amount of uū and dd̄ contributions from the simple approximation 4 : 1.

In order to compare theoretical results in the SM with the most recent measurements at Teva-
tron, predictions in Table 1 are presented also for samples withmtt̄ larger and smaller than 450 GeV,
and with |!y| = |yt − yt̄ | larger and smaller than 1. It is also interesting to compare these results
with those based on a Monte Carlo prediction [8] based on MCFM [22]. The enhancement factor
of the SM result in Table 1 compared to MCFM of about 1.5 is easily understood: a factor 1.2 orig-
inates from the inclusion of QED effects. Another factor of about 1.3 originates from normalizing
with respect to the Born cross-section instead of the NLO result. Since the asymmetric part of the
cross-section is presently known to LO only we consider the normalization to the LO cross-section
more plausible [3, 4, 15, 16].
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Figure 2: Not to scale rapidity distributions of top and antitop quarks at the Tevatron (left) and the LHC (right).
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after convolution with the PDFs if one considers as a first approximation that the relative
importance of uū versus dd̄ annihilation at the Tevatron is 4 : 1. Thus, to an enhancement
of nearly twenty percent of the QCD asymmetry, in good agreement with the more detailed
numerical studies of 26,27. At the LHC, the relative importance of uū versus dd̄ annihilation
is approximately 2 : 1, thus reducing fQED down to 0.13. Similarly, weak contributions with
the photon replaced by the Z boson should be considered at the same footing. However, as a
consequence of the cancellation between up and down quark contributions, and the smallness
of the weak coupling, the weak corrections at the Tevatron are smaller by more than a factor
10 than the corresponding QED result. For proton-proton collisions the cancellation between
up and down quark contributions is even stronger and the total weak correction is completely
negligible.

3 SM predictions of the charge asymmetry at the Tevatron and the LHC

The charge asymmetry at the Tevatron is equivalent to a forward–backward asymmetry. In the
laboratory frame it is given by either of the following definitions

Alab =
N(yt > 0)−N(yt < 0)

N(yt > 0) +N(yt < 0)
=

N(yt > 0)−N(yt̄ > 0)

N(yt > 0) +N(yt̄ > 0)
, (3)

requiring to measure the rapidity of either the t or the t̄ for each event. The most recent
experimental analysis measure both rapidities simultaneously, and define the asymmetry in the
variable ∆y = yt−yt̄, which is invariant under boosts, and thus equivalent to measure the charge
asymmetry in the tt̄ rest-frame:

Att̄ =
N(∆y > 0)−N(∆y < 0)

N(∆y > 0) +N(∆y < 0)
. (4)

The size of the charge asymmetry in the tt̄ rest-frame is about 50% larger than in the laboratory
frame2 because part of the asymmetry is washed out by the boost from the partonic rest-frame
to the laboratory.
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Table 2: SM cut-independent charge asymmetries A! and Ay, and integrated pair charge asymmetry
Acuttt̄ (Ycut = 0.7), at different LHC energies. Summary of recent measurements by CMS and ATLAS.

A!C AyC Acuttt̄ (Ycut = 0.7)
LHC 7 TeV 0.0136 (8) 0.0115 (6) 0.0203 (8)
LHC 14 TeV 0.0077 (4) 0.0059 (3) 0.0100 (4)
LHC 7 TeV CMS [23] -0.016 ± 0.030 +0.010

−0.019 -0.013 ± 0.026 +0.026
−0.021

LHC 7 TeV ATLAS [24] -0.024 ± 0.016 ± 0.023

than AinC at large values of the rapidity cut yC [18]. This is because the central region is dominated
by gluon fusion processes, while the sample with large rapidities has a larger relative content of
qq̄ initiated events. The statistical significance of both observables is, however, very similar [27]
because the larger size of the asymmetry AoutC with respect to AinC is compensated by the lower rate
of events at larger rapidities.

The recent CMS [23] and ALTAS [24] analysis have considered also the cut-independent
charge asymmetries

A!C =
N("! > 0)−N("! < 0)
N("! > 0)+N("! < 0)

and AyC =
N("y > 0)−N("y < 0)
N("y > 0)+N("y < 0)

, (4.2)

where "! = |!t |− |!t̄ | and "y = |yt |− |yt̄ | or y2t − y2t̄ . The SM predictions for the integrated asym-
metries are listed Table 2 for different center-of-mass energies of the LHC, together with the experi-
mental results for

√
s= 7 TeV. Both experiments obtain negative asymmetries, although compatible

with the SM prediction within uncertainties. New analysis with larger statistics are underway.
Top quark production in proton-proton collisions is dominated by gluon fusion, which, in

turn, is dominant in the central region. Conversely, quark-antiquark annihilation will be more
enriched for events with tt̄ at larger rapidities (and larger mtt̄). This suggest to employ the definition
of Eq. (3.1), which is essentially the asymmetry in the tt̄ rest frame, also for the present case,
and concentrate on tt̄ events at large rapidities. The prediction for Att̄(Y ) is shown in Fig. 2 for√
s = 7 TeV (right plot). By construction, Att̄(Y ) is now an antisymmetric function of Y . Since

most of the charge asymmetry is concentrated at large rapidities the statistical significance of any
measurement will be enhanced, if the sample is restricted to larger rapidities. Let us therefore
define the quantity

Acuttt̄ (Ycut) =
N(yt > yt̄)−N(yt̄ > yt)
N(yt > yt̄)+N(yt̄ > yt)

, (4.3)

where Y > Ycut. Theoretical predictions in the SM for Acuttt̄ (Ycut = 0.7) are presented in Table 2.
QED and weak corrections amount to roughly a factor 1.1.

5. Summary

Tevatron has shown in the last years a systematic upward discrepancy in the measurement of
the top quark charge asymmetry with respect to theoretical predictions in the SM. These discrepan-
cies have triggered a large number of theoretical speculations about possible contributions beyond
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Figure 3: Summary of experimental measurements of the charge asymmetry in comparison with the SM
theoretical predictions. The histogram represents the pull of the discrepancy for each measurement.

A graphical illustration of the results in terms of the ”pull” (measured in standard deviations)
is shown in Fig. 3. The systematic upward shift of all but two Tevatron results is evident. The
highest discrepancy, as has extensively been discussed in the literature, occurs for samples with
mtt̄ > 450 GeV and the charge asymmetry defined in the tt̄ rest frame. Also shown in this Figure
are preliminary results from CMS [23] and ATLAS [24] with a slight pull in the opposite direction.

The impact of cuts on hard gluon (and photon) radiation on Att̄(Y ) is also shown in Fig. 2. The
dotted and dashed curves in Fig. 2 show the effect of a cut on ptt̄⊥ for values of p

max
⊥ = 10 GeV

and 20 GeV, respectively. An increase of the asymmetry by more than a factor 1.5 in the central
region is observed for the most restrictive choice of 10 GeV, and even a fairly loose pmax⊥ = 20 GeV
modifies the asymmetry by up to a factor 1.3.

4. LHC

The charge asymmetry can also be investigated in proton-proton collisions at the LHC [2, 3, 4]
by exploiting the small tt̄ sample produced in annihilation of valence quarks and antiquarks from
the sea. Since valence quarks carry on average more momentum than sea antiquarks, production
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(4.1)
which serve to characterize the depletion of top quarks in the central region (AinC (yC)> AoutC (yC) for
yC ! 0.7 approximately [2, 25, 26]), and their enhancement at larger rapidities; AoutC is much larger
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Table 2: SM cut-independent charge asymmetries A! and Ay, and integrated pair charge asymmetry
Acuttt̄ (Ycut = 0.7), at different LHC energies. Summary of recent measurements by CMS and ATLAS.

A!C AyC Acuttt̄ (Ycut = 0.7)
LHC 7 TeV 0.0136 (8) 0.0115 (6) 0.0203 (8)
LHC 14 TeV 0.0077 (4) 0.0059 (3) 0.0100 (4)
LHC 7 TeV CMS [23] -0.016 ± 0.030 +0.010

−0.019 -0.013 ± 0.026 +0.026
−0.021

LHC 7 TeV ATLAS [24] -0.024 ± 0.016 ± 0.023

than AinC at large values of the rapidity cut yC [18]. This is because the central region is dominated
by gluon fusion processes, while the sample with large rapidities has a larger relative content of
qq̄ initiated events. The statistical significance of both observables is, however, very similar [27]
because the larger size of the asymmetry AoutC with respect to AinC is compensated by the lower rate
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charge asymmetries

A!C =
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N("! > 0)+N("! < 0)
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, (4.2)
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s= 7 TeV. Both experiments obtain negative asymmetries, although compatible

with the SM prediction within uncertainties. New analysis with larger statistics are underway.
Top quark production in proton-proton collisions is dominated by gluon fusion, which, in

turn, is dominant in the central region. Conversely, quark-antiquark annihilation will be more
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and concentrate on tt̄ events at large rapidities. The prediction for Att̄(Y ) is shown in Fig. 2 for√
s = 7 TeV (right plot). By construction, Att̄(Y ) is now an antisymmetric function of Y . Since

most of the charge asymmetry is concentrated at large rapidities the statistical significance of any
measurement will be enhanced, if the sample is restricted to larger rapidities. Let us therefore
define the quantity

Acuttt̄ (Ycut) =
N(yt > yt̄)−N(yt̄ > yt)
N(yt > yt̄)+N(yt̄ > yt)

, (4.3)

where Y > Ycut. Theoretical predictions in the SM for Acuttt̄ (Ycut = 0.7) are presented in Table 2.
QED and weak corrections amount to roughly a factor 1.1.

5. Summary

Tevatron has shown in the last years a systematic upward discrepancy in the measurement of
the top quark charge asymmetry with respect to theoretical predictions in the SM. These discrepan-
cies have triggered a large number of theoretical speculations about possible contributions beyond

6

Tevatron anomalies and LHC cross-checks Germán Rodrigo

Table 2: SM cut-independent charge asymmetries A! and Ay, and integrated pair charge asymmetry
Acuttt̄ (Ycut = 0.7), at different LHC energies. Summary of recent measurements by CMS and ATLAS.

A!C AyC Acuttt̄ (Ycut = 0.7)
LHC 7 TeV 0.0136 (8) 0.0115 (6) 0.0203 (8)
LHC 14 TeV 0.0077 (4) 0.0059 (3) 0.0100 (4)
LHC 7 TeV CMS [23] -0.016 ± 0.030 +0.010

−0.019 -0.013 ± 0.026 +0.026
−0.021

LHC 7 TeV ATLAS [24] -0.024 ± 0.016 ± 0.023

than AinC at large values of the rapidity cut yC [18]. This is because the central region is dominated
by gluon fusion processes, while the sample with large rapidities has a larger relative content of
qq̄ initiated events. The statistical significance of both observables is, however, very similar [27]
because the larger size of the asymmetry AoutC with respect to AinC is compensated by the lower rate
of events at larger rapidities.

The recent CMS [23] and ALTAS [24] analysis have considered also the cut-independent
charge asymmetries

A!C =
N("! > 0)−N("! < 0)
N("! > 0)+N("! < 0)

and AyC =
N("y > 0)−N("y < 0)
N("y > 0)+N("y < 0)

, (4.2)

where "! = |!t |− |!t̄ | and "y = |yt |− |yt̄ | or y2t − y2t̄ . The SM predictions for the integrated asym-
metries are listed Table 2 for different center-of-mass energies of the LHC, together with the experi-
mental results for

√
s= 7 TeV. Both experiments obtain negative asymmetries, although compatible

with the SM prediction within uncertainties. New analysis with larger statistics are underway.
Top quark production in proton-proton collisions is dominated by gluon fusion, which, in

turn, is dominant in the central region. Conversely, quark-antiquark annihilation will be more
enriched for events with tt̄ at larger rapidities (and larger mtt̄). This suggest to employ the definition
of Eq. (3.1), which is essentially the asymmetry in the tt̄ rest frame, also for the present case,
and concentrate on tt̄ events at large rapidities. The prediction for Att̄(Y ) is shown in Fig. 2 for√
s = 7 TeV (right plot). By construction, Att̄(Y ) is now an antisymmetric function of Y . Since

most of the charge asymmetry is concentrated at large rapidities the statistical significance of any
measurement will be enhanced, if the sample is restricted to larger rapidities. Let us therefore
define the quantity

Acuttt̄ (Ycut) =
N(yt > yt̄)−N(yt̄ > yt)
N(yt > yt̄)+N(yt̄ > yt)

, (4.3)

where Y > Ycut. Theoretical predictions in the SM for Acuttt̄ (Ycut = 0.7) are presented in Table 2.
QED and weak corrections amount to roughly a factor 1.1.

5. Summary

Tevatron has shown in the last years a systematic upward discrepancy in the measurement of
the top quark charge asymmetry with respect to theoretical predictions in the SM. These discrepan-
cies have triggered a large number of theoretical speculations about possible contributions beyond

6



In this work we reevaluated all the contributions that are presented in in the last term of (8).
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Figure 1: Born diagrams

In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym
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κ
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4 sin2(θW ) cos2(θW )
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q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

At LO partonic processes are not asymmetric.
QCD produces the asymmetry only at NLO!
NLO in the cross-section, LO in AFB

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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Figure 3: Real emissions of gluon

initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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q − 2Qq sin
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The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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gg initial state doesn’t contribute to Tevatron and LHC asymmetry numerator!
 q-qbar QCD contribution only from interaction between initial and final state! 
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Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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Figure 4: Three different way of replacing one gluon with a photon in the propagator of the
interference of Fig. 2 and qq̄ → g → tt̄

averaging in the initial state we find that

|Mtt̄|
2

O(α2
sα),asym

|Mtt̄|
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O(α3
s),asym

=
2Re

(

Mtt̄
O(α)M
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)
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+ 2Re

(

Mtt̄
O(αs)
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O(αsα)
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2Re
(

Mtt̄
O(αs)
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O(α2

s)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(10)
where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2 (11a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq (11b)

In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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2Re
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry
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2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

It’s useful to divide electroweak contribution into 
QED (photon) and weak (Z) part. 

QED QED can be easily obtained from QCD calculation and the substitution of one 
gluon into one photon in the squared amplitudes.
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averaging in the initial state we find that
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where F tt̄

QED and F tt̄
QCD don’t depend on external momenta and helicities. We reexamined the

calculations and we found that, in front of the QED part of the formula shown in [8], there should
be an overall factor three, which comes from the three different replacements of the gluon propagator
(Fig. 4). Following their argument we can identify the color structure and the couplings of QCD
(F tt̄

QCD) and QED (F tt̄
QED) cases, and obtain the ratio of them.
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In F tt̄
QCD there are two different color structures and the result depends on d2 = dABCdABC = 40

3

that arises from Tr(tAtBtC) = 1
4 (if

ABC+dABC), F tt̄
QED instead depends on the charges of incoming

quarks (Qq) and top (Qt), ntt̄ = 3 due to the three cases shown in Fig. 4.
Also qq̄ → tt̄g and qq̄ → tt̄γ subprocess can be evaluated through the results obtained for qq̄ → tt̄g
in the QCD case and the substitution of a gluon with a photon.
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F tt̄g
QCD, F tt̄g

QED and F tt̄γ
QED are related to F tt̄

QCD, F tt̄
QED by simple equations.

F tt̄g
QCD = F tt̄

QCD F tt̄g
QED =

2

3
F tt̄
QED F tt̄γ

QED =
1

3
F tt̄
QED (14a)

F tt̄
QED = F tt̄g

QED + F tt̄γ
QED (14b)

The first equation in (14a) is trivial, we couldn’t get the cancellation of the infrared singularity
without it. The same arguments applies also to equation (14b) that underlines how infrared finite-
ness for QED corrections can be obtained only combining tt̄, tt̄g and tt̄γ final states.
The O(α2

sα) of qq̄ → tt̄g comes from the interference of qq̄ → g → tt̄g (Fig. 3) and qq̄ → γ → tt̄g
(Fig. 5). This terms can be obtained from the results calculated in the QCD case, with the replace-
ment of one gluonic propagator with a photonic one and the right couplings, as we did in the case of
qq̄ → tt̄. The only difference is the number of replaceable gluonic propagators in the interferences
term: in the qq̄ → tt̄g case they are only two and not three.
The O(α2

sα) of qq̄ → tt̄γ comes from the squared module of the sum of qq̄ → g → tt̄γ diagrams
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(Fig. 6), and again its value can be obtained by the QCD case of the different process qq̄ → tt̄g.
In this case the particle replaced in the amplitudes is not virtual but real, so there is a one-to-one
relation between diagrams involved in QCD and QED cases.
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Only couplings and color factor!
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for the emission of gluon with mass λ and Eg < ∆E. These soft gluon terms must include only the
interference of initial and final state gluon to cancel the IR-divergence of the box, anyway the price
we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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we pay is a dependence on ∆E. In the case of the real emission of gluon only the interference of
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initial and final state radiation gives asymmetric term5, so demanding hard gluon with Eg > ∆E
and combining the result with soft gluon emission and loop correction, we finally obtain the total
effect of the O(α3

s) of the inclusive production of tt̄ induced by qq̄, independent of ∆E.
qg → tt̄q and q̄g → tt̄q̄ tree level diagram are the same of qq̄ → tt̄g with ingoing q̄(q) and outgoing
g crossed, so it’s easy to understand how asymmetric term can arise, but its contribution to AFB

is numerically negligible.

In order to analyze the O(α2
sα) it’s useful to divide QED corrections from the pure weak ones. In

the QED sector we obtain contributions to O(α2
sα) of N from three6 partonic processes: qq̄ → tt̄,

qq̄ → tt̄g and qq̄ → tt̄γ. If we start from the first case, we find that it can be calculated simply
substituting with a photon propagator one of the three gluon propagator that appears in the O(α3

s)
interference of boxes and tree level amplitudes.
The only differences between the calculation of O(α3

s) and of QED O(α2
sα) are the couplings and

the presence of SU(3) generators in the vertexes, so summing over color in the final state and

5These diagram are shown in Fig. 3, also a diagram with the trigluon vertex can be drawn, but it doesn’t give
any contribution to AFB

6Also γq → tt̄q and γq̄ → tt̄q̄ can contribute, but their contribution is negligible
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.
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The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry
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2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain
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N

D
=

α3
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sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are
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N

D
=
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sαÑ1 + α4
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+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
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1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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Weak
Z is not massless → If we write Weak=QCD × RWeak.

RWeak does not depend only on couplings and color factor

The same diagrams as QED part, but γ → Z.
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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Figure 1: Born diagrams

In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.
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The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry
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chiralities produce asymmetric 
terms in the cross-section

In this work we reevaluated all the contributions that are presented in in the last term of (8).
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κ
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Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

Hollik, D.P. ’11 



Finally we see, thanks to the relations (14), that the O(α2
sα) of QED for qq̄ → tt̄ +X is equal to

the O(α3
s) times RQED(Qq)

RQED(Qq) =
αÑQED

1

αsN1
=

F tt̄
QED

F tt̄
QCD

= QqQt
36

5

α

αs
(15)

The pure weak contribution to the O(α2
sα) is depicted by the same diagrams of qq̄ → tt̄ and qq̄ → tt̄g

in the QED case, but with the photon substituted by Z. We aren’t able anymore to express their
contributions through the QCD result and a simple Rweak factor, indeed now the replacement of a
gluon with a Z introduces the mass of Z in the propagators. We could neglect the mass of Z for

the qq̄ → tt̄g case because the ratio of m2
Z and the threshold is very small ( m2

Z

4m2
t
= 0.06), but in

the boxes amplitude the virtuality of Z is not constrained, so the loop integral is different from the
QED case. We can only repeat the calculation following the phase space slicing method exposed
for the O(α3

s) case.
It’s worth noting that also qq̄ → tt̄Z could contribute to this order, but here this process is ignored
because its value is very tiny (10−5 in AFB) due to the effect of mZ in the phase space integration.
The same argument applies to ud̄ → tt̄W+ and Higgs radiation.
We could expect that also one loop weak corrections to the qq̄g vertex (iΛµ) give rise to contribution
to AFB , but they don’t. Looking at the terms that can appear in iΛµ:

iΛµ = −igst
A α

4π

[

γµFV + γµγ5GA +
(pq̄ − pq)µ

2mq
FM + (pq̄ + pq)µγ5GE

]

(16)

we can see that, in the interference with Born amplitude, terms proportional to GE and GA vanish
and obviously γµFV doesn’t contribute to AFB, otherwise also O(α2

s) would be relevant. In [9] we
see that also the term proportional to FM vanishes in the AFB calculation.

3 Numerical results

All the numerical results have been calculated with the help of Feynarts [10] and Formcalc[11] and
using the phase space slicing method . The values of the physical input parameter are:

α−1 = 137.035 mt = 172.0 GeV mZ = 91.1875 GeV mW = 80.399 GeV (17)

We chose MRST2004QED parton distributions for NLO calculations and MRST2001LO for LO,
but the values of αs(µ) given by the two distributions is different for fixed µ, so we used αs(µ) of
MRST2004QED also for the evaluation of the cross sections at LO [5]. The same value (µ) was
used also for the factorization scale, and numerical results are presented with three different scale
(µ = mt/2,mt, 2mt). In Tab. 1 there are the results obtained for the cross sections, that is the
denominator of AFB. The different terms in the numerator of Att̄

FB and App̄
FB are listed7 in Tab. 3

and the correspondent contributions to the asymmetry in Tab. 4.
The QED part of the O(α2

sα) was easily obtained from O(α3
s) thanks to (15), and the values

used for µ = (mt/2,mt, 2mt) are

Ruū
QED = (0.192, 0.214, 0.237) Rdd̄

QED = (−0.096,−0.107,−0.119) (18)

7All the calculations have been done using
√
s = 1.96 TeV in the hadronic collisions. Using 2 TeV the changes

are negligible in Tab. 4, but not in Tab. 1 and Tab. 3
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              QED is the dominant contribution of the electroweak corrections.
 It is stable under factorization and renormalization scale variation.

yield contributions to AFB which are numerically not important [5].
In order to analyze the electroweak O(α2

sα) terms, it is useful to separate the QED contributions
involving photons from the weak contributions with Z bosons. In the QED sector we obtain the
O(α2

sα) contributions to N from three classes of partonic processes: qq̄ → tt̄, qq̄ → tt̄g and qq̄ → tt̄γ.
The first case is the virtual-photon contribution, which can be obtained from the QCD analogue,
namely the O(α3

s) interference of box and tree-level amplitudes, by substituting successively each
one of the three internal gluons by a photon, as displayed in Figure 4.
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Figure 4: Different ways of QED–QCD interference at O(α2
sα)

The essential differences between the calculation of the O(α3
s) and of QED O(α2

sα) terms are
the coupling constants and the appearance of the SU(3) generators in the strong vertices. Summing
over color in the final state and averaging in the initial state we find for the virtual contributions
to the antisymmetric cross section the following ratio,

|Mtt̄|
2

O(α2
s
α),asym

|Mtt̄|
2

O(α3
s
),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s
)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s
)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(8)
that can be expressed in terms of two factors F tt̄

QED and F tt̄
QCD depending only on coupling constants

and color traces,

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2, (9a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq. (9b)

F tt̄
QCD contains two different color structures and the result depends on d2 = dABCdABC = 40

3 ,

which arises from Tr(tAtBtC) = 1
4 (if

ABC + dABC). F tt̄
QED instead depends on the charges of the

incoming quarks (Qq) and of the top quark (Qt), together with ntt̄ = 3 corresponding to Figure 4.

4

u and d have different charges: contributions of opposite sign for 

(a) Att̄
FB

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 7.01% 6.29% 5.71%

O(α3
s) dd̄ 1.16% 1.03% 0.92%

O(α2
sα)QED uū 1.35% 1.35% 1.35%

O(α2
sα)QED dd̄ -0.11% -0.11% -0.11%

O(α2
sα)weak uū 0.16% 0.16% 0.16%

O(α2
sα)weak dd̄ -0.04% -0.04% -0.04%

O(α2) uū 0.18% 0.23% 0.28%

O(α2) dd̄ 0.02% 0.03% 0.03%

tot pp̄ 9.72% 8.93% 8.31%

(b) App̄
FB

App̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 4.66% 4.19% 3.78%

O(α3
s) dd̄ 0.75% 0.66% 0.59%

O(α2
sα)QED uū 0.90% 0.90% 0.90%

O(α2
sα)QED dd̄ -0.07% -0.07% -0.07%

O(α2
sα)weak uū 0.10% 0.10% 0.10%

O(α2
sα)weak dd̄ -0.03% -0.03% -0.03%

O(α2) uū 0.11% 0.14% 0.17%

O(α2) dd̄ 0.01% 0.02% 0.02%

tot pp̄ 6.42% 5.92% 5.43%

Table 4: Individual and total contributions to Att̄
FB and App̄

FB
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Figure 7: Theory(blue) and experimental data (black=central value, orange=1σ, yellow=2σ)
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yield contributions to AFB which are numerically not important [5].
In order to analyze the electroweak O(α2

sα) terms, it is useful to separate the QED contributions
involving photons from the weak contributions with Z bosons. In the QED sector we obtain the
O(α2

sα) contributions to N from three classes of partonic processes: qq̄ → tt̄, qq̄ → tt̄g and qq̄ → tt̄γ.
The first case is the virtual-photon contribution, which can be obtained from the QCD analogue,
namely the O(α3

s) interference of box and tree-level amplitudes, by substituting successively each
one of the three internal gluons by a photon, as displayed in Figure 4.
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- RQED depend only on the 
renormalization scale, not on 
AFB definitions and cuts 

Forward-backward asymmetry



σ(pb) µ = mt/2 µ = mt µ = 2mt

uū 6.245 4.454 3.355

dd̄ 1.112 0.777 0.575

ss̄ 1.37× 10−2 9.60× 10−3 0.706 × 10−2

cc̄ 2.24× 10−3 1.69× 10−3 1.32× 10−3

gg 0.617 0.378 0.248

pp̄ 7.990 5.621 4.187

Table 1: Integrated cross sections at O(α2
s) from the various partonic channels

AFB are

Rtt̄
EW =

N tt̄
O(α2

s
α)+O(α2)

N tt̄
O(α3

s
)

= (0.190, 0.220, 0.254),

Rpp̄
EW =

Npp̄
O(α2

s
α)+O(α2)

Npp̄
O(α3

s
)

= (0.186, 0.218, 0.243), (14)

which are larger than the estimate of 0.09 given in [5]. This shows that the electroweak contribution
provides a non-negligible fraction of the QCD-based antisymmetric cross section with the same
overall sign, thus enlarging the Standard Model prediction for the asymmetry (the electroweak
O(α2

sα) contribution of uū → tt̄ to the asymmetry is even bigger than the O(α3
s) contribution of

dd̄ → tt̄).
The final result for the two definitions of AFB can be summarized as follows,

Att̄
FB = (9.7, 8.9, 8.3)%, App̄

FB = (6.4, 5.9, 5.4)%. (15)

Figure 7 displays the theoretical prediction versus the experimental data. The prediction is
almost inside the experimental 1σ range for Att̄

FB and inside the 2σ range for App̄
FB . It is important

to note that the band indicating the scale variation of the prediction does not account for all the
theoretical uncertainties. For example, the O(α4

s) term in N is missing, and we did not include the
O(α3

s) part in D. Including the NLO term for the cross section in D would decrease the asymmetry
by about 30%, which indicates the size of the NLO terms. In a conservative spirit one would
consider this as an uncertainty from the incomplete NLO calculation (see also the discussion in [5]).

We have performed our analysis also for applying two different types of cuts, one to the tt̄
invariant mass and the other one to the rapidity: Mtt̄ > 450 GeV and |∆y| > 1. With those cuts,
experimental data have also been presented in [3]. The cross section values for these cuts at LO
are given in Table 2. The various terms of the antisymmetric cross section contributing to N , as

σ(pb) µ = mt/2 µ = mt µ = 2mt

pp̄(Mtt̄ > 450 GeV) 3.113 2.148 1.573

pp̄(|∆y| > 1) 1.846 1.276 0.937

Table 2: Cross sections with cuts at O(α2
s)

discussed above in the case without cuts, are now calculated for Att̄
FB for both cases Mtt̄ > 450 GeV

7

and |∆y| > 1. The corresponding contributions to the asymmetry Att̄
FB are the entries of Table 5.

The asymmetry with cuts is the total result,

Att̄
FB(Mtt̄ > 450 GeV) = (13.9, 12.8, 11.9)%, Att̄

FB(|∆y| > 1) = (20.7, 19.1, 17.5)%. (16)

A comparison of Table 5 with Table 3(a) shows that the ratio of the QCD contribution to the
uū → tt̄ and dd̄ → tt̄ subprocesses is larger with the Mtt̄ > 450 GeV cut, which leads to a slight
increase of Rtt̄

EW :

Rtt̄
EW (Mtt̄ > 450 GeV) = (0.200, 0.232, 0.266) Rtt̄

EW (|∆y| > 1) = (0.191, 0.216, 0.246). (17)

It is, however, not enough to improve the situation.
Figure 8 displays the theoretical prediction versus data for Att̄

FB with cuts. The Standard
Model prediction is inside the 2σ range for the |∆y| > 1 cut, but it is at the 3σ boundary for the
invariant-mass cut Mtt̄ > 450 GeV.

4 Conclusions

Our detailed analysis of the electroweak contributions to the forward-backward asymmetry in tt̄
production shows that they provide a non-negligible fraction of the QCD-induced asymmetry with
the same overall sign, thus enlarging the Standard Model prediction for the asymmetry at the
Tevatron. For high invariant masses, a 3σ deviation from the measured value still persists. The
observed dependence of AFB on the invariant mass of tt̄ could be an indication for the presence of
new physics below the TeV scale; it is, however, difficult to interpret these deviations as long as the
NLO QCD calculation for the asymmetry is not available.

8
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EW corrections to AFB depends on fac/ren scale, and very slightly on AFB 
definitions and cuts. 
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FB(|∆y| > 1) = (20.7, 19.1, 17.5)%. (16)

A comparison of Table 5 with Table 3(a) shows that the ratio of the QCD contribution to the
uū → tt̄ and dd̄ → tt̄ subprocesses is larger with the Mtt̄ > 450 GeV cut, which leads to a slight
increase of Rtt̄

EW :

Rtt̄
EW (Mtt̄ > 450 GeV) = (0.200, 0.232, 0.266) Rtt̄

EW (|∆y| > 1) = (0.191, 0.216, 0.246). (17)

It is, however, not enough to improve the situation.
Figure 8 displays the theoretical prediction versus data for Att̄

FB with cuts. The Standard
Model prediction is inside the 2σ range for the |∆y| > 1 cut, but it is at the 3σ boundary for the
invariant-mass cut Mtt̄ > 450 GeV.

4 Conclusions

Our detailed analysis of the electroweak contributions to the forward-backward asymmetry in tt̄
production shows that they provide a non-negligible fraction of the QCD-induced asymmetry with
the same overall sign, thus enlarging the Standard Model prediction for the asymmetry at the
Tevatron. For high invariant masses, a 3σ deviation from the measured value still persists. The
observed dependence of AFB on the invariant mass of tt̄ could be an indication for the presence of
new physics below the TeV scale; it is, however, difficult to interpret these deviations as long as the
NLO QCD calculation for the asymmetry is not available.
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EW corrections to AFB depends on fac/ren scale, and very slightly on AFB 
definitions and cuts 

EW corrections to AFB are more important than EW corrections 
to total cross-section. 2 Reasons:

-The dominant EW contribution,             QED, to the  AFB comes from boxes: 
3 times the number of diagrams of QCD case.
QED contribution to total cross-section comes “from vertex corrections”: 
same number of diagrams of QCD case.

σ(pb) µ = mt/2 µ = mt µ = 2mt

uū 6.245 4.454 3.355

dd̄ 1.112 0.777 0.575

ss̄ 1.37× 10−2 9.60× 10−3 0.706 × 10−2

cc̄ 2.24× 10−3 1.69× 10−3 1.32× 10−3

gg 0.617 0.378 0.248

pp̄ 7.990 5.621 4.187

Table 1: Integrated cross sections at O(α2
s) from the various partonic channels

AFB are

Rtt̄
EW =

N tt̄
O(α2

s
α)+O(α2)

N tt̄
O(α3

s
)

= (0.190, 0.220, 0.254),

Rpp̄
EW =

Npp̄
O(α2

s
α)+O(α2)

Npp̄
O(α3

s
)

= (0.186, 0.218, 0.243), (14)

which are larger than the estimate of 0.09 given in [5]. This shows that the electroweak contribution
provides a non-negligible fraction of the QCD-based antisymmetric cross section with the same
overall sign, thus enlarging the Standard Model prediction for the asymmetry (the electroweak
O(α2

sα) contribution of uū → tt̄ to the asymmetry is even bigger than the O(α3
s) contribution of

dd̄ → tt̄).
The final result for the two definitions of AFB can be summarized as follows,

Att̄
FB = (9.7, 8.9, 8.3)%, App̄

FB = (6.4, 5.9, 5.4)%. (15)

Figure 7 displays the theoretical prediction versus the experimental data. The prediction is
almost inside the experimental 1σ range for Att̄

FB and inside the 2σ range for App̄
FB . It is important

to note that the band indicating the scale variation of the prediction does not account for all the
theoretical uncertainties. For example, the O(α4

s) term in N is missing, and we did not include the
O(α3

s) part in D. Including the NLO term for the cross section in D would decrease the asymmetry
by about 30%, which indicates the size of the NLO terms. In a conservative spirit one would
consider this as an uncertainty from the incomplete NLO calculation (see also the discussion in [5]).

We have performed our analysis also for applying two different types of cuts, one to the tt̄
invariant mass and the other one to the rapidity: Mtt̄ > 450 GeV and |∆y| > 1. With those cuts,
experimental data have also been presented in [3]. The cross section values for these cuts at LO
are given in Table 2. The various terms of the antisymmetric cross section contributing to N , as

σ(pb) µ = mt/2 µ = mt µ = 2mt

pp̄(Mtt̄ > 450 GeV) 3.113 2.148 1.573

pp̄(|∆y| > 1) 1.846 1.276 0.937

Table 2: Cross sections with cuts at O(α2
s)

discussed above in the case without cuts, are now calculated for Att̄
FB for both cases Mtt̄ > 450 GeV
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2 Calculational basis

At leading order the production of tt̄ pairs in pp̄ collisions originates, via the strong interaction,
from the partonic processes qq̄ → tt̄ and gg → tt̄, which yield the O(α2

s) of the (integrated) cross
section, i.e. the denominator of AFB in (1) and (2). The antisymmetric cross section, the numerator
of AFB , starts at O(α3

s) and gets contributions from qq̄ → tt̄(g) with q = u, d (the processes from
other quark species, after convolution with the parton distributions and summation, are symmetric
under yt → −yt and thus do not contribute to AFB) as well as from qg → tt̄q and q̄g → tt̄q̄.

Writing the numerator and the denominator of AFB (for either of the definitions (1) and (2))
in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (5)

The terms up to one-loop (D0, D1, N1) have been calculated [9, 10, 11, 12, 13, 14], [15, 16, 17, 18],
[5], whereas only some parts of N2 are currently known [19, 20]. The inclusion of the N1D1/D0

term without N2 would hence be incomplete, and we have chosen to use only the lowest order cross
section in the denominator and the O(α3

s) term in the numerator, as done in [5].
Rewriting N and D to include the EW contributions yields the following expression for the

leading terms,

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (6)

where the incomplete O(α2
s) part has been dropped. In the following we (re-)evaluate the three

contributions on the r.h.s. of (6).
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Figure 1: Electroweak and QCD Born diagrams

Figure 1 contains all the tree level diagrams for the partonic subprocesses qq̄ → tt̄ and gg → tt̄
(Higgs exchange is completely negligible). The squared terms |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 yield

2

yield contributions to AFB which are numerically not important [5].
In order to analyze the electroweak O(α2

sα) terms, it is useful to separate the QED contributions
involving photons from the weak contributions with Z bosons. In the QED sector we obtain the
O(α2

sα) contributions to N from three classes of partonic processes: qq̄ → tt̄, qq̄ → tt̄g and qq̄ → tt̄γ.
The first case is the virtual-photon contribution, which can be obtained from the QCD analogue,
namely the O(α3

s) interference of box and tree-level amplitudes, by substituting successively each
one of the three internal gluons by a photon, as displayed in Figure 4.
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Figure 4: Different ways of QED–QCD interference at O(α2
sα)

The essential differences between the calculation of the O(α3
s) and of QED O(α2

sα) terms are
the coupling constants and the appearance of the SU(3) generators in the strong vertices. Summing
over color in the final state and averaging in the initial state we find for the virtual contributions
to the antisymmetric cross section the following ratio,

|Mtt̄|
2

O(α2
s
α),asym

|Mtt̄|
2

O(α3
s
),asym

=
2Re

(

Mtt̄
O(α)M

tt̄ ∗
O(α2

s
)

)

asym
+ 2Re

(

Mtt̄
O(αs)

Mtt̄ ∗
O(αsα)

)

asym

2Re
(

Mtt̄
O(αs)

Mtt̄ ∗
O(α2

s
)

)

asym

=
F tt̄
QED(αs,α, Qt, Qq)

F tt̄
QCD(αs)

(8)
that can be expressed in terms of two factors F tt̄

QED and F tt̄
QCD depending only on coupling constants

and color traces,

F tt̄
QCD =

g6s
9
δADδBF δECTr(t

AtBtC)
[1

2
Tr

(

tDtEtF
)

+
1

2
Tr

(

tDtF tE
)

]

=
g6s

16 · 9
d2, (9a)

F tt̄
QED = ntt̄

{g4se
2QqQt

9
δACδBDTr(tAtB)Tr(tCtD)

}

=
6g4se

2

9
QtQq. (9b)

F tt̄
QCD contains two different color structures and the result depends on d2 = dABCdABC = 40

3 ,

which arises from Tr(tAtBtC) = 1
4 (if

ABC + dABC). F tt̄
QED instead depends on the charges of the

incoming quarks (Qq) and of the top quark (Qt), together with ntt̄ = 3 corresponding to Figure 4.
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Forward-backward asymmetry



Charge asymmetry
At LHC same partonic processes, but different partonic luminosities.

Gluon-gluon luminosity is larger, so asymmetry is smaller.
Gluon-quark initial state starts to be “interesting”.

The ratio of integrated luminosities       /     at Tevatron is 4:1, at LHC 2:1. 
Cancellation between QED contributions is bigger. EW contribution at LHC 
in general is smaller (between 15% and 20% of QCD contribution).   

exhibit small, but non-zero SM-induced charge asymmetries and are useful in discriminating
between various new physics models which were proposed to explain the Tevatron asymmetry.
In the following analysis of various LHC charge asymmetries, we have taken into account in
the computation of the respective numerators the O(α3

s) QCD and the O(α2) and O(α2
sα)

electroweak contributions as outlined in Sect. 2.1. As mentioned above, the antisymmetric
contributions from qg fusion of O(α3

s) are not negligible at the LHC. For completeness, we
take into account also the mixed QCD-QED corrections of O(αα2

s) to qg fusion – see below.
The denominators of the asymmetries are evaluated again with LO QCD matrix elements
and the NLO PDF set CTEQ6.6M.

Central and edge charge asymmetry

Choosing a cut yc on the rapidities of the t and t̄ quarks, one may define central and edge
(or forward) charge asymmetries AC , AE [6, 18, 19]:

AC(yc) =
N(|yt| ≤ yc)−N(|yt̄| ≤ yc)

N(|yt| ≤ yc) +N(|yt̄| ≤ yc)
, (4)

AE(yc) =
N(yc ≤ |yt|)−N(yc ≤ |yt̄|)
N(yc ≤ |yt|) +N(yc ≤ |yt̄|)

, (5)

where the (anti)top rapidities are defined in the laboratory frame. The above discussion
tells us that for suitably chosen yc, the central asymmetry AC(yc) < 0 and AE(yc) > 0
in the SM. Because the fraction of qq̄ initiated tt̄ events, σqq̄→tt̄/σtt̄, is enhanced in the
forward/backward region, AE will in general be larger than |AC |. On the other hand, the
event numbers decrease rapidly with increasing |y|; i.e., yc must be chosen appropriately for
each of these observables in order to optimize the statistical sensitivity of AE .
For the computation of the central asymmetry we choose yc = 1 and take into account tt̄
events with Mtt ≥ Mc. We choose Mc = 2mt, 0.5 TeV, 0.7 TeV and 1 TeV. The various
contributions to the numerator and the resulting values of AC(yc = 1) at 7 TeV center-of-
mass energy are given in Table 4. The size of the O(αα2

s) mixed QCD-QED corrections to
qq̄ initiated contributions relative to those of O(α3

s) QCD is now ∼ 13%, which, as already
mentioned in Sect. 2.1, is due to the fact that the ratio of uū versus dd̄ annihilation is 2:1
at the LHC as compared to 4 : 1 for pp̄ collisions. The size of the O(α3

s) QCD contributions
from qg fusion amount to about 5% (Mc = 2mt) of the qq̄ contributions. At

√
s = 14 TeV

andMc = 1 TeV, they rise to ∼ 17%. Here, and also for all other LHC asymmetries discussed
below, we take into account also the mixed QCD-QED corrections of O(αα2

s) to qg → tt̄q
which are of the same order of magnitude as the mixed QCD-weak corrections of O(αα2

s),
as shown in Table 4. The size of these corrections can be easily understood. By diagram
inspection at the level of initial partons one obtains that the ratio fq = O(αα2

s)QED/O(α3
s)

for qg → tt̄q is given by

fq =
4αQqQt

αsd2abc/4
=

24αQqQt

5αs

, (6)

where d2abc = 40/3. For pp collisions at the LHC one gets therefore the ratio

fQED =
4fu + 2fd

6
=

16α

15αs

. (7)
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√
s yc = 0.5 yc = 1 yc = 2

7 TeV QCD: AE (%) 0.35 (1) 0.90 (3) 3.16 (6)
QCD + EW: AE (%) 0.39 (2) 1.04 (4) 3.69 (7)

8 TeV QCD: AE (%) 0.29 (1) 0.74 (3) 2.69 (6)
QCD + EW: AE (%) 0.31 (2) 0.86 (3) 3.24 (6)

14 TeV QCD: AE (%) 0.12 (1) 0.32 (1) 1.28 (5)
QCD + EW: AE (%) 0.14 (1) 0.37 (3) 1.49 (9)

Table 7: The edge asymmetry AE as a function of yc for the LHC at 7, 8, and 14 TeV. The
uncertainties are due to scale variations.

√
s Mc = 2mt 0.5 TeV 0.7 TeV 1 TeV

7 TeV QCD: A∆|y|
C (%) 1.07 (4) 1.27 (4) 1.68 (4) 2.06 (5)

QCD + EW: A∆|y|
C (%) 1.23 (5) 1.48 (4) 1.95 (4) 2.40 (6)

8 TeV QCD: A∆|y|
C (%) 0.96 (4) 1.14 (4) 1.48 (4) 1.85 (4)

QCD + EW: A∆|y|
C (%) 1.11 (4) 1.33 (5) 1.73 (5) 2.20 (5)

Mc = 2mt 0.5 TeV 1 TeV 2 TeV

14 TeV QCD: A∆|y|
C (%) 0.58 (3) 0.74 (3) 1.11 (5) 1.72 (10)

QCD + EW: A∆|y|
C (%) 0.67 (4) 0.86 (5) 1.32 (8) 2.12 (10)

Table 8: The charge asymmetry A∆|y|
C defined in (8) at the LHC, for Mtt̄ ≥ Mc.

The experimental results of the CMS and ATLAS collaborations are given in Table 10. The
results agree, within the present uncertainties, with the SM predictions given above6.
The recent CMS analysis [14], based on a data sample of Lint = 4.7 fb−1, measured the

charge asymmetry A∆|y|
C also differentially; in particular as a function of Mtt̄. The respective

data given in [14] agree, within the still large experimental errors, with our SM prediction

of the Mtt̄ dependence of A∆|y|
C given in Table 8.

Boosted charge asymmetry

Another way to enhance the tt̄ charge asymmetries at the LHC is to select tt̄ events whose
center-of-mass frame has a considerable Lorentz boost with respect to the beam axis. The
velocity of the tt̄ system along the beam axis is given by

β =
|pzt + pzt̄ |
Et + Et̄

, (10)

6In view of the positive charge asymmetry measured at the Tevatron one expects the LHC asymmetry
AC to be positive, too, within the SM. However, there are examples of new physics models which yield a
negative LHC asymmetry; see, e.g., [54].
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yt =
1

2
log

�
E + pz

E − pz

�
(1)

∆y = yt − yt̄ (2)

fp1,H1(x1)fp2,H2(x2) (3)

fp1,H2(x1)fp2,H1(x2) (4)

H1H2 → tt̄+X (5)

O(αsα) = 0 (6)

αÑ1

αsN1
= 0.09 (7)

RQED(Qq) =
αÑQED

1

αsN1
= QqQt

36

5

α

αs

(8)
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Total electroweak contribution to the asymmetries is not negligible 
and increases QCD result by a factor ~ 1.2 (Tevatron), ~ 1.15 (LHC) 

CONCLUSION
The electroweak contribution to total cross-section is still smaller 
than QCD uncertainty. It could be seen in differential distribution, 
with high luminosity. 

EW cannot explain AFB(MINV>450 GeV), but new models cannot 
forget its contribution when they try to fill the gap between theory 
(SM) and experiment.  

THANK YOU FOR THE ATTENTION!
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At LHC H1=H2 → AFB=0
At Tevatron only processes with p1 or p2 = (up, antiup, down, antidown) can 
produce asymmetric terms!

Hadronic process = partonic process ⊗ PDF

Partonic process can be produced in two different directions 

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·
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s) term in the numerator.
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Diagrams contributing to orders        ,         of 

The physics of top quarks at the Tevatron and at the upcoming Large Hadron Collider (LHC)
offers the unique possibility to explore the interactions of the heaviest known fundamental
particle. At the LHC one expects to investigate with some precision also the so-far unknown
high-energy regime, i.e., single top-quark and top antitop-quark (tt̄) events with transverse
momenta and/or pair-invariant masses in the TeV range. The analysis and interpretation
of such events will require, in particular, precise standard model (SM) predictions. In this
context the electroweak corrections to hadronic tt̄ production were recently determined: the
O (!2s!) contributions of W,Z and Higgs boson exchange to quark-antiquark annihilation
qq̄→ tt̄ [1, 2] and to gluon fusion gg→ tt̄ [3–5], extending earlier work of1 [6], and the
photonic corrections to hadronic top-quark pair production [7].
In this addendum to [3] we analyze a further set of weak-interaction corrections which we
found to have some impact on a few kinematic distributions: i) the contributions of order !2

and !s! to
bb̄→ tt̄ , (1)

and ii) the O (!s!2) and O (!2s!) contributions to the reactions

gq (q̄) → tt̄q (q̄) (q= u,d,s,c,b) . (2)

We employ here the so-called 5-flavor scheme [13], where the (anti)proton is considered to
contain also b and b̄ quarks in its partonic sea. Thus the reaction (1) is a leading-order (LO)
process in this scheme, while (2), q = b, is a next-to-leading order (NLO) QCD correction
to (1). The O (!2s!) corrections to the processes (2) were calculated already in [3] which
we include here for completeness. For several top quark observables – in particular, for
the tt̄ cross section – the contributions i) and ii) are insignificant. However, here we show
that for the pair-invariant mass distribution and for the top-quark helicity asymmetry, which
are among the key observables in the tool-kit for search of new physics in tt̄ events, these
corrections do matter if one aims at predictions with a precision at the percent level.
The amplitude of (1) receives, in Born approximation and putting mb = 0, the following
contributions: a) t-channel W boson exchange bb̄ W−→tt̄, b) s-channel photon and Z boson
exchanges bb̄ ",Z−→tt̄ and c) s-channel gluon exchange bb̄ g−→tt̄. The t-channel W boson ex-
change contribution a) is not suppressed by a small Cabibbo-Kobayashi-Maskawa (CKM)
mixing matrix element, in contrast to the corresponding t-channel amplitudes bd̄,bs̄→ tt̄ +
c.c. channels.
The lowest order weak-interaction induced contribution to the squared transition matrix el-
ement |M (bb̄→ tt̄)|2 are of order !2 and !s!; the latter arises from the interference of the
amplitudes a) and c).

1The supersymmetric QCD corrections to tt̄ production were recently reexamined in [8]. The computation
of [9] includes also electroweak MSSM effects, which were analyzed before in [10–12].
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Figure 1: Feynman diagrams for gq(q̄) → tt̄q(q̄) to leading order in the weak and strong
interactions.
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Figure 2: a) Ratios (d!weak/dpT )/(d!LO/dpT ) where d!weak are the weak-interaction cor-
rections i), ii), and iii) to the reactions (1), (2), and qq̄,gg→ tt̄ (q #= b), respectively. The
latter corrections are shown for two different values of the Higgs boson mass. The hatched
areas arise from scale variations as described in the text. b) Sum of the ratios shown in a) for
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process in this scheme, while (2), q = b, is a next-to-leading order (NLO) QCD correction
to (1). The O (!2s!) corrections to the processes (2) were calculated already in [3] which
we include here for completeness. For several top quark observables – in particular, for
the tt̄ cross section – the contributions i) and ii) are insignificant. However, here we show
that for the pair-invariant mass distribution and for the top-quark helicity asymmetry, which
are among the key observables in the tool-kit for search of new physics in tt̄ events, these
corrections do matter if one aims at predictions with a precision at the percent level.
The amplitude of (1) receives, in Born approximation and putting mb = 0, the following
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mixing matrix element, in contrast to the corresponding t-channel amplitudes bd̄,bs̄→ tt̄ +
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The lowest order weak-interaction induced contribution to the squared transition matrix el-
ement |M (bb̄→ tt̄)|2 are of order !2 and !s!; the latter arises from the interference of the
amplitudes a) and c).

1The supersymmetric QCD corrections to tt̄ production were recently reexamined in [8]. The computation
of [9] includes also electroweak MSSM effects, which were analyzed before in [10–12].
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ement |M (bb̄→ tt̄)|2 are of order !2 and !s!; the latter arises from the interference of the
amplitudes a) and c).

1The supersymmetric QCD corrections to tt̄ production were recently reexamined in [8]. The computation
of [9] includes also electroweak MSSM effects, which were analyzed before in [10–12].
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In this work we reevaluated all the contributions that are presented in in the last term of (8).
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Figure 1: Born diagrams

In Fig. 1 all the tree level diagrams of the subprocesses qq̄ → tt̄ and gg → tt̄ are shown2. From the
squared modules |Mqq̄→g→tt̄|

2 and |Mgḡ→tt̄|
2 we obtainD0 the LO cross section, from |Mqq̄→γ→tt̄+

Mqq̄→Z→tt̄|
2 instead we get the O(α2) term of the numerator of AFB. Indeed the cross section

obtained by s-channel γ, Z amplitudes contains a term (9) that contributes to AFB thanks to the
different couplings of Z with different chiralities.

dσasym

d cos θ
= 2πα2 cos θ

(

1−
4m2

t

s

)[

κ
QqQtAqAt

(s−M2
Z)

+ 2κ2AqAtVqVt
s

(s−M2
Z)

2

]

(9)

κ =
1

4 sin2(θW ) cos2(θW )
Vq = T 3

q − 2Qq sin
2(θW ) Aq = T 3

q

The interference of qq̄ → γ, Z → tt̄ and qq̄ → g → tt̄ is zero because the color structure, so we don’t
have O(αsα) terms3 in N and D.

The O(α3
s) terms that contributes to N come from four partonic processes: qq̄ → tt̄, qq̄ → tt̄g,

qg → tt̄q and q̄g → tt̄q̄. In the first case these corrections comes from the interference of the 1-loop
corrections of QCD and the Born amplitude, in the other ones simply from the tree level amplitude.
All the vertex and self-energies 1-loop correction don’t generate any asymmetric term, so only the
boxes are relevant for our purpose (Fig. 2). Box integrals don’t produce ultraviolet and collinear
divergences, only infrared singularities can arise. After regularization through a mass term λ for
the gluon4, the dependence of the result on λ can be cancelled adding soft gluon terms that account

2Higgs s-channel is completely negligible
3qq̄ → tt̄ presents O(α) W mediated t-channel diagrams leading to non-vanishing contribution to the O(αsα) of

N (with q = d) and D (with q = d, s, b). Unfortunately, this term are strongly suppressed by CKM matrix (with
q = d, s) or by parton distributions (with q = b).

4We don’t have trigluon vertex, so we don’t break the gauge symmetry

3

At LO partonic processes are not asymmetric.
QCD produces the asymmetry only at NLO!
NLO in the cross-section, LO in AFB

2 Theoretical prevision

Before starting the analysis of the non-vanishing partonic contributions to AFB , it’s worth noting
that the initial state pp̄ is basic to get:

App̄
FB = App̄

C =
σ(yt > 0)− σ(yt̄ > 0)

σ(yt > 0) + σ(yt̄ > 0)
(5a)

AFB "= 0 (5b)

Under a CP transformation a top quark with rapidity y becomes an antitop with asymmetry −y
so, assuming CP conserving interactions, (5a) is true thanks to the CP symmetric initial state.
Obviously also an Att̄

C charge asymmetry can be defined and Att̄
FB = Att̄

C .
In the case of pp collision the initial state is not only non-invariant under CP, it doesn’t exhibit a
preferred direction along the axis of the collision, so AFB it would be trivially equal to zero.
It is useful, for the analysis of AFB in the pp̄ case, to see in a more detailed way why (5b) is not true
in the pp collision. The hadronic collision is constituted by partonic subprocesses p1p2 → tt̄+X that
can be born with p1(p2) coming from the first(second) hadron H1(H2) or from H2(H1). Given a
kinematic configuration of p1p2 → tt̄+X , if it contributes to σ(yt > 0) in the H1(H2) configuration
it contributes with the same partonic weight also to σ(yt < 0) in the H2(H1) configuration. So the
total contribution to App̄

FB is non vanishing only if the weight coming from the parton distributions
is different, that is if:

fp1,H1
(x1)fp2,H2

(x2) "= fp1,H2
(x1)fp2,H1

(x2) (6)

where fpi,Hj
(xi) is the parton distribution of the parton pi in the hadron Hj . The same argument

applies also to Att̄
FB with or without cuts on Mtt̄ or ∆y .

At LHC H1 = H2 so AFB is equal to zero, at Tevatron (6) is not generally true but it can be used
to distinguish which subprocesses can give rise to contribution to AFB .
Now we can start to look at the partonic subprocesses that generate a tt̄ pair. At the Born order the
partonic processes are qq̄ → tt̄ and gg → tt̄ so, if we forget for a moment electroweak interactions,
the denominator in AFB (total cross section) is O(α2

s) at leading order. The numerator is instead
O(α3

s) at LO, indeed gg → tt̄ and qq̄ → tt̄ with q "= u, d are excluded by (6) and uū(dd̄) → tt̄
partonic cross section is symmetric under yt → −yt. The exclusion of gg → tt̄ and qq̄ → tt̄ with
q "= u, d doesn’t depend on the perturbative order, so thanks to (6) we can exclude these partonic
processes for the next calculations1.
Writing the numerator and the denominator of AFB in powers of αs we obtain

AFB =
N

D
=

α3
sN1 + α4

sN2 + · · ·

α2
sD0 + α3

sD1 + · · ·
=

αs

D0
(N1 + αs(N2 −N1D1/D0)) + · · · . (7)

The terms up to 1 loop have been already calculated (D0, D1, N1), instead only some parts of
N2 are known. The inclusion of the N1D1/D0 term without N2 could worsen the perturbative
approximation of the exact result, so we are allowed to use only the Born cross section in the
denominator and the O(α3

s) term in the numerator.
We can also rewrite N and D including EW corrections, and the leading contribution (excluding
the O(α2

s) terms) are

AFB =
N

D
=

α2Ñ0 + α3
sN1 + α2

sαÑ1 + α4
sN2 + · · ·

α2D̃0 + α2
sD0 + α3

sD1 + α2
sαD̃1 + · · ·

= αs
N1

D0
+ α

Ñ1

D0
+

α2

α2
s

Ñ0

D0
+ · · · (8)

1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.
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1We know that there are PDFs with s(x) != s̄(x), but the effect is negligible.

2

QCD only at LO, but there is also electroweak theory.

yt =
1

2
log

�
E + pz

E − pz

�
(1)

∆y = yt − yt̄ (2)

fp1,H1(x1)fp2,H2(x2) (3)

fp1,H2(x1)fp2,H1(x2) (4)

H1H2 → tt̄+X (5)

O(αsα) = 0 (6)

1

αs2D0 is the LO cross section, now we see the terms in N



(a) Att̄
FB

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 7.01% 6.29% 5.71%

O(α3
s) dd̄ 1.16% 1.03% 0.92%

O(α2
sα)QED uū 1.35% 1.35% 1.35%

O(α2
sα)QED dd̄ -0.11% -0.11% -0.11%

O(α2
sα)weak uū 0.16% 0.16% 0.16%

O(α2
sα)weak dd̄ -0.04% -0.04% -0.04%

O(α2) uū 0.18% 0.23% 0.28%

O(α2) dd̄ 0.02% 0.03% 0.03%

tot pp̄ 9.72% 8.93% 8.31%

(b) App̄
FB

App̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 4.66% 4.19% 3.78%

O(α3
s) dd̄ 0.75% 0.66% 0.59%

O(α2
sα)QED uū 0.90% 0.90% 0.90%

O(α2
sα)QED dd̄ -0.07% -0.07% -0.07%

O(α2
sα)weak uū 0.10% 0.10% 0.10%

O(α2
sα)weak dd̄ -0.03% -0.03% -0.03%

O(α2) uū 0.11% 0.14% 0.17%

O(α2) dd̄ 0.01% 0.02% 0.02%

tot pp̄ 6.42% 5.92% 5.43%

Table 4: Different contributions to Att̄
FB and App̄
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Figure 7: Theory(blue) and experimental data (black=central value, orange=1σ, yellow=2σ)
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Finally we see, thanks to the relations (14), that the O(α2
sα) of QED for qq̄ → tt̄ +X is equal to

the O(α3
s) times RQED(Qq)

RQED(Qq) =
αÑQED

1

αsN1
=

F tt̄
QED

F tt̄
QCD

= QqQt
36

5

α

αs
(15)

The pure weak contribution to the O(α2
sα) is depicted by the same diagrams of qq̄ → tt̄ and qq̄ → tt̄g

in the QED case, but with the photon substituted by Z. We aren’t able anymore to express their
contributions through the QCD result and a simple Rweak factor, indeed now the replacement of a
gluon with a Z introduces the mass of Z in the propagators. We could neglect the mass of Z for

the qq̄ → tt̄g case because the ratio of m2
Z and the threshold is very small ( m2

Z

4m2
t
= 0.06), but in

the boxes amplitude the virtuality of Z is not constrained, so the loop integral is different from the
QED case. We can only repeat the calculation following the phase space slicing method exposed
for the O(α3

s) case.
It’s worth noting that also qq̄ → tt̄Z could contribute to this order, but here this process is ignored
because its value is very tiny (10−5 in AFB) due to the effect of mZ in the phase space integration.
The same argument applies to ud̄ → tt̄W+ and Higgs radiation.
We could expect that also one loop weak corrections to the qq̄g vertex (iΛµ) give rise to contribution
to AFB , but they don’t. Looking at the terms that can appear in iΛµ:

iΛµ = −igst
A α

4π

[

γµFV + γµγ5GA +
(pq̄ − pq)µ

2mq
FM + (pq̄ + pq)µγ5GE

]

(16)

we can see that, in the interference with Born amplitude, terms proportional to GE and GA vanish
and obviously γµFV doesn’t contribute to AFB, otherwise also O(α2

s) would be relevant. In [9] we
see that also the term proportional to FM vanishes in the AFB calculation.

3 Numerical results

All the numerical results have been calculated with the help of Feynarts [10] and Formcalc[11] and
using the phase space slicing method . The values of the physical input parameter are:

α−1 = 137.035 mt = 172.0 GeV mZ = 91.1875 GeV mW = 80.399 GeV (17)

We chose MRST2004QED parton distributions for NLO calculations and MRST2001LO for LO,
but the values of αs(µ) given by the two distributions is different for fixed µ, so we used αs(µ) of
MRST2004QED also for the evaluation of the cross sections at LO [5]. The same value (µ) was
used also for the factorization scale, and numerical results are presented with three different scale
(µ = mt/2,mt, 2mt). In Tab. 1 there are the results obtained for the cross sections, that is the
denominator of AFB. The different terms in the numerator of Att̄

FB and App̄
FB are listed7 in Tab. 3

and the correspondent contributions to the asymmetry in Tab. 4.
The QED part of the O(α2

sα) was easily obtained from O(α3
s) thanks to (15), and the values

used for µ = (mt/2,mt, 2mt) are

Ruū
QED = (0.192, 0.214, 0.237) Rdd̄

QED = (−0.096,−0.107,−0.119) (18)

7All the calculations have been done using
√
s = 1.96 TeV in the hadronic collisions. Using 2 TeV the changes

are negligible in Tab. 4, but not in Tab. 1 and Tab. 3
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QED = (0.192, 0.214, 0.237) Rdd̄

QED = (−0.096,−0.107,−0.119) (18)

7All the calculations have been done using
√
s = 1.96 TeV in the hadronic collisions. Using 2 TeV the changes

are negligible in Tab. 4, but not in Tab. 1 and Tab. 3

7

a) at 1σ 
b)inside 2σ

RQED +RWeak =
αÑ1

αsN1

= 0.09 (7)

Rtt̄
EW (Mtt̄ > 450 GeV) = (8)

(0.200, 0.232, 0.266) (9)

RQED(Qq) =
αÑQED

1

αsN1

= QqQt
36

5

α

αs
(10)

RQED(Qq) = QqQt
36

5

α

αs
(11)

σ(pb) µ = mt/2 µ = mt µ = 2mt

pp̄ (No cuts) 7.990 5.621 4.187

pp̄(Mtt̄ > 450 GeV) 3.113 2.148 1.573

pp̄(|∆y| > 1) 1.846 1.276 0.937

Table 1: Cross sections with cuts O(α2
s)

(a) Att̄
FB

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(αs) uū 7.01% 6.29% 5.71%

O(αs) dd̄ 1.16% 1.03% 0.92%

O(α)QED uū 1.35% 1.35% 1.35%

O(α)QED dd̄ -0.11% -0.11% -0.11%

O(α)weak uū 0.16% 0.16% 0.16%

O(α)weak dd̄ -0.04% -0.04% -0.04%

O(α2/α2
s) uū 0.18% 0.23% 0.28%

O(α2/α2
s) dd̄ 0.02% 0.03% 0.03%

tot pp̄ 9.72% 8.93% 8.31%

(b) App̄
FB

App̄
FB µ = mt/2 µ = mt µ = 2mt

O(αs) uū 4.66% 4.19% 3.78%

O(αs) dd̄ 0.75% 0.66% 0.59%

O(α)QED uū 0.90% 0.90% 0.90%

O(α)QED dd̄ -0.07% -0.07% -0.07%

O(α)weak uū 0.10% 0.10% 0.10%

O(α)weak dd̄ -0.03% -0.03% -0.03%

O(α2/α2
s) uū 0.11% 0.14% 0.17%

O(α2/α2
s) dd̄ 0.01% 0.02% 0.02%

tot pp̄ 6.42% 5.92% 5.43%

Table 2: Different contributions to Att̄
FB and App̄

FB

3

(Att̄
FB)

EW

(Att̄
FB)

QCD
= (0.190, 0.220, 0.254)

(App̄
FB)

EW

(App̄
FB)

QCD
= (0.186, 0.218, 0.243) (1)

AEW
FB = 0.09×AQCD

FB (2)

AEW
FB ∼ 0.25×AQCD

FB (3)

pp̄ → tt̄+X
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Figure 1: Real emissions of gluon: photon in the propagator
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Figure 2: Real emissions of gluon: photon in the propagator

yt =
1

2
log

(E + pz
E − pz

)

(4)

∆y = yt − yt̄ (5)
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(a) Att̄
FB(Mtt̄ > 450 GeV)

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 10.13% 9.10% 8.27%

O(α3
s) dd̄ 1.44% 1.27% 1.14%

O(α2
sα)QED uū 1.94% 1.95% 1.96%

O(α2
sα)QED dd̄ -0.14% -0.14% -0.14%

O(α2
sα)weak uū 0.28% 0.28% 0.28%

O(α2
sα)weak dd̄ -0.05% -0.05% -0.05%

O(α2) uū 0.26% 0.33% 0.41%

O(α2) dd̄ 0.03% 0.03% 0.04%

tot pp̄ 13.90% 12.77% 11.91%

(b) Att̄
FB(|∆y| > 1)

App̄
FB

µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 15.11% 13.72% 12.41%

O(α3
s) dd̄ 2.28% 2.02% 1.84%

O(α2
sα)QED uū 2.90% 2.94% 2.94%

O(α2
sα)QED dd̄ -0.22% -0.22% -0.22%

O(α2
sα)weak uū 0.25% 0.25% 0.26%

O(α2
sα)weak dd̄ -0.09% -0.09% -0.08%

O(α2) uū 0.35% 0.45% 0.55%

O(α2) dd̄ 0.04% 0.05% 0.06%

tot pp̄ 20.70% 19.12% 17.75%

Table 5: Different contributions to Att̄
FB(Mtt̄ > 450 GeV) and Att̄

FB(|∆y| > 1)
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Figure 8: Theory(blue) and experimental data (black=central value, orange=1σ, yellow=2σ)
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Finally, we look at App̄ as a function of the b-tag mul-

tiplicity. We observed in Sec. VII that the inclusive App̄

is zero in the double b-tagged events. In Table XVII, we

see that this pattern persists at high mass, although the

statistical precision is poor. Appealing again to pseudo-

experiments with Poisson fluctuations, we find that a ra-

tio of double to single tag App̄ as small as that in the data

occurs in 6% of all pseudo-experiments with mc@nlo.
We conclude that the low value of App̄ in the double b-
tagged sample is consistent with a statistical fluctuation.

IX. CONCLUSIONS

We have studied the forward-backward asymmetry of

top quark pairs produced in 1.96 TeV pp̄ collisions at

the Fermilab Tevatron. In a sample of 1260 events in

the lepton+jet decay topology, we measure the parton-

level inclusive asymmetry in both the laboratory and tt̄
rest frame, and rapidity-dependent, and Mtt̄-dependent

asymmetries in the tt̄ rest frame. We compare to NLO

predictions for the small charge asymmetry of QCD.

The laboratory frame measurement uses the rapidity

of the hadronically decaying top system and combines

the two lepton charge samples under the assumption of

CP conservation. This distribution shows a parton-level

forward backward asymmetry in the laboratory frame of

App̄ = 0.150 ± 0.055 (stat+sys). This has less than 1%

probability of representing a fluctuation from zero, and

is two standard deviations above the predicted asymme-

try from NLO QCD. We also study the frame-invariant

difference of the rapidities, ∆y = yt − yt̄, which is pro-

portional to the top quark rapidity in the tt̄ rest frame.

Asymmetries in ∆y are identical to those in the t pro-

duction angle in the tt̄ rest frame. We find a parton-level

asymmetry of Att̄ = 0.158 ± 0.075 (stat+sys), which is

somewhat higher than, but not inconsistent with, the

NLO QCD expectation of 0.058± 0.009.
In the tt̄ rest frame we measure fully corrected asym-

metries at small and large ∆y

Att̄(|∆y| < 1.0) = 0.026± 0.118
Att̄(|∆y| ≥ 1.0) = 0.611± 0.256

to be compared with mcfm predictions of 0.039 ± 0.006
and 0.123± 0.008 for these ∆y regions respectively.

In the tt̄ rest frame the asymmetry is a rising function

of the tt̄ invariant mass Mtt̄, with parton level asymme-

tries

Att̄(Mtt̄ < 450 GeV/c2) = −0.116± 0.153
Att̄(Mtt̄ ≥ 450 GeV/c2) = 0.475± 0.114

to be compared with mcfm predictions of 0.040 ± 0.006
and 0.088±0.013 for these Mtt̄ regions respectively. The

asymmetry at high mass is 3.4 standard deviations above

the NLO prediction for the charge asymmetry of QCD,

however we are aware that the accuracy of these theo-

retical predictions are under study. The separate results

at high mass and large ∆y contain partially independent

information on the asymmetry mechanism.

The asymmetries reverse sign under interchange of lep-

ton charge in a manner consistent with CP conservation.

The tt̄ frame asymmetry for Mtt̄ ≥ 450 GeV/c2 is found

to be robust against variations in tt̄ reconstruction qual-

ity and secondary vertex b-tagging. When the high-mass

data is divided by the lepton flavor, the asymmetries

are larger in muonic events, but statistically compatible

across species. Simple studies of the jet multiplicity and

frame dependence of the asymmetry at high mass may

offer the possibility of discriminating between the NLO

QCD effect and other models for the asymmetry, but the

statistical power of these comparisons is currently insuf-

ficient for any conclusion.

The measurements presented here suggest that the

modest inclusive tt̄ production asymmetry originates

from a significant effect at large rapidity difference ∆y
and total invariant mass Mtt̄. The predominantly qq̄
collisions of the Fermilab Tevatron are an ideal environ-

ment for further examination of this effect, and additional

studies are in progress.
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X. APPENDIX: THE COLOR-OCTET MODELS

In the generic color-octet model of Ref. [8], the gluon-

octet interference produces an asymmetric cos(θ∗) term

in the production cross section. The couplings of the

top and the light quarks to the massive gluon have op-

posite sign, giving a positive asymmetry as seen in the

data. This was implemented in the madgraph frame-

work, and the couplings and MG were tuned to reason-

ably reproduce the asymmetries and Mtt̄ distribution of

the data [26]. The sample called OctetA, with couplings

gV = 0, gA(q) = 3/2, gA(t) = −3/2, and mass MG = 2.0
TeV/c2, has parton level asymmetries of App̄ = 0.110 and
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X. APPENDIX: THE COLOR-OCTET MODELS

In the generic color-octet model of Ref. [8], the gluon-

octet interference produces an asymmetric cos(θ∗) term

in the production cross section. The couplings of the

top and the light quarks to the massive gluon have op-

posite sign, giving a positive asymmetry as seen in the

data. This was implemented in the madgraph frame-

work, and the couplings and MG were tuned to reason-

ably reproduce the asymmetries and Mtt̄ distribution of

the data [26]. The sample called OctetA, with couplings

gV = 0, gA(q) = 3/2, gA(t) = −3/2, and mass MG = 2.0
TeV/c2, has parton level asymmetries of App̄ = 0.110 and

(a) Att̄
FB(Mtt̄ > 450 GeV)

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 10.13% 9.10% 8.27%

O(α3
s) dd̄ 1.44% 1.27% 1.14%

O(α2
sα)QED uū 1.94% 1.95% 1.96%

O(α2
sα)QED dd̄ -0.14% -0.14% -0.14%

O(α2
sα)weak uū 0.28% 0.28% 0.28%

O(α2
sα)weak dd̄ -0.05% -0.05% -0.05%

O(α2) uū 0.26% 0.33% 0.41%

O(α2) dd̄ 0.03% 0.03% 0.04%

tot pp̄ 13.90% 12.77% 11.91%

(b) Att̄
FB(|∆y| > 1)

Att̄
FB µ = mt/2 µ = mt µ = 2mt

O(α3
s) uū 15.11% 13.72% 12.41%

O(α3
s) dd̄ 2.28% 2.02% 1.84%

O(α2
sα)QED uū 2.90% 2.94% 2.94%

O(α2
sα)QED dd̄ -0.22% -0.22% -0.22%

O(α2
sα)weak uū 0.25% 0.25% 0.26%

O(α2
sα)weak dd̄ -0.09% -0.09% -0.08%

O(α2) uū 0.35% 0.45% 0.55%

O(α2) dd̄ 0.04% 0.05% 0.06%

tot pp̄ 20.70% 19.12% 17.75%

Table 5: Different contributions to Att̄
FB(Mtt̄ > 450 GeV) and Att̄

FB(|∆y| > 1)
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Figure 8: Theory(blue) and experimental data (black=central value, orange=1σ, yellow=2σ)
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