

Search for $B \rightarrow v\overline{v}$ and related modes

Alessandro Rossi, INFN Perugia on behalf of BABAR collaboration

Physics Motivation

- Invisible decay products include neutrinos as well as exotic particles
- The SM $B^0 \rightarrow v\bar{v}$ decay is suppressed by a factor $(\mathbf{m}_v/\mathbf{m}_B)^2$ while the BF $(B^0 \rightarrow v\bar{v}\gamma)$ is of the order of 10⁻⁹

 In SUSY model BR(B⁰→Invisible) is enhanced up to 10⁻⁷-10⁻⁶ due to neutrino+neutralino production in the final state

BABAR @ PEP-II

As of 2008/04/11 00:00

10/02/2012 • 3

Analysis Overview

 Update of a previous BABAR result with an Integrated Luminosity of 88.5fb⁻¹

 $\mathcal{B}(B^0 \to \text{invisible}) < 22 \times 10^{-5}$

<u>B. Aubert et al.</u> <u>Phys.Rev.Lett.93:091802,2004</u>

 $\mathcal{B}(B^0 \to \text{invisible} + \gamma) < 4.7 \times 10^{-5}$

- New analysis strategy
- Semileptonic Recoil Technique:
 - o reconstruct events in which a B⁰ decays to $D^{(*)-l+}\nu$ ("tag side"), then look for consistency with an invisible(+ γ) decay of the other neutral B ("signal side")

$$\begin{array}{c} B^{0} \rightarrow D^{-} l\nu \\ D^{-} \rightarrow K^{+} \pi^{-} \pi^{-} \\ D^{-} \rightarrow K_{S} \pi^{-} \end{array}$$

$$\begin{array}{c} B^{0} \rightarrow D^{*-} l\nu \\ D^{*-} \rightarrow \overline{D}^{0} \pi^{-} D^{-} \pi^{0} \\ \overline{D}^{0} \rightarrow K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}, K^{+} \pi^{-} \pi^{-} \pi^{+} \end{array}$$

Preselection

- Preselection cuts based on :
 - Nothing reconstructed on signal side or only one photon
 - o No extra charged tracks
 - Missing momentum inside detector sensitive volume
 - $|\cos\theta^*_{miss}| < 0.9\,$: polar angle of the missing momentum
 - Kinematical constraints on D meson decay products on tag side
 - Events with one photon with energy > 1.2GeV are reconstructed as $B \rightarrow invisible + \gamma$

MultiVariate Analysis

- After the preselection a Neural Network is implemented
- Samples:
 - o Signal: Signal MC with D(*)lv generated on tag side (~5x10⁶ events)
 - Background: BB MC (x3 data lum.) + Off-peak data (all normalized to Onpeak luminosity)
- Variables
 - $\circ B^0 \rightarrow \text{Invisible}$
 - D_{tag} : 9 variables
 - D^{*}_{tag}: 6 variables
 - \circ B⁰ → Invisible+γ
 - D_{tag}: 6 variables
 - D^{*}_{tag}: 4 variables

10/02/2012 • 6

• Alessandro Rossi - CKM 2012

Signal extraction

Unbinned Maximum Likelihood fit to E_{extra}

E_{extra} : "neutral energy that remains after all tag side tracks and neutral clusters have been accounted for"

- Fit strategy:
 - o Offpeak can not be used, very low statistics
 - o Background shape from M_D and ΔM Onpeak data sidebands
 - Side bands M_D : 15 MeV < $|M_D M_D^{PDG}|$ < 60 MeV
 - Side band ΔM : 148 MeV < ΔM < 155 MeV
 - o In this way the measured upper limit will not depend on the $\rm E_{extra}$ shape of the Offpeak data
 - o Signal shape from MC simulation

M_D: D meson invariant mass

AM : difference between D* invariant mass and PDG D mass

E_{extra} Likelihood

$$\begin{aligned} \mathcal{L}(N_{sig}, N_{bkg}) &= \frac{\left[(1 - f_{sig}) N_{sig} + (1 - f_{bkg}) N_{bkg} \right]^{N_1} e^{-\left[(1 - f_{sig}) N_{sig} + (1 - f_{bkg}) N_{bkg} \right]}}{N_1!} \\ &\times \prod_{i=1}^{N_1} \left[P_{sig}(E_{extra,i} | \vec{p}_{sig}) \frac{(1 - f_{sig}) N_{sig}}{N_1} + P_{bkg}(E_{extra,i} | \vec{p}_{bkg}) \frac{(1 - f_{bkg}) N_{bkg}}{N_1} \right] \\ &\times \frac{(f_{sig} N_{sig} + f_{bkg} N_{bkg})^{N_0} e^{-(f_{sig} N_{sig} + f_{bkg} N_{bkg})}}{N_0!} \end{aligned}$$

Minimum neutral energy threshold 30 MeV

o E_{extra} distribution not continuous

- Two different likelihood terms form $E_{extra}\!\!>\!\!30 MeV$ (N_1) and $E_{extra}\!<\!30 MeV$ (N_0)
- f_{sig} and f_{bkg} fraction of events with E_{extra}<30MeV (fixed)
- P_{sig} and P_{bkg} PDF distributions (fixed)

Signal Yield Extraction

 B⁰→Invisible signal yield compatible with zero if systematic errors are considered

B⁰→Invisible+γ signal yield compatible with zero within 0.6σ

Systematic Uncertainties

- Signal Efficency:
 - o Tag Efficency
 - From : BB MC + Offpeak data DoubleTag samples
 - o Cut on D mass (Δ M)
 - Change Signal Region window
 - o Preselection
 - Smearing of Signal variables
 - o Neural Network
 - Smearing of Signal Input variables
 - o Neutral Energy Resolution
 - Single Photon from $\pi^{\,0}$ decay
- B Counting
 - o systematic error of 0.6%
- Signal Yield:
 - o Background Parametrization
 - o Signal Parametrization
 - o E_{extra} Shape

	Source	$B^{\circ} \rightarrow \text{invisible } B^{\circ}$	$\gamma \rightarrow \text{invisible} + \gamma$		
	Normalization Errors				
	B-counting	0.6%	0.6%		
<u> </u>	_				
62	Efficiency Errors				
	Tagging Efficiency	3.5%	3.5%		
	$m_D (\Delta m)$ Selection	1%	1.3%		
	Preselection	3%	2.4%		
	Neural Network	6.1%	8.2%		
	Single Photon	_	1.8%		
	TOTAL	7.7%	9.5%		
	Yield Errors (events)				
	Background Param.	15.8	6.5		
	Signal Param.	2.0	1.2		

0.1

15.9

D()

a

Fit Technique

 E_{extra} Shape

TOTAL

 \mathbf{D}

. .1 1

1.0

1.8

6.9

Upper Limit @ 90% C.L.

B→Invisible				
\mathbf{N}_{BB}	$\epsilon_{ m sig}$	$\mathbf{N}_{\mathrm{sig}}$		
$(471\pm3)x10^{6}$	$(1.776 \pm 0.021 \pm 0.137) \times 10^{-3}$	-22±9±16		
B→Invisible+γ				
N _{BB}	$\epsilon_{ m sig}$	$\mathbf{N}_{\mathrm{sig}}$		
$(471\pm3)x10^{6}$	$(1.595\pm0.020\pm0.148)$ x10 ⁻³	-3.1±5.2±6.9		

- $\mathcal{BR} = \frac{N_{sig}}{\varepsilon_{sig} \cdot N_{B\bar{B}}}$
- Bayesian evaluation of the ULs:

 \circ BR(B→Invisible)<2.4x10⁻⁵ (at 90% C.L)

 \circ BR(B→Invisible+γ)<1.7x10⁻⁵ (at 90% C.L)

Conclusions

This analysis:

arXiv: hep-ex/1206.2543

- B→Invisible
 - o Signal Yield: -22±9_(stat)±16_(sys)
 - o Signal Efficiency: (1.78±0.02_(stat)±0.14_(syst))x10-3
- B→Invisible+γ
 - o Signal Yield: -3.1±5.2_(stat)±6.9_(sys)
 - o Signal Efficiency: (1.60±0.02_(stat)±0.15_(syst))x10-3

Upper Limits

- B to Inv. : 2.4x10⁻⁵
- B to Inv.+ γ: 1.7x10⁻⁵
- Improved by a factor 9 and 4 w.r.t previous BABAR results
- o Still far (1 order of magnitude) from NP sensitivity
 - New generation High Luminosity b-factories

Published Sep 27, Phys. Rev. D 86, 051105(R) (2012)

Back-UP

Background shape

Alessandro Rossi - CKM 2012

10/02/2012 • 14

Signal shape

Bayesian Approach

- Flat prior probability is assumed for positive values of branching fraction
- Gaussian likelihood is adopted for signal yield
 - Width is fixed to the sum in quadrature of the statistical and systematic yield errors
- Efficiency and normalization modeled with Gaussian PDF
- Posterior PDF extracted using Bayes' theorem
 - o Random BR, number of BB pairs and efficiency
 - BR weighted with the probability that the Number of signal event calculated is coming from the Gaussian likelihood

$$\int_{0}^{UL} \mathcal{P}(\mathcal{B}) d\mathcal{B} / \int_{0}^{\infty} \mathcal{P}(\mathcal{B}) d\mathcal{B} = 0.9$$

Zero Signal Hypothesis

- Same method to evaluate the UL
- Same statistical and systematic errors
- Hypothesis N_{sig}=0 for both channel
- UL at 90% C.L.

o 3.8x10⁻⁵ wrt 2.4x10⁻⁵ o 1.9x10⁻⁵ wrt 1.9x10⁻⁵

Control Sample

- "Unphysical" decay $B^+ \rightarrow Invisible(\gamma)$ as control sample
- Same selection applies as for $B^0 \rightarrow Invisible(\gamma)$
- Results compatible with zero within 1.1σ (stat. only)

