CHARMED BEAUTY DECAYS AT LHCb

LHCb_Collaboration::Mike_Williams

Department of Physics Massachusetts Institute of Technology

CKM 2012 October 1st, 2012

The CKM matrix describes all quark flavor-changing processes in the SM.

Amazing progress in the past 17 years ... but still more to learn. 1995 2004 2012

This talk focusses on first observations/evidence for a number of beauty decays to open charm final states.

LHCb: FWD spectrometer (2 < η < 5) built to study heavy-quark physics.

LHCb has excellent vertex and momentum resolution, PID, μ -ID, etc.

LHCb: FWD spectrometer (2 < η < 5) built to study heavy-quark physics.

LHCb has excellent vertex and momentum resolution, PID, μ -ID, etc.

No hadronic annihilation-type decays of the B^{\pm} have been observed to-date. $\mathcal{B}_{SM}(B^{\pm} \rightarrow D_s^{\pm} \phi) = (1-7) \times 10^{-7}$ (large hadronic uncertainty).

BSM physics, *e.g.*, H^{\pm} exchange, could greatly enhance the branching fraction and/or generate a large *CP* asymmetry (A_{CP}).

 $\mathcal{B}(B^{\pm} \rightarrow D_s^{\pm}\phi) < 1.9 \times 10^{-6}$ (BABAR, PRD73 011103, hep-ex/0506073) Existing limit already places strong constraints on 2HD models.

$B^{\pm} \rightarrow D_s^{\pm} \phi \ [LHCb-PAPER-2012-025] \ (New!)$

Analysis strategy:

- $\blacksquare \quad \text{reconstruct} \ D^{\pm}_{s} \to K^{+}K^{-}\pi^{\pm} \ \text{and} \ \phi \to K^{+}K^{-};$
- In multivariate (BDT) selections for the D_s^{\pm} and ϕ trained using huge $\overline{B}_s^0 \to D_s^{\pm} \pi^{\mp}$ and $B_s^0 \to J/\psi \phi$ data samples;
- all PID info contained within the BDTs, efficiencies obtained from $\overline{B}_s^0 \rightarrow D_s^{\pm} \pi^{\mp}$ and $B_s^0 \rightarrow J/\psi \phi$ data samples not used in the training;
- for topology sanity cuts made on $B^{\pm} \rightarrow D_s^{\pm} \phi$;
- charmless backgrounds suppressed by requiring D_s^{\pm} significantly downstream of the B^{\pm} vertex.

Branching fraction normalized to $\mathcal{B}(B^+ \to D_s^+ \overline{D}{}^0)$.

$$\mathcal{B}(B^{\pm} \to D_s^{\pm} \phi) = (1.87^{+1.25}_{-0.73} \, (\mathrm{stat}) \pm 0.19 \, (\mathrm{syst}) \pm 0.32 \, (\mathrm{norm})) \times 10^{-6}$$

$$\mathcal{A}_{CP}(B^{\pm} \to D_s^{\pm} \phi) = -0.01 \pm 0.41 \, (\mathrm{stat}) \pm 0.03 \, (\mathrm{syst})$$

Related Decay Modes

Decay	UL at 90% CL	Decay	$\frac{f_c}{f_u} \times$ UL at 90% CL
$B^+ \to D^+ K^{*0}$	$1.8 imes10^{-6}$	$B_c^+ \rightarrow D^+ K^{*0}$	$0.5 imes10^{-6}$
$B^+ ightarrow D^+ \overline{K}{}^{*0}$	$1.4 imes10^{-6}$	$B_c^+ \to D^+ \overline{K}^{*0}$	$0.4 imes10^{-6}$
$B^+ ightarrow D_s^+ K^{*0}$	$3.5 imes10^{-6}$	$B_c^+ ightarrow D_s^+ K^{*0}$	$0.7 imes10^{-6}$
$B^+ ightarrow D^+_s \overline{K}{}^{*0}$	$4.4 imes10^{-6}$	$B_c^+ \rightarrow D_s^+ \overline{K}^{*0}$	$1.1 imes10^{-6}$
		$B_c^+ \rightarrow D_s^+ \phi$	$0.8 imes10^{-6}$

Small excess in $B^+ \rightarrow D^+ K^{*0}$: posterior PDF excludes zero signal at the 89% CL and gives $\mathcal{B}(B^+ \rightarrow D^+ K^{*0}) = (0.8^{+0.6}_{-0.5}) \times 10^{-6}$.

Use interference b/t $\mathcal{A}_{b\to\mu}^{\bar{b}\to\bar{u}} = \mathcal{A}_{bu}e^{\pm i\gamma}$ and $\mathcal{A}_{b\to c}^{\bar{b}\to\bar{c}} = \mathcal{A}_{bc}$ to extract γ .

[nb, this equation is slightly oversimplified as it ignores the D-decay amplitudes]

$$\begin{aligned} \mathcal{N}_{\pm} &= |\mathcal{A}_{B^{\pm} \to D^{0} K^{\pm}} + \mathcal{A}_{B^{\pm} \to \bar{D}^{0} K^{\pm}}|^{2} \\ &= |\mathcal{A}_{D^{0}}|^{2} + |\mathcal{A}_{\bar{D}^{0}}|^{2} + 2|\mathcal{A}_{D^{0}}||\mathcal{A}_{\bar{D}^{0}}|\cos\left(\Delta\theta_{\text{strong}} \pm \gamma\right) \end{aligned}$$

Classic modes discussed in other LHCb talks (Malde, John). Here I'll show some other players in this game.

The CKM angle γ can be measured using the decays $B_s^0 \rightarrow D\phi$ (via GLW/ADS) and $B_s^0 \rightarrow DK^+K^-$ (via Dalitz-plot analysis).

Step 1: observe $B_s^0 \to DK^+K^-$.

LHCb Analysis (uses 0.62 fb⁻¹ of 2011 data)

- Reconstruct $\overline{D}^0 \to K^+ \pi^-$.
- PID cuts using RICH info; efficiencies obtained from $D^* \rightarrow D^0 \pi$ data.
- ANN trained on $B^0 \rightarrow \overline{D}^0 \pi^+ \pi^-$ data; efficiency determined in MC.
- $\square D^* \to D\pi \text{ veto (including } \pi \to K \text{ mis ID) applied.}$

$$\frac{\mathcal{B}(B_s^0 \to \overline{D}^0 K^+ K^-)}{\mathcal{B}(B^0 \to \overline{D}^0 K^+ K^-)} = 0.90 \pm 0.27 \pm 0.20 \text{ (first evidence!)}$$

More data needed to go after γ but should have enough using 2011 + 2012 to measure some relevant quantities here.

$\blacksquare B^- \rightarrow D^0 K^- \pi^+ \pi^- \text{ [LHCb-CONF-2012-021]}$

The decays $B^- \rightarrow D^0 K^- \pi^+ \pi^-$ can be used in the GLW/ADS technique in a similar way as $B^- \rightarrow D^0 K^-$ (extra *coherence factor* needed).

Also first observations of the $D^0 \rightarrow \pi^+\pi^-$ modes.

$$\blacksquare B^- \rightarrow D^0 K^- \pi^+ \pi^- \text{ [LHCb-CONF-2012-021]}$$

A number of GLW quantities are measured for the $B^- \rightarrow D^0 K^- \pi^+ \pi^-$ and $B^- \rightarrow D^0 \pi^- \pi^+ \pi^-$ decay modes:

R_{CP+}	=	$0.95 \pm 0.11 \text{ (stat)} \pm 0.02 \text{ (syst)}$
$A_{CP+}^{K\pi\pi}$	=	$- \ 0.14 \ \pm 0.10 \ ({\rm stat}) \pm 0.01 \ ({\rm syst})$
$A_{K\pi}^{K\pi\pi}$	=	$-0.009\pm 0.028({\rm stat})\pm 0.013({\rm syst})$
$A_{CP+}^{\pi\pi\pi}$	=	$-0.018\pm0.018({\rm stat})\pm0.007({\rm syst})$
$A_{K\pi}^{\pi\pi\pi}$	=	$-0.006\pm0.006({\rm stat})\pm0.010({\rm syst})$

The largest sensitivity to γ of these observables is $A_{CP+}^{K\pi\pi}$. The ADS and GGSZ modes will be looked for using the 2011 + 2012 data set.

 $\blacksquare B^0_{(s)} \rightarrow D^0 K^* \text{ [LHCb-CONF-2012-024]}$

More data will permit the measurement of additional observables in these channels leading to strong constraints on γ .

- I LHCb performed great in 2011 and collected just over 1 fb⁻¹ of data.
- LHCb has collected about 1.4 fb⁻¹ of data already in 2012. The bb̄ cross section is also higher in 2012 so the total 2011-2012 data set will have about 3X as many b-hadrons as in 2011 alone.
- Look forward to many more great results from LHCb using this vast data set. Stay tuned!

 B^{\pm} $\rightarrow D_{(s)}^{\pm} K^*$ [LHCb-PAPER-2012-025] (New!)

3

<ロト <回ト < 回ト < 回ト

 $B^- \to D^0 K^- \pi^+ \pi^- \ [LHCb-CONF-2012-021]$

 $\blacksquare B^- \rightarrow D^0 K^- \pi^+ \pi^- \text{ [LHCb-CONF-2012-021]}$

