

Searches for new physics in the Single Top channel at the LHC

Muhammad Alhroob

On behalf of the ATLAS and the CMS Collaborations

7th International Workshop on the CKM Unitarity Triangle

University of Cincinnati

Ohio / USA 28.09.2012 - 02.10.2012

Single top quark: production and motivation

- Test of Standard Model predictions:
 - cross section $\propto |V_{tb}|^2$
 - test of the unitarity of the CKM matrix: hints for existence for a fourth generation
 - test of the b-quark structure function
- Probe and prepare for search for new physics
- Measure all three processes independently:
 - charged heavy boson W', H⁺
 - access to anomalous couplings

Theory prediction (NNLO) • t-channel: 64.6 +3.2 -2.6 pb

- Wt-channel: 15.7 ± 1.3 pb
- s-channel: 4.6 ± 0.3 pb

- $M_{top} = 173.1 \pm 0.9 \text{ GeV}$
- Life-time $\sim 10^{-25}$ s •••
- Decays to bW ~100%

Search for Flavour Changing Neutral Currents at ATLAS using 2.05 fb⁻¹ Phys.Lett.B712, June 2012

• In the SM process, production is suppressed via GIM mechanism

- What do we want to know:
 - do quarks change their flavours when they couple with neutral force carriers (photon, Z, gluon)?
 - is there an enhancement to the predicted branching fractions (predicted excess depends highly on model; 5-8 orders)?
 - is there any evidence for new physics?

Analysis strategy

In this analysis we probe the coupling between the top quark and light quarks+gluon

Event selection

- Lepton selection (electron / muon):
 - $P_T > 25 \text{ GeV}$
- Missing transverse momentum
 - $E_T^{miss} > 25 \text{ GeV}$

Jets

- $P_T > 25 \text{ GeV}$
- exactly one jet
- one identified b-quark jet
- Extra background reduction
 - $M_T(lv) + E_T^{miss} > 60 \text{ GeV}$

Dominant backgrounds:

- W+jets (W+c)
- Single top quark (t-channel)

Backgrounds estimated using the simulation and control regions

Event yie	elds f	or	2.05 f	b	-1	
Process	Expec	ted e	events	eV	×10 ³	
SM single top	1460	±	150	6.7 G		∫ L dt = 2.05 fb ⁻¹ , is = 7 TeV ● datatt¯
$t\bar{t}$	660	±	70	/ents/	250	■ single top Z+jets
W+light jets	4700	±	1100	ш	200	multijet 🥢 uncertainty _
$Wb\bar{b}/Wc\bar{c}$ +jets	2700	±	1500		150	
Wc + jets	12100	±	6700		100	Pretagged
Z+jets/diboson	700	\pm	170		50	
Multijets	1600	±	800		0 0 20 40 60 8	0 100 120 140 160 180 200
Total background	24000	±	7000		5000	p ^w _T [GeV]
Observed	2	6223	}	GeV	4500 ATLAS	$\int L dt = 2.05 \text{ fb}^{-1}, \text{ is} = 7 \text{ TeV}$
 Multijets contribution estimated from data-driven method 				Events/6.7	4000 3500 3000 2500 2000	 data FCNC (σ=100 pb) tī single top Z+jets W+jets Wbb,Wcc,Wc multijet //// uncortainty
Shapes and yields ag	ree within	unce	rtainties		1500 1000 500 0 20 40 60	b-tagged 80 100 120 140 160 180 200
Muhammad Albrooh						p ^{vv} _T [GeV]

Neural Network

Signal signature:

- P_T (top) ~ 0 (W and b are back-to-back)
- P(W) is large
- 4× more top than anti-top quarks

11 variables used to train the NN

Muhammad Alhroob

Best variables used to train the NN

Data agrees very well with MC

- The trained NN in tagged samples is applied on the pretagged sample
- Very good agreement between data and MC

Signal extraction

- **Bayesian statistics** is used to calculate the signal posterior probability density function
- Binned Likelihood performed on the full NN output distributions
- Type of systematic uncertainties:
 - rate systematic uncertainties of each background processes
 - shape systematics which affects the signal and background templates
- Systematics uncertainties are included as nuisance parameters taking into account the correlations between electron and muon channels
 Systematic uncertainties included
 Systematic uncertainties included
- Systematic uncertainties included with Gaussian priors

Muhammad Alhroob

Search for *tb* resonances at ATLAS using 1.04 fb⁻¹

- Extensions to SM predict extra W boson (W')
- W' can have right-, left-handed coupling depends on the model
- W' is searched in *tb* resonance since many models predict it more strongly coupled to the third generation than the first and second generation
- Easier to suppress the background

A right-handed W'_R with SM like couplings is chosen as a benchmark model in the search for *tb* resonances

Phys.Rev.Lett. 109 (2012) 081801

$m_{W'_R}$ [GeV]	$\mathcal{B}(W' \to tb)$	$\sigma {\times} \mathcal{B}\left[pb ight]$
500	0.298	54.6 ± 2.1
750	0.319	10.9 ± 0.6
1000	0.326	2.92 ± 0.18
1250	0.328	0.91 ± 0.07
1500	0.330	0.31 ± 0.03
1750	0.331	0.11 ± 0.01
2000	0.332	0.04 ± 0.01

Z. Sullivan, Phys. Rev. D 66, 075011(2002)

Event Selection

- One isolated lepton (electron / muon):
 - $P_T > 25 \text{ GeV}$

Missing transverse momentum

• $E_T^{miss} > 25 \text{ GeV}$

■ Jets:

- $P_{\rm T} > 25 \; {\rm GeV}$
- exactly two jets
- at least one identified b-quark jet
- Extra background reduction

Background and data yields agree within uncertainties

• $M_T(lv) + E_T^{miss} > 60 \text{ GeV}$

Samples	Single-tagged	Double-tagged
W+ jets	5970 ± 1000	290 ± 180
Multijets	1120 ± 560	47 ± 47
$tar{t}$	1560 ± 130	360 ± 30
Single top	1240 ± 90	120 ± 10
Diboson, Z+jets	320 ± 120	14 ± 2
Total prediction	10200 ± 1200	830 ± 190
Data	10428	844

14

Kinematic plots

Search for tb resonances

- Data and MC compared using the invariant mass distributions for the *tb* system
- Single and double tagged events used separately

> No significant excess is observed

Limits on the W_R mass

- **Bayesian approach** is used to calculate the cross section upper limits at 95% C.L.
- Binned Likelihood performed on the full m_{tb} distributions using 1tag and 2tag distributions
- Shape and normalization systematic uncertainties are considered
- Systematic uncertainties included with Gaussian priors
- Observed cross section upper limit
 6.1-1.0 pb for W'_R masses between
 0.5 and 2.0 TeV
- Observed mass lower limit $M_{W_R} > 1.13$ TeV

Dominant systematic uncertainties:

- Jet energy scale
- b-tagging scale factor uncertainties
- background cross section uncertainties

Search for W' resonances at CMS using 5 fb⁻¹

arXiv:1208.0956v1 [hep-ex]

A search for **W'** is done including an arbitrary combination of left- and right-handed couplings to fermions

- SM W boson and W' boson with left-handed couplings both contribute to single top quark production, the interference can be 5-20%
- D0 searched for W' boson assuming both left-handed and right-handed couplings:
 - cross section upper limits are 0.10-1.3 pb for masses between 0.6 and 1 TeV
 - lower limit on the W' mass is 916 GeV assuming SM-like couplings

Event Selection

- One isolated high P_T lepton (electron / muon)
 - $P_T > 35$ GeV for electrons
 - $P_T > 32$ GeV for muons
- Missing transverse momentum
 - $E_T^{miss} > 20 (35)$ GeV for muon (electron) channel
- At least two Jets
 - $P_T > 100$ GeV for the leading jet
 - $P_T > 40$ GeV for the second leading jet
- At least one identified b-quark jet
- Additional cuts:
 - $P_T^{top} > 75 \text{ GeV}$
 - $P_T^{jet1,jets2} > 100 \text{ GeV}$
 - $130 < M_{top} < 210 \text{ GeV}$

Muhammad Alhroob

Event Yields

	Number of events					
Process	e+jets			µ+jets		
	b-tagg	ed jets	Additional	b-tagged jets		Additional
Signal	=1	≥ 1	selection	= 1	≥ 1	selection
W' _R (0.8 TeV)	405	631	463	539	838	605
W'_{R} (1.2 TeV)	63	90	68	76	109	81
W _R ⁷ (1.6 TeV)	11	14	11	11	15	11
W _R ^{''} (1.9 TeV)	3	4	3	3	4	3
						Background
tī	8496	10659	4795	13392	16957	6692
t-channel	587	686	300	1047	1223	442
s-channel	46	73	32	81	134	51
tW-channel	549	628	270	886	1007	395
$W(\rightarrow)\ell\nu$ +jets	4588	4760	1404	8673	9023	2350
$Z\gamma^*(\rightarrow \ell\ell)$ +jets	164	173	68	388	414	135
Diboson	51	52	17	77	79	27
Multijet QCD	104	225	0	121	121	0
Total background	14585 ± 3199	17256 ± 3780	6886±1371	24665 ± 4917	28958 ± 5765	10092 ± 1807
Data	14337	16758	6638	23979	28392	9821

Background and data yields agree within uncertainties

tb invariant mass analysis

- COMS (reading the second secon
- The top quark invariant mass built from the combination of the W boson with the jets closest to the 172.5 GeV
- The W' invariant mass is constructed from the top quark and the highest P_T jet remaining after constructed the top quark

Good agreement between data and predicted background

BDT analysis

- Boosted Decision Tree (BDT) used to distinguish between the signal W' and the background
- BDT is trained at each W' mass point and for each type of coupling separately for electron and muon channels
- 39 kinematic variables used to train BDT

Cross section upper limit

- The **CLs method** is used to calculate cross section upper limits at 95% C.L.
- Binned Likelihood performed on the full W' Invariant mass distributions and BDT distributions
- Both shape and normalization systematic uncertainties taken into account
- Systematic uncertainties included with log-normal priors
- W+ light quarks jets and W+ heavy quark jets has the largest impact on the cross section limit estimation
- Less dominant systematic uncertainties
 - jet energy scale
 - b-tagging efficiency
 - mis-tag rate

BDT gives better results than invariant mass analysis

Results from the BDT analysis

- For W' boson with right-handed couplings to fermions, lower mass limit is 1.85 TeV
- For the W' boson with left-handed coupling, the lower mass limit is **1.85 TeV** without interference with SM

Interpreting the result

$$\mathcal{L} = \frac{V_{f_i f_j}}{2\sqrt{2}} g_w \overline{f}_i \gamma_\mu \left(a_{f_i f_j}^R (1 + \gamma^5) + a_{f_i f_j}^L (1 - \gamma^5) \right) W'^\mu f_j + \text{H.c.}$$

- The coupling with *ud* quarks are assumed to be equal to the coupling with *tb* quarks
- The cross section upper limits are converted to upper limits on the coupling assuming arbitrarily combinations of a^R and a^L for each mass point

Summary

Search for FCNC:

- 2.05 fb⁻¹ of ATLAS data collected in 2011 used
- neural network: $\sigma_{FCNC} < 3.9 \text{ pb} @ 95\% \text{ C.L}$
- improves the previous limits on the branching fractions by a factor of 4 and a factor of 15 for *ugt* and *cgt* channels, respectively

Search for W'_{R} at ATLAS using 1.04 fb⁻¹ of data collected in 2011:

- invariant mass of *tb* system is used to perform the analysis
- $M_{W'_R} > 1.13 \text{ TeV}$

Search for W' at CMS using 5.0 fb⁻¹ of data collected in 2011:

- CLs method used to calculate the cross section upper limits @95% C.L for W'_R,
 W'_L and arbitrary combination of left- and right handed couplings to fermions
- BDT used to suppress the background: mass lower limit **1.85 TeV** @95% C.L.
- the results of the *tb* invariant mass analysis used to calculate the upper limits on the left-handed and right-handed couplings for the first time

Thank you.

Input variables for NN

Signal signature:

- $P_{\rm T}$ (top) ~ 0 (W and b are back-to-back)
- P(W) is large
- 4× more top than anti-top quarks

- background process
- One signal template

Input variables for BDT

1	
Object kinematics	Event kinematics
η(jet1)	Aplanarity(alljets)
$p_{\rm T}({\rm jet1})$	Sphericity(alljets)
η(jet2)	Centrality (alljets)
$p_{\rm T}({\rm jet2})$	M(btag1,btag2,W)
η(jet3)	M(jet1,jet2,W)
$p_{\rm T}({\rm jet3})$	M(alljets)
η (jet4)	M(alljets, W)
η (lepton)	M(W)
$p_{\rm T}({\rm lightjet})$	$M(\text{alljets,lepton}, E_{T}^{\text{miss}})$
$p_{\rm T}({\rm lepton})$	M(jet1,jet2)
η (notbest1)	$M_T(W)$
$p_{\rm T}$ (notbest1)	p _T (jet1,jet2)
$p_{\rm T}$ (notbest2)	$p_{\rm T}({\rm jet1, jet2, W})$
E_{T}^{miss}	p_z/H_T (alljets)
Top quark reconstruction	Angular correlations
$\dot{M}(\dot{W}, btag1)$ ("btag1" top mass)	$\Delta \phi$ (lepton, jet 1)
M(W, best1) ("best" top mass)	$\Delta \phi$ (lepton, jet2)
M(W, btag2) ("btag2" top mass)	$\Delta \phi$ (jet1,jet2)
$p_{\rm T}(W, {\rm btag1})$ ("btag1" top $p_{\rm T}$)	cos(best,lepton) _{besttop}
$p_{\rm T}(W, {\rm btag2})$ ("btag2" top $p_{\rm T}$)	cos(light,lepton) _{besttop}
	$\Delta R(\text{jet1,jet2})$