BABAR Results on $B \rightarrow X_s \gamma$

Jack Ritchie University of Texas at Austin (representing the **BABAR** collaboration)

> CKM2012 Sep 28 - Oct 2, 2012 University of Cincinnati

Outline

I. $b \rightarrow s \gamma$ motivation

II. Inclusive $B \rightarrow X_s \gamma$ (with lepton tag)

- i. Branching fraction
- ii. Spectrum and moments
- iii. A_{CP}
- III. Semi-inclusive $B \rightarrow X_s \gamma$
 - i. Branching fraction
 - ii. Spectrum
- IV. Summary/Conclusions

Published

Publication

imminent

this month

Jack Ritchie U.Texas-Austin CKM2012 University of Cincinnati

- Heavy-quark hadron duality $\Rightarrow B(B \rightarrow X_s \gamma) \cong B(b \rightarrow s \gamma)$
- Theoretically clean prediction in the Standard Model
 - Next-to-next-leading order (NNLO) calculation ($E_{\gamma} > 1.6 \text{ GeV}$)

 $B(B \to X_s \gamma) = (3.15 \pm 0.23) \times 10^{-4}$ Misiak et al., PRL 98, 022002(2007)

- Small (7%) SM theory uncertainty \Rightarrow constraint on New Physics
- E_{γ} spectrum reflects b quark's mass, Fermi motion and gluon brem
 - Input to shape function parameters for $|V_{ub}|$ from $b \rightarrow ul^-v$ endpoint and used in extraction of $|V_{cb}|$ from $b \rightarrow cl^-v$

Jack Ritchie U.Texas-Austin

- Sensitive to new heavy particles in the loops
 - charged Higgs, superpartners, etc
- Leading-order and next-toleading order calculations for many models
- Experiment vs theory BF ⇒ strong constraints on New Physics

Jack Ritchie U.Texas-Austin

Experimental Issues for $B \rightarrow X_s \gamma$

- Two experimental techniques
 - Not statistics limited for branching fraction measurement
- Fully Inclusive
 - Only look at the γ from the signal B decay
 - \succ Photon energy is smeared by the calorimeter resolution ($\sigma/E\sim 2.6\%$)
 - \succ B → X_dγ is not distinguishable (i.e., it's included); |V_{td}/V_{ts}|²≅0.04
 - Suppress *B* decay background with E_{γ} min cut (a compromise between experimental versus theoretical uncertainties); E_{γ} >1.8 GeV
 - Continuum rejection via event shape and either lepton tag or reconstructing the other B
- "Semi-inclusive" (sum of exclusive modes)
 - Reconstruct many final states (38 in BABAR)
 - Dominant systematic from the missing fraction (\approx 45%)

Jack Ritchie U.Texas-Austin CKM2012 University of Cincinnati

Inclusive $B \rightarrow X_s \gamma$ Branching Fraction

- Blind analysis
- Signal efficiency based on HFAG parameters for spectrum
- Corrected for EMC and Doppler smearing of photon energy.
- Correct for b→dγ using 1/(1+|V_{td}/V_{ts}|²)=0.958±0.003
 - Evaluate statistical, systematic (mostly BB subtraction), and model (spectrum) errors

BaBar Preliminary

Energy Range	$\mathcal{B}(B \to X_{s+d}\gamma) \ (10^{-4})$	$\mathcal{B}(B \to X_s \gamma) \ (10^{-4})$
1.8 to $2.8 \mathrm{GeV}$	$3.347 \pm 0.158 \pm 0.301 \pm 0.080$	$3.207 \pm 0.151 \pm 0.288 \pm 0.077$
1.9 to $2.8{\rm GeV}$	$3.126 \pm 0.141 \pm 0.203 \pm 0.059$	$2.995 \pm 0.135 \pm 0.194 \pm 0.057$
2.0 to $2.8 \mathrm{GeV}$	$2.925 \pm 0.128 \pm 0.146 \pm 0.045$	$2.802 \pm 0.122 \pm 0.140 \pm 0.043$

Jack Ritchie U.Texas-Austin CKM2012 arXiv:1207.5772 University of Cincinnati

Direct CP Violation (A_{CP}) in $B \rightarrow X_{s+d}\gamma$

$$A_{CP} = \frac{\Gamma(B \to X_{s+d}\gamma) - \Gamma(\overline{B} \to X_{\overline{s}+\overline{d}}\gamma)}{\Gamma(B \to X_{s+d}\gamma) + \Gamma(\overline{B} \to X_{\overline{s}+\overline{d}}\gamma)} \cong 0$$

A strong SM prediction, so a good NP test. Remains valid despite long-distance dominance for X_s only; Benzke, Lee, Neubert, Paz, PRL **106** 141801 (2011)

- Blind analysis
- Dilution correction accounts for B⁰-B⁰ mixing (+mistags)
- Energy range chosen to minimize total (stat+syst) error.
- Optimized region 2.1<E^{*}_γ<2.8 GeV

BaBar Preliminary

 $A_{CP} = 0.057 \pm 0.060 \pm 0.018$

arXiv:1207.5772 Publication imminent (PR D)

Jack Ritchie U.Texas-Austin CKM2012 University of Cincinnati

Unfolded Spectrum and Moments

Unfolding procedure corrects for detector acceptance, selection efficiency, energy resolution, and for CM motion of the *B*.

Moments measured

$$E_{1} = \left\langle E_{\gamma} \right\rangle$$

$$E_{2} = \left\langle (E_{\gamma} - \left\langle E_{\gamma} \right\rangle)^{2} \right\rangle$$

$$E_{3} = \left\langle (E_{\gamma} - \left\langle E_{\gamma} \right\rangle)^{3} \right\rangle$$

$$E_{3} = \left\langle (E_{\gamma} - \left\langle E_{\gamma} \right\rangle)^{3} \right\rangle$$

Useful for determining heavy quark parameters.

E_{γ}^B Range (GeV)	$E_1 \ (GeV)$	$E_2 \ (\mathrm{GeV}^2)$
1.8 to 2.8	$2.267 \pm 0.019 \pm 0.032 \pm 0.003$	$0.0484 \pm 0.0053 \pm 0.0077 \pm 0.0005$
1.9 to 2.8	$2.304 \pm 0.014 \pm 0.017 \pm 0.004$	$0.0362 \pm 0.0033 \pm 0.0033 \pm 0.0005$
2.0 to 2.8	$2.342 \pm 0.010 \pm 0.008 \pm 0.005$	$0.0251 \pm 0.0021 \pm 0.0013 \pm 0.0009$
Jack Ritchie	CKM2012	arXiv:1207.5772

CKM2012 Publication imminent (PR D)

U.Texas-Austin

University of Cincinnati

Semi-inclusive $B \rightarrow X_s \gamma$

- Reconstruct 38 modes
- Signal selection and π^0 rejection using random forest classifiers
- Fits to extract signal yields in 18 $X_{\rm s}$ -mass bins in range 0.6<m_{xs}<2.8 GeV
- Determine photon energy from

$$E_{\gamma}^B = \frac{m_B^2 - m_{X_s}^2}{2m_B}$$

Estimate missing fraction from JETSET studies

Jack Ritchie **U.Texas-Austin**

CKM2012 University of Cincinnati

1	$K_S \pi^+$	20	$K_S \pi^+ \pi^- \pi^+ \pi^-$
2	$K^+\pi^0$	21	$K^+\pi^+\pi^-\pi^-\pi^0$
3	$K^+\pi^-$	22	$K_S \pi^+ \pi^- \pi^0 \pi^0$
4	$K_S \pi^0$	23	$K^+\eta$
5	$K^+\pi^+\pi^-$	24	$K_S \eta$
6	$K_S \pi^+ \pi^0$	25	$K_S \eta \pi^+$
$\overline{7}$	$K^+\pi^0\pi^0$	26	$K^+\eta\pi^0$
8	$K_S \pi^+ \pi^-$	27	$K^+\eta\pi^-$
9	$K^+\pi^-\pi^0$	28	$K_S \eta \pi^0$
10	$K_S \pi^0 \pi^0$	29	$K^+\eta\pi^+\pi^-$
11	$K_S \pi^+ \pi^- \pi^+$	30	$K_S \eta \pi^+ \pi^0$
12	$K^+\pi^+\pi^-\pi^0$	31	$K_S \eta \pi^+ \pi^-$
13	$K_S \pi^+ \pi^0 \pi^0$	32	$K^+\eta\pi^-\pi^0$
14	$K^+\pi^+\pi^-\pi^-$	33	$K^+K^-K^+$
15	$K_S \pi^0 \pi^+ \pi^-$	34	$K^+K^-K_S$
16	$K^+\pi^-\pi^0\pi^0$	35	$K^+K^-K_S\pi^+$
17	$K^+\pi^+\pi^-\pi^+\pi^-$	36	$K^+K^-K^+\pi^0$
18	$K_S \pi^+ \pi^- \pi^+ \pi^0$	37	$K^+K^-K^+\pi^-$
19	$K^+\pi^+\pi^-\pi^0\pi^0$	38	$K^+K^-K_S\pi^0$

For A_{CP} study, will measure $\Delta A_{X_s\gamma} \equiv A_{X_s^-\gamma} - A_{X_s^0\gamma}$

Semi-inclusive $B \rightarrow X_s \gamma$ Spectrum

Spectrum Fits and Moments

$B \rightarrow X_s \gamma$ Branching Fraction Summary

Comparison of measurements extrapolated to E_{γ} >1.6 GeV by the Heavy Flavor Averaging Group.

Jack Ritchie U.Texas-Austin CKM2012 University of Cincinnati

Summary/Conclusions

- $B \rightarrow X_s \gamma$ is one of the theoretically cleanest FCNC modes.
 - Precision measurements provide important constraints on New Physics.
 - Spectrum provides heavy quark parameters
- BABAR results on $B \rightarrow X_s \gamma$
 - − Inclusive (lepton tag) (preliminary until published) $B(B \rightarrow X_s \gamma) = (3.21 \pm 0.15 \pm 0.29 \pm 0.08) \times 10^{-4} \quad (E_\gamma > 1.8 \text{ GeV})$ $A_{CP} = 0.057 \pm 0.060 \pm 0.018$
 - Semi-inclusive (38 modes) B($B \rightarrow X_s \gamma$)=(3.29±0.19 ±0.48) x10⁻⁴ (E_{γ} > 1.9 GeV)
- Results in good agreement with SM