

R_K and K⁺ $\rightarrow \pi^+ \nu \nu$ with NA62 at CERN SPS

Giuseppe Ruggiero (CERN) CKM 2012, Cincinnati, 02/10/2012

On behalf of the NA62 collaboration

Giuseppe Ruggiero - CKM 2012 -02/10/2012

Outline

- × R_K measurement with NA62: final result
- ★ BR(K⁺→ $\pi^+\nu\nu$) measurement with NA62: status of the experiment

ERN

$$\mathbf{R}_{\mathbf{K}} = \Gamma(\mathbf{K}^{\pm} \rightarrow \mathbf{e}^{\pm} \mathbf{v}) / \Gamma(\mathbf{K}^{\pm} \rightarrow \mu^{\pm} \mathbf{v}): \text{Theory}$$

SM:
$$R_{K} = \frac{\Gamma(\mathbf{K}^{\pm} \rightarrow \mathbf{e}^{\pm} \mathbf{v})}{\Gamma(\mathbf{K}^{\pm} \rightarrow \mu^{\pm} \mathbf{v})} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \cdot \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} \cdot \left(1 + \delta R_{K}^{\text{rad.corr.}}\right) \quad \mathbf{k}_{\mu}^{\mathbf{x}} \rightarrow \mathbf{k}_{K}^{\mathbf{x}}$$

• Prediction: $R_{K} = (2.477 \pm 0.001) \times 10^{-5}$ [Phys. Rev.Lett. 99 (2007) 231801]

- **×** Hadronic uncertainties cancel in the ratio.
- **×** Strong helicity suppression.
- ***** Radiative correction (few %) due to $K \rightarrow ev\gamma$ (IB) included by definition in R_K
- Beyond SM:
 - Model with 2 Higgs doublets (e.g. 2HDM-II MSSM) and LFV sources in the right-handed slepton sector [PRD 74 (2006) 011701].
 - Potentially sizeable effects at 1-loop level at large $tan\beta$ (no effect at tree level)

- Sensitivity: up to % level after tuning of the parameters: experimentally accessible
- Higher enhancement in B sector , but experimentally challenging

R_K: Experiments

- PDG '08 [1970s measurement]: $R_{\rm K} = (2.45 \pm 0.11) \times 10^{-5}$
 - $\delta R_K / R_K = 4.5\%$
- KLOE [Eur. Phys, J. C 64 (2009) 627]: $R_{K} = (2.493 \pm 0.031) \times 10^{-5}$
 - Data collected in 2001-2005
 - 13.8×10^3 K \rightarrow ev decays and 16% background
 - $\delta R_K / R_K = 1.3\%$
- ✤ NA62:
 - Dedicated 4 months data taking in 2007
 - Goals:
 - 1. $150 \times 10^3 \text{ K} \rightarrow \text{ev decays}$
 - 2. <10% background

ERN

NA62 Experiments @ CERN

Birmingham, Bratislava, Boston, Bristol, Bucharest, CERN, Dubna, Fairfax, Ferrara, Florence, Frascati, Glasgow, IHEP Protvino, INR Moscow, Liverpool, Louvain-la-Neuve, Mainz, Merced, Naples, Perugia, Pisa, Prague, Rome I, Rome II, San Luis Potosí, SLAC, Sofia, Turin

Kaon Physics @ CERN SPS:

NA62

2007-2008 R_K measurement

2007-2011 R&D for $K^+ \rightarrow \pi^+ \nu \nu$ 2011-2014 Construction and installation of the new detectors

2012 K⁺ $\rightarrow \pi^+ \nu \nu$ Technical run

2014 K⁺ $\rightarrow \pi^+ \nu \nu$ Physics run

NA62 Layout (R_K measurement)

- K[±] beams:
 - $P_{\rm K} = 75 \pm 2 \, {\rm GeV/c}$

- Main Detectors (NA48):
 - Magnetic Spectrometer: $\sigma(P)/P = 0.48\% \oplus 0.009 P(GeV/c)\%$
 - Hodoscope: Fast trigger for charged particles and timing for the event (σ(t) = 200 ps)
 - Liquid Kripton e.m. calorimeter (LKr): $\sigma(E)/E = 3.2\%/\sqrt{E \oplus 9\%/E \oplus 0.42\%}$ (GeV)

Giuseppe Ruggiero - CKM 2012 -02/10/2012 CERM

R_K: NA62 Measurement Strategy

- $K^{\pm} \rightarrow e^{\pm} v (K_{e2})$, $K^{\pm} \rightarrow \mu^{\pm} v (K_{\mu 2})$ collected simultaneously:
 - No dependence on K flux
 - Cancellation of several effects at first order

$$R_{K} = \frac{N(K_{e2}) - N_{B}(K_{e2})}{N(K_{\mu 2}) - N_{B}(K_{\mu 2})} \frac{A(K_{\mu 2}) \times f_{\mu} \times \varepsilon(K_{\mu 2})}{A(K_{e2}) \times f_{e} \times \varepsilon(K_{e2})} \frac{1}{f_{LKr}} \frac{1}{D}$$

- $N(K_{e2})$, $N(K_{\mu 2})$: selected candidates
- $N_B(K_{e2})$, $N_B(K_{\mu 2})$: background, evaluated with data and/or MC
- $A(K_{e2})$, $A(K_{\mu 2})$: geometrical acceptance (MC), track reconstruction efficiency (MC/data)
- f_{e} , f_{μ} : particle ID efficiency, evaluated with data
- $\epsilon(K_{12})$: trigger efficiency, evaluated with data
- f_{LKr} : global e.m. calorimetric inefficiency, evaluated with data
- **D** : downscaling factor of $K_{\mu 2}$, evaluated with data
- Analysis in 10 lepton momentum bins and 4 data samples.

R_K Measurement: K_{e2} and $K_{\mu 2}$ Selection

0

Lepton identification:

E/P = ratio between LKr energy deposit

and track momentum measured with the

• Common selection criteria:

- $< P_K > reconstructed from K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-}$
- 1 track in the acceptance of the subdetectors downstream.
- Decay vertex in the fiducial region upstream.
- Photon veto using LKr downstream.
- Kinematic separation:
 - $M_{miss}^2 = (P_K P_l)^2$ (e⁺ hypothesis)

Giuseppe Ruggiero - CKM 2012 -02/10/2012

R_K Measurement: Signal and Background

- Full 2007 data sample analyzed:
 - 145'958 $K^{\pm} \rightarrow e^{\pm} \nu$ (K_{e2}) candidates
 - (99.28 ± 0.05)% e⁺ ID efficiency (measured using K[±] $\rightarrow \pi^0 e^{\pm}\nu$ and K_L $\rightarrow \pi^{\pm} e^{\mp}\nu$)
 - (10.95 ± 0.27) % B/(S+B) in K_{e2}sample
 - 42.82M $K^{\pm} \rightarrow \mu^{\pm} \nu (K_{\mu 2})$ candidates
 - $(0.50 \pm 0.01)\%$ B/(S+B) in K_{µ2}⁺ sample

R_k Measurement: Background Analysis

- $K^{\pm} \rightarrow \mu^{\pm} \nu$ background in K_{e^2} : source
 - μ catastrophic energy loss in LKr by emission of a bremmstrahlung γ: $P_{\mu e} = 3 \times 10^{-6}$
- $K^{\pm} \rightarrow \mu^{\pm} \nu$ background in K_{e2} : measurement
 - Lead plate in front of LKr ($9.2X_0$, 20% total area) ٩ in order to provide pure μ sample in the LKr.
 - $P_{\mu e}$ measured on the selected pure μ sample 0
 - $P_{\mu e}$ corrected with Geant4 MC for μ energy loss ٩ and bremmstrahlung in the lead plate.

- **Result:**
- $B/(S+B) = (5.64\pm0.20)\%$
 - Uncertainty 3 ٩ times smaller than using MC only
 - $(\delta P_{\mu e}/P_{\mu e})_{MC} \sim 10\%$ ٩
 - $(\delta f_{Pb}/f_{Pb})_{MC} \sim 2\%$

CERN

R_K: Final Result (full 2007 data set)

• $R_{K} = (2.488 \pm 0.007_{stat.} \pm 0.007_{syst.}) \times 10^{-5}$ = (2.488 ± 0.010) × 10^{-5}

[Full data set: article to be submitted in 2012]	
[40% 2007 data set published: Phys. Lett. B 698 (2011) 105	5]

Uncertainties

Source	$\delta R_K x 10^{-5}$
Statistical	0.007
$K_{\mu 2}$ background	0.004
$K^{\pm} \rightarrow e^{\pm} v \gamma$ (SD+) background	0.002
$K^{\pm} \rightarrow \pi^0 e^{\pm} v$, $K^{\pm} \rightarrow \pi^{\pm} \pi^0$ background	0.003
Beam halo background	0.002
Matter composition	0.003
Acceptance correction	0.002
Spectrometer alignment	0.001
Electron ID efficiency	0.001
1-track trigger efficiency	0.002
LKr readout inefficiency	0.001
Total	0.010

R_K Measurement: Conclusion

• World average: $R_{\rm K} = (2.488 \pm 0.009) \times 10^{-5}$

Giuseppe Ruggiero - CKM 2012 -02/10/2012

The K $\rightarrow \pi v \bar{v}$ decays: a theoretical clean environment

• FCNC loop processes: $s \rightarrow d$ coupling and highest CKM suppression

- Very clean theoretically: SD contributions dominate.
 - top quark contribution computed at NLO QCD and 2-loop EW corrections;
 - c quark loop contribution computed at NNLO QCD and NLO EW corrections;
 - correction for LD contributions;
 - hadronic matrix element related to the precisely measured BR(K⁺ $\rightarrow \pi^0 e^+ \nu$).
- BR proportional to $|V_{ts}^*V_{td}|^2 \rightarrow$ theoretical clean V_{td} dependence
- SM predictions [Brod, Gorbahn, Stamou, Phys. Rev. D 83, 034030 (2011)]:
 - BR($K_L \rightarrow \pi^0 \nu \nu$) = (2.43 ± 0.39 ± 0.06)×10⁻¹¹

• BR(K⁺ $\rightarrow \pi^+ \nu \nu$) = (7.81 ± 0.75 ± 0.29)×10⁻¹¹ dominated by V_{cb}, ρ

Pure theoretical error,

mostly LD corrections

Experimental Measurements and NP Sensitivity

- Sensitive NP probe complementary to LHC
- Best probe of non-MFV (G.Isidori ESPP Open Symposium)
 - E.g. non-MFV in up-squarks trilinear terms.

- Present experimental results:
 - BR(K⁺ $\rightarrow \pi^+ \nu \nu$) = (1.73 $^{+1.15}_{-1.05}$) x 10⁻¹⁰ [E787, E959]
 - BR($K_L \rightarrow \pi^0 \nu \nu$) < 2.6 x 10⁻⁸ [E391a]

- NA62 @ CERN
- KOTO @ JPARC
- ORKA @ Fermilab

The NA62 Experiment for $K \rightarrow \pi \nu \bar{\nu}$: Goals

- **Goal:** 10% precision branching ratio measurement of $K^+ \rightarrow \pi^+ \nu \nu$
 - O(100) SM K⁺→π⁺νν⁻ events
 (2 years of data taking)
- Requirements
 - Statistics:
 - BR(SM) ~ 8×10^{-11}
 - Acceptance: ~ 10%
 - K decays (2 years): 10¹³

Kaon intensity Signal efficiency

- Technique
 - "High" momentum K⁺ beam

- Systematics:
 - >10¹² background rejection (i.e. <20% background)

• % level systematics

 <10% precision background measurement

Signal purity & detector redundancy

• Decay in-flight technique

Signal Definition: $m_{miss}^2 = (P_K - P_\pi)^2$

- 90% of K⁺ BR well separated from signal: 2 signal regions in the m²_{miss} spectrum
- Main sources of background contamination:
 - Region I:
 - Physical: radiative tails from $K^+ \rightarrow \mu^+ \nu$, semileptonics
 - Experimental: resolution tails from $K^+ \rightarrow \mu^+ \nu$ and $K^+ \rightarrow \pi^+ \pi^0 m^2_{miss}$ reconstruction
 - Region II:
 - Physical: radiative tails from $K^+ \rightarrow \mu^+ \nu$ and $K^+ \rightarrow \pi^+ \pi^0$, semileptonics, rare decays
 - Experimental: resolution tails from $K^+ \rightarrow \mu^+ \nu$, $K^+ \rightarrow \pi^+ \pi^0$, $K \rightarrow \pi^+ \pi^+ (\pi^0) \pi^- (\pi^0)$.

The NA62 Experiment for $K \rightarrow \pi \nu \bar{\nu}$: Overview

- P secondary charged beam 75 GeV/c $(\Delta P/P = 1\% \text{ unseparated} \rightarrow 6\% \text{ K}^+)$
- Rate @ beam tracker 750 MHz, area 16 cm²
- Rate downstream 10 MHz (K⁺ decays mostly)
- K decay rates / year: 4.8×10^{12}

- Background
 - All the K⁺ decay modes
 - Accidental single tracks

Giuseppe Ruggiero - CKM 2012 -02/10/2012

Experimental Principles

- Kinematic rejection (m²_{miss}):
 - Minimal amount of material budget:
 - X/X₀ kaon spectrometer (Gigatracker, Si pixel): 1.5% total
 - X/X₀ pion spectrometer (Straw Chambers in vacuum) < 2% total

- Precise timing for K-π matching:
 - Gigatracker time resolution:
 < 200 ps / station
 (beam test results on a prototype)
 - RICH time resolution: < 80 ps [NIM A 593 2008]

Giuseppe Ruggiero - CKM 2012 -02/10/2012

Experimental Principles

- High efficiency photon veto:
 - $10^{-8} \pi^0$ veto inefficiency in $K^+ \rightarrow \pi^+ \pi^0$ events
 - Offline analysis trick: $P_{\pi^+} < 35 \text{ GeV/c} \rightarrow E_{\pi^0} > 40 \text{ GeV}$
 - 10^{-5} LKr inefficiency for E_{γ} >10 GeV
 - Hermeticity up to 50 mrad and down to 500 MeV photons (LAV detectors)
- Particle ID
 - MUV and RICH for $\mu-\pi$ separation \rightarrow totally independent ID methods
 - LKr and RICH for π -e separation \rightarrow totaly independent ID methods
 - Cerenkov threshold counter on beam to control the beam induced background

Giuseppe Ruggiero - CKM 2012 -02/10/2012

Present Status and Schedule

- Expected sensitivity:
 - Analysis performed using GEANT4-based simulation and data from test beam and NA48/NA62 experiment.
 - 55 signal events/run year, <20% background level.
- Subdetectors construction well advanced

Straw chamber 1 in place

8 LAVs in place

CEDAR + new optics and electronics installed

- Trigger & readout chains under test "in situ"
- Technical run with beam scheduled for november december 2012
 - Final beam, partial detector set-up
- Overall construction on schedule for the first physics run in autumn 2014.

Conclusions

- **×** K decays are a very appealing laboratory to test NP effects
 - **x** Good sensitivity and precise experimental results.
 - **x** Complementarity to B physics in most of the cases.
- **★** R_K measurement:
 - ***** The NA62 measurement of R_K : 0.4% relative precision reached.
 - ***** The SM precision is still 1 order of magnitude better.
 - ***** NA62 could improve the precision down to 0.2% level ($\pi\nu\nu$ set-up).
- ***** BR(K⁺ $\rightarrow \pi$ ⁺ $\nu\nu$) measurement with NA62.
 - **x** Compelling physics case thanks to the high sensitivity of this decay to NP.
 - ★ 10% precision BR measurement in 2 years of data taking planned.
 - **×** First Physics run in autumn 2014.

ERN