Measurement of Mixing and (*) the CPV Phase ϕ_s in the B_s System \overrightarrow{q}_s at LHCb

Gerhard Raven on behalf of the LHCb collaboration

Q\$2

Outline: $B_s \rightarrow J/\psi \phi(KK)$ $B_s \rightarrow J/\psi \pi\pi$ $B_s \rightarrow J/\psi K^{*0}(K\pi)$ LHCb-PAPER-2012-002 LHCb-PAPER-2012-005 LHCb-PAPER-2012-005 LHCb-PAPER-2012-006LHCb-PAPER-2012-014

(*) see talk (previous session) by Julian Wishahi: "Measurement of Δm_d , Δm_s , and sin2 β from LHCb"

CP violation in $(\overline{B}_s \rightarrow J/\psi \phi)$

Interference between decay with/without mixing gives rise to CP-violating phase difference:

 $\phi_s = \arg\left(\lambda\right) = \phi_M - 2\phi_{c\overline{c}s}$

CP violation in $\overline{B}_{s} \rightarrow J/\psi \phi$

Interference between decay with/without mixing gives rise to CP-violating phase difference:

$$\phi_s = \arg\left(\lambda\right) = \phi_M - 2\phi_{c\overline{c}s}$$

CP violation in $\overline{B}_s \rightarrow J/\psi \phi$

Interference between decay with/without mixing gives rise to CP-violating phase difference:

$$\phi_s = \arg\left(\lambda\right) = \phi_M - 2\phi_{c\bar{c}s}$$

CP violation in $\overline{B}_s \rightarrow J/\psi \phi$

Interference between decay with/without mixing gives rise to CP-violating phase difference:

$$\phi_s = \arg(\lambda) = \phi_M - 2\phi_{c\bar{c}s}$$
$$= -2\beta_s + \Delta \phi^{NP}$$

LHCb: $B_s \rightarrow J/\psi \phi$

LHCb Integrated Luminosity in 2011 and 2012

• For CP eigenstate f with eigenvalue η_f , define

$$A_{\rm CP} \equiv \frac{\Gamma\left(\overline{B}_s^0 \to f\right) - \Gamma\left(B_s^0 \to f\right)}{\Gamma\left(\overline{B}_s^0 \to f\right) + \Gamma\left(B_s^0 \to f\right)} = \eta_f \sin\phi_s \sin(\Delta m_s t)$$

- Δm_s is the $B_s \overline{B}_s$ mixing frequency
 - ➡ see talk Julian Wishahi (previous session)

• For CP eigenstate f with eigenvalue η_f , define

$$A_{\rm CP} \equiv \frac{\Gamma\left(\overline{B}_s^0 \to f\right) - \Gamma\left(B_s^0 \to f\right)}{\Gamma\left(\overline{B}_s^0 \to f\right) + \Gamma\left(B_s^0 \to f\right)} = \eta_f \sin\phi_s \sin(\Delta m_s t)$$

• Δm_s is the B_s - \overline{B}_s mixing frequency

- $B_s \rightarrow J/\psi \phi$: admixture of CP even/odd \rightarrow angular analysis to disentangle
- Need flavour tagging -- which has a non-zero mistag probability w
- Decay time measurement has finite resolution σ_t

$$A_{\rm CP} \approx (1 - 2w)e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \eta_f \sin \phi_s \sin(\Delta m_s t)$$

- $PS \rightarrow VV : 3$ polarization amplitudes
 - Describe in transversity basis
 - L=0,2 : A₀, A₁ (CP even)
 - L=I : A_{\perp} (CP odd)
- K⁺K⁻ S-wave (CP odd)

• 4 Amplitudes \rightarrow 10 combinations:

$$\frac{d^4 \Gamma(B_s^0 \to J/\psi K^+ K^-)}{dt d\Omega} \propto \sum_{k=1}^{10} f_k(\Omega) h_k(t)$$

• 4 Amplitudes \rightarrow 10 components

$$\kappa = 1$$

$$h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]$$

 $\frac{d^4\Gamma(B_s^0 \to J/\psi K^+ K^-)}{dt d\Omega} \propto \sum_{k=1}^{10} f_k(\Omega) h_k(t)$

k	$f_k(heta,\psi,arphi)$	N_k	$ a_k $	b_k	c_k	$ d_k$
1	$2\cos^2\psi\left(1-\sin^2\theta\cos^2\phi\right)$	$ A_0(0) ^2$	1	D	C	-S
2	$\sin^2\psi \left(1-\sin^2\theta\sin^2\phi\right)$	$ A_{\parallel}(0) ^2$	1	D	C	-S
3	$\sin^2\psi\sin^2 heta$	$ A_{\perp}(0) ^2$	1	-D	C	S
4	$-\sin^2\psi\sin 2\theta\sin\phi$	$ A_{\parallel}(0)A_{\perp}(0) $	$C\sin(\delta_{\perp} - \delta_{\parallel})$	$S\cos(\delta_{\perp} - \delta_{\parallel})$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D\cos(\delta_{\perp} - \delta_{\parallel})$
5	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin^2\theta \sin 2\phi$	$ A_0(0)A_{\parallel}(0) $	$\cos(\delta_{\parallel}-\delta_{0})$	$D\cos(\delta_{\parallel}-\delta_{0})$	C	$ -S\cos(\delta_{\parallel}-\delta_{0}) $
6	$\frac{1}{2}\sqrt{2}\sin 2\psi\sin 2\theta\cos\phi$	$ A_0(0)A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_0)$	$\sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp}-\delta_0)$
7	$\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$	$ A_s(0) ^2$	1	-D	C	S
8	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$	$ A_s(0)A_{\parallel}(0) $	$C\cos(\delta_{\parallel} - \delta_{\rm S})$	$S\sin(\delta_{\parallel} - \delta_{ m S})$	$\cos(\delta_{\parallel}-\delta_{ m S})$	$D\sin(\delta_{\parallel} - \delta_{\rm S})$
9	$\frac{1}{3}\sqrt{6}\sin\psi\sin 2\theta\cos\phi$	$ A_s(0)A_{\perp}(0) $	$\sin(\delta_{\perp} - \delta_{\rm S})$	$-D\sin(\delta_{\perp}-\delta_{\rm S})$	C	$S\sin(\delta_{\perp}-\delta_{\rm S})$
10	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$	$ A_s(0)A_0(0) $	$C\cos(\delta_0 - \delta_{\rm S})$	$S\sin(\delta_0-\delta_{ m S})$	$\cos(\delta_0 - \delta_{ m S})$	$D\sin(\delta_0 - \delta_{\rm S})$

•
$$\frac{d^4\Gamma(\overline{B}^0_s \to J/\psi K^+ K^-)}{dtd\Omega}: \ \phi_s, A_\perp, A_s \to -\phi_s, -A_\perp, -A_s \text{ which results in } c_k, d_k \to -c_k, -d_k$$

$$S = \frac{-2\Im(\lambda)}{1+|\lambda|^2} \qquad \qquad D = \frac{-2\Re(\lambda)}{1+|\lambda|^2} \qquad \qquad C = \frac{1-|\lambda|^2}{1+|\lambda|^2}$$

Assumptions:

I) all four amplitudes have the same λ

• 4 Amplitudes \rightarrow 10 components

$$\frac{d^4\Gamma(B_s^0 \to J/\psi K^+ K^-)}{dt d\Omega} \propto \sum_{k=1}^{10} f_k(\Omega) h_k(t)$$
$$h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]$$

k	$f_k(heta,\psi,arphi)$	N_k	$ $ a_k	b_k	c_k	$ d_k$
1	$2\cos^2\psi\left(1-\sin^2\theta\cos^2\phi\right)$	$ A_0(0) ^2$	1	D	C	-S
2	$\sin^2\psi \left(1-\sin^2\theta\sin^2\phi\right)$	$ A_{\parallel}(0) ^2$	1	D	C	-S
3	$\sin^2\psi\sin^2\theta$	$ A_{\perp}^{''}(0) ^2$	1	-D	C	S
4	$-\sin^2\psi\sin 2\theta\sin\phi$	$ A_{\parallel}(0)A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_{\parallel})$	$S\cos(\delta_{\perp} - \delta_{\parallel})$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D\cos(\delta_{\perp} - \delta_{\parallel})$
5	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin^2\theta \sin 2\phi$	$ A_0(0)A_{\parallel}(0) $	$\cos(\delta_{\parallel} - \delta_0)$	$D\cos(\delta_{\parallel}-\delta_{0})$	C	$ -S\cos(\delta_{\parallel}-\delta_0) $
6	$\frac{1}{2}\sqrt{2}\sin 2\psi\sin 2\theta\cos\phi$	$ A_0(0)A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_0)$	$\sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp}-\delta_0)$
7	$\frac{2}{2}(1-\sin^2\theta\cos^2\phi)$	$ A_s(0) ^2$	1	-D	C	S
8	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$	$ A_s(0)A_{\parallel}(0) $	$C\cos(\delta_{\parallel} - \delta_{\rm S})$	$S\sin(\delta_{\parallel} - \delta_{\rm S})$	$\cos(\delta_{\parallel}-\delta_{ m S})$	$D\sin(\delta_{\parallel} - \delta_{\rm S})$
9	$\frac{1}{3}\sqrt{6}\sin\psi\sin2\theta\cos\phi$	$ A_s(0)A_{\perp}(0) $	$\sin(\delta_{\perp} - \delta_{ m S})$	$-D\sin(\delta_{\perp}-\delta_{\rm S})$	C	$S\sin(\delta_{\perp}-\delta_{ m S})$
10	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$	$ A_s(0)A_0(0) $	$C\cos(\delta_0 - \delta_{\rm S})$	$S\sin(\delta_0-\delta_{ m S})$	$\cos(\delta_0 - \delta_{ m S})$	$D\sin(\delta_0 - \delta_{\rm S})$

•
$$\frac{d^4\Gamma(\overline{B}^0_s \to J/\psi K^+ K^-)}{dt d\Omega}: \ \phi_s, A_\perp, A_s \to -\phi_s, -A_\perp, -A_s \text{ which results in } c_k, d_k \to -c_k, -d_k$$

$$S = \frac{-2\Im(\lambda)}{1+|\lambda|^2} \approx -\sin\phi_s \qquad D = \frac{-2\Re(\lambda)}{1+|\lambda|^2} \approx -\cos\phi_s \qquad C = \frac{1-|\lambda|^2}{1+|\lambda|^2} \approx 0$$

Assumptions:

I) all four amplitudes have the same λ 2) | λ |=I

• 4 Amplitudes \rightarrow 10 components

$$h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{1}{2}\Delta\Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta\Gamma_s t\right) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t) \right]$$

 $\frac{d^4 \Gamma(B_s^0 \to J/\psi K^+ K^-)}{dt d\Omega} \propto \sum_{k=1}^{10} f_k(\Omega) h_k(t)$

k	$f_k(heta,\psi,arphi)$	N_k	$ a_k$	b_k	c_k	d_k
1	$2\cos^2\psi\left(1-\sin^2\theta\cos^2\phi\right)$	$ A_0(0) ^2$	1	D	C	-S
2	$\sin^2\psi \left(1-\sin^2\theta\sin^2\phi\right)$	$ A_{\parallel}(0) ^2$	1	D	C	-S
3	$\sin^2\psi\sin^2 heta$	$ A_{\perp}(0) ^2$	1	-D	C	S
4	$-\sin^2\psi\sin 2\theta\sin\phi$	$ A_{\parallel}(0)A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_{\parallel})$	$S\cos(\delta_{\perp} - \delta_{\parallel})$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$D\cos(\delta_{\perp}-\delta_{\parallel})$
5	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin^2\theta \sin 2\phi$	$ A_0(0)A_{\parallel}(0) $	$\cos(\delta_{\parallel} - \delta_0)$	$D\cos(\delta_{\parallel}-\delta_0)$	C	$-S\cos(\delta_{\parallel}-\delta_{0})$
6	$\frac{1}{2}\sqrt{2}\sin 2\psi\sin 2\theta\cos\phi$	$ A_0(0)A_{\perp}(0) $	$C\sin(\delta_{\perp}-\delta_0)$	$S\cos(\delta_{\perp}-\delta_0)$	$\sin(\delta_{\perp} - \delta_0)$	$D\cos(\delta_{\perp}-\delta_0)$
7	$\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$	$ A_s(0) ^2$	1	-D	C	S
8	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$	$ A_s(0)A_{\parallel}(0) $	$C\cos(\delta_{\parallel} - \delta_{\rm S})$	$S\sin(\delta_{\parallel}-\delta_{ m S})$	$\cos(\delta_{\parallel}-\delta_{ m S})$	$D\sin(\delta_{\parallel}-\delta_{ m S})$
9	$\frac{1}{3}\sqrt{6}\sin\psi\sin 2\theta\cos\phi$	$ A_s(0)A_{\perp}(0) $	$\sin(\delta_{\perp} - \delta_{\rm S})$	$-D\sin(\delta_{\perp}-\delta_{\rm S})$	C	$S\sin(\delta_{\perp}-\delta_{ m S})$
10	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$	$ A_s(0)A_0(0) $	$C\cos(\delta_0 - \delta_{\rm S})$	$S\sin(\delta_0-\delta_{ m S})$	$\cos(\delta_0 - \delta_{ m S})$	$D\sin(\delta_0 - \delta_{\rm S})$

• $\frac{d^4\Gamma(\overline{B}^0_s \to J/\psi K^+ K^-)}{dt d\Omega}: \phi_s, A_\perp, A_s \to -\phi_s, -A_\perp, -A_s \text{ which results in } c_k, d_k \to -c_k, -d_k$

$$S = \frac{-2\Im(\lambda)}{1+|\lambda|^2} \approx -\sin\phi_s \qquad D = \frac{-2\Re(\lambda)}{1+|\lambda|^2} \approx -\cos\phi_s \qquad C = \frac{1-|\lambda|^2}{1+|\lambda|^2} \approx 0$$

Assumptions:

1) all four amplitudes have the same λ 2) | λ |=1

Note: at this point, there exists a two-fold discrete ambiguity:

 $(\phi_s, \Delta\Gamma_s, \delta_{\parallel}, \delta_{\perp}) \leftrightarrow (\pi - \phi_s, -\Delta\Gamma_s, 2\pi - \delta_{\parallel}, \pi - \delta_{\perp})$

• Signal PDF: flavour tagged, time dependent, angular dependent:

$$S(t, \vec{\Omega}; \vec{\lambda}) = \epsilon(t, \vec{\Omega}) \times \left(\frac{1+qD}{2}s(t, \vec{\Omega}; \vec{\lambda}) + \frac{1-qD}{2}\overline{s}(t, \vec{\Omega}; \vec{\lambda})\right) \otimes R_t$$

time & angular
acceptance flavour tagging time resolution

$$\vec{\lambda} = (\Gamma_s, \Delta \Gamma_s, \Delta m_s, \phi_s, |A_0|^2, |A_\perp|^2, \delta_\parallel, \delta_\perp, F_S, \delta_S)$$

$$|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2 = 1$$

$$F_S = \frac{|A_S|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2 + |A_S|^2} = \frac{|A_S|^2}{1 + |A_S|^2}$$

LHCb: $B_s \rightarrow J/\psi \phi$ - Angular Acceptance

- Determine from MC simulation
- Max deviation from uniform: 5%
- Due to
 - I. acceptance of detector: $10 < \theta < 400$ mrad
 - 2. implicit momentum cuts in reconstruction
- Verified using momentum distributions of final state particles
 - re-weight MC to match data to estimate systematic uncertainty
- Implemented using
 - I. 'Moments' of the angular functions
 - 2. 3D parameterization using orthogonal polynomials
 - 3. 3D histogram

LHCb: $B_s \rightarrow J/\psi \phi$ - Decay Time Resolution

- (*) M. Pivk and F. Le Diberder, "sPlot: a statistical tool to unfold data distributions", NIM A555 (2005) 356-369.
- (**) H. G. Moser and A. Roussarie, "Mathematical methods for B0 anti-B0 oscillation analyses," Nucl. Instrum. Meth. A **384** (1997) 491.

LHCb: $B_s \rightarrow J/\psi \phi$ - Flavour Tagging

- Opposite side only for now
- Combine 4 observables into an estimated wrong tag probability η_c:
 - I. high-pt muons
 - 2. high-pt electrons
 - 3. high-pt kaons
 - 4. opposite side vertex charge

LHCb: $B_s \rightarrow J/\psi \phi$

- Opposite side only for now
- Combine 4 observables into an estimated wrong tag probability η_c:
 - I. high-pt muons
 - 2. high-pt electrons
 - 3. high-pt kaons
 - 4. opposite side vertex charge
- Calibrate on $B^{\pm} \rightarrow J/\psi K^{\pm}$ data
- Tagging power $\epsilon D^2 = (2.29 \pm 0.27)\%$

$B_s \rightarrow J/\psi \phi$: fit projections

What about the discrete ambiguity?

 $(\phi_s, \Delta\Gamma_s, \delta_{\parallel}, \delta_{\perp}) \leftrightarrow (\pi - \phi_s, -\Delta\Gamma_s, 2\pi - \delta_{\parallel}, \pi - \delta_{\perp})$

 Use known P-wave BW phase evolution across φ(1020) to decide which δ_⊥ solution is correct

as in BaBar's cos(2β) paper
 [Phys. Rev. D 71, 032005 (2005)]

 $\Rightarrow \Delta \Gamma > 0, \Phi s \sim 0$

- f_0 is a scalar with an ss component
- Decays predominantly into $\pi^+\pi^-$
- The region 775 MeV < m(ππ) < 1550 MeV is dominated by f₀(980), with some f₂(1270), f₀(1370) and NR

- f_0 is a scalar with an $s\bar{s}$ component
- Decays predominantly into $\pi^+\pi^-$
- The region 775 MeV < $m(\pi\pi)$ < 1550 MeV is dominated by f₀(980), with some f₂(1270),

- f_0 is a scalar with an $s\bar{s}$ component
- Decays predominantly into $\pi^+\pi^-$
- The region 775 MeV < $m(\pi\pi)$ < 1550 MeV is dominated by f₀(980), with some f₂(1270), f₀(1370) and NR
- CP-odd fraction >0.977 @ 95%CL
 No angular analysis needed!

$$\phi_s^{J/\psi\pi\pi} = -0.019^{+0.173}_{-0.174} + 0.004_{-0.003}$$
 rad

- f_0 is a scalar with an $s\bar{s}$ component
- Decays predominantly into $\pi^+\pi^-$
- The region 775 MeV < $m(\pi\pi)$ < 1550 MeV is dominated by f₀(980), with some f₂(1270), f₀(1370) and NR
- CP-odd fraction >0.977 @ 95%CL ⇒ No angular analysis needed!

 $A_{B_s \to J/\psi\phi} = V_{cb} V_{cs}^* T$

 $A_{B_s \to J/\psi\phi} = V_{cb}V_{cs}^*T + V_{ub}V_{us}^*P_u + V_{cb}V_{cs}^*P_c + V_{tb}V_{ts}^*P_t$

$$A_{B_s \to J/\psi\phi} = V_{cb}V_{cs}^*(T + P_c - P_t) + V_{ub}V_{us}^*(P_u - P_t)$$
$$\underbrace{\smile}_{\mathcal{O}(\lambda^2)} \qquad \underbrace{\smile}_{\mathcal{O}(\lambda^4)}$$

$$A_{B_s \to J/\psi\phi} = V_{cb}V_{cs}^*(T + P_c - P_t) + V_{ub}V_{us}^*(P_u - P_t)$$
$$\overbrace{\mathcal{O}(\lambda^2)}^{\mathcal{O}(\lambda^4)}$$

$$A_{B_s \to J/\psi \overline{K}^{*0}} = \underbrace{V_{cb} V_{cd}^* (T + P_c - P_t)}_{\mathcal{O}(\lambda^3)} + \underbrace{V_{ub} V_{ud}^* (P_u - P_t)}_{\mathcal{O}(\lambda^3)}$$

 $J/\psi\phi$ at the

Mannel, Precision physics with B_s^0

Summary

- Using I fb⁻¹, i.e. 21.2k $B_s \rightarrow J/\psi$ phi(KK),
 - $\phi_s = -0.001 \pm 0.101$ (stat) ± 0.027 (sys) rad
 - $\Delta \Gamma_s = 0.116 \pm 0.018 \text{ (stat)} \pm 0.006 \text{ (sys) } \text{ps}^{-1}$ LHCb-CONF-2012-002
 - $\Gamma_{\rm s} = 0.658 \pm 0.005 \, (\text{stat}) \pm 0.007 \, (\text{sys}) \, \text{ps}^{-1}$
- With 0.37 fb⁻¹, using $B_s \rightarrow J/\psi KK$ the two-fold ambiguity is resolved
 - The 'proper' solution is the one with $\Delta\Gamma_s > 0$ and $\varphi_s \sim 0$
- With I fb⁻¹, the resonant structure of $B_s \rightarrow J/\psi \pi \pi$ has been studied
 - 775 MeV < m($\pi\pi$) < 1550 MeV found to be CP-odd
- And this range is subsequently used to measure:
 - $\phi_s = -0.019^{+0.173} 0.174^{+0.004} 0.003$ rad
- Using 0.37 fb⁻¹, measure Br and polarization of $B_s \rightarrow J/\psi \overline{K^*}(K\pi)$:

Br(B_s→ J/ ψ K^{*}(892)) = (4.4 ^{+0.5} _{-0.4} ± 0.8) 10⁻⁵ f_L = 0.50 ± 0.08 ± 0.02 f_{//} = 0.19 ^{+0.10} _{-0.08} ± 0.02 |A_S|² = 0.07 ^{+0.15} _{-0.07} within 40 MeV/c² of K^{*0}(892)

LHCb-PAPER-2012-014

LHCb-PAPER-2011-028

LHCb-PAPER-2012-005

LHCb-PAPER-2012-006

• On schedule to collect about 2.2 fb⁻¹ at 8 TeV in 2012!

$B_s \rightarrow J/\psi \phi$: Numerical Results...

Parameter	Value	Stat.	Syst.
$\Gamma_s [\mathrm{ps}^{-1}]$	0.6580	0.0054	0.0066
$\Delta\Gamma_s \ [\mathrm{ps}^{-1}]$	0.116	0.018	0.006
$ A_{\perp}(0) ^2$	0.246	0.010	0.013
$ A_0(0) ^2$	0.523	0.007	0.024
$F_{ m S}$	0.022	0.012	0.007
$\delta_{\perp} \text{ [rad]}$	2.90	0.36	0.07
$\delta_{\parallel} [{ m rad}]$	[2.81,	[3.47]	0.13
$\delta_s \; [\mathrm{rad}]$	2.90	0.36	0.08
$\phi_s \text{ [rad]}$	-0.001	0.101	0.027

	$\Gamma_{\rm s}$	$\Delta\Gamma_{\rm s}$	$ A_{\perp} ^2$	$ A_0 ^2$	ϕ_s
$\Gamma_{\rm s}$	1.00	-0.38	0.39	0.20	-0.01
$\Delta\Gamma_{\rm s}$		1.00	-0.67	0.63	-0.01
$ A_{\perp}(0) ^2$			1.00	-0.53	-0.01
$ A_0(0) ^2$				1.00	-0.02
ϕ_s					1.00

Source	Γ_s	$\Delta\Gamma_s$	A_{\perp}^2	A_0^2	F_S	δ_{\parallel}	δ_{\perp}	δ_s	ϕ_s
	$[ps^{-1}]$	$[ps^{-1}]$				[rad]	[rad]	[rad]	[rad]
Description of background	0.0010	0.004	-	0.002	0.005	0.04	0.04	0.06	0.011
Angular acceptances	0.0018	0.002	0.012	0.024	0.005	0.12	0.06	0.05	0.012
t acceptance model	0.0062	0.002	0.001	0.001	-	-	-	-	_
z and momentum scale	0.0009	-	-	-	-	-	-	-	_
Production asymmetry $(\pm 10\%)$	0.0002	0.002	-	-	-	-	-	-	0.008
CPV mixing & decay $(\pm 5\%)$	0.0003	0.002	-	-	-	-	-	-	0.020
Fit bias	-	0.001	0.003	-	0.001	0.02	0.02	0.01	0.005
Quadratic sum	0.0066	0.006	0.013	0.024	0.007	0.13	0.07	0.08	0.027

$B_s \rightarrow J/\psi \phi$: internal Δm_s

Figure 8: Likelihood profile scan for Δm_s .

$B_s \rightarrow J/\psi \pi^+ \pi^-$

Table 5: Fit fractions (%) of contributing components for the preferred model. For Pand D-waves λ represents the final state helicity. Here ρ refers to the $\rho(770)$ meson.

Components	3R+NR	$3R+NR+\rho$	$3R+NR+f_0(1500)$	$3R + NR + f_0(600)$
$f_0(980)$	107.1 ± 3.5	104.8 ± 3.9	73.0 ± 5.8	115.2 ± 5.3
$f_0(1370)$	32.6 ± 4.1	32.3 ± 3.7	114 ± 14	34.5 ± 4.0
$f_0(1500)$	-	-	15.0 ± 5.1	-
$f_0(600)$	-	-	-	4.7 ± 2.5
NR	12.84 ± 2.32	12.2 ± 2.2	10.7 ± 2.1	23.7 ± 3.6
$f_2(1270), \lambda = 0$	0.76 ± 0.25	0.77 ± 0.25	1.07 ± 0.37	0.90 ± 0.31
$f_2(1270), \lambda = 1$	0.33 ± 1.00	0.26 ± 1.12	1.02 ± 0.83	0.61 ± 0.87
$\rho, \lambda = 0$	-	0.66 ± 0.53	-	-
$ ho, \lambda = 1$	-	0.11 ± 0.78	-	-
Sum	153.6 ± 6.0	151.1 ± 6.0	214.4 ± 15.7	179.6 ± 8.0
$-\mathrm{ln}\mathcal{L}$	58945	58944	58943	58935
χ^2/ndf	1415/1343	1418/1341	1416/1341	1409/1341
Probability(%)	8.41	7.05	7.57	9.61

6.1 *CP* content

The main result in this paper is that CP-odd final states dominate. The $f_2(1270)$ helicity ± 1 yield is $(0.21 \pm 0.65)\%$. As this represents a mixed CP state, the upper limit on the CP-even fraction due to this state is < 1.3% at 95% confidence level (CL). Adding the $\rho(770)$ amplitude and repeating the fit shows that only an insignificant amount of $\rho(770)$ can be tolerated; in fact, the isospin violating $J/\psi\rho(770)$ final state is limited to < 1.5% at 95% CL. The sum of $f_2(1270)$ helicity ± 1 and $\rho(770)$ is limited to < 2.3% at 95% CL. In the $\pi^+\pi^-$ mass region within ± 90 MeV of 980 MeV, this limit improves to < 0.6% at 95% CL.

LHCb: $B_s \rightarrow J/\psi K^{*0}$

Table 1: Summary of the measured $B_s^0 \to J/\psi \overline{K}^{*0}$ angular properties and their statistical and systematic uncertainties.

Parameter name	$ A_{\rm S} ^2$	f_L	f_{\parallel}
Value and statistical error	$0.07\substack{+0.15 \\ -0.07}$	0.50 ± 0.08	$0.19\substack{+0.10 \\ -0.08}$
Angular acceptance	0.044	0.011	0.016
Background angular model	0.038	0.017	0.013
Assumption $\delta_{\rm S}(M_{K\pi}) = \text{constant}$	0.026	0.005	0.002
B^0 contamination	0.036	0.004	0.007
Fit bias	_	_	0.005
Total systematic error	0.073	0.021	0.022

Table 2: Angular parameters of $B^0 \to J/\psi K^{*0}$ needed to compute $\mathcal{B}(B^0_s \to J/\psi \overline{K}^{*0})$. The systematic uncertainties from background modelling and the mass PDF are found to be negligible in this case.

Parameter name	$ A_{\rm S} ^2$	f_L	f_{\parallel}
Value and statistical error	0.037 ± 0.010	0.569 ± 0.007	0.240 ± 0.009
Angular acceptance	0.044	0.011	0.016
Assumption $\delta_{\rm S}(M_{K\pi}) = \text{constant}$	0.026	0.005	0.002
Total systematic error	0.051	0.012	0.016

Table 3: Parameter values and errors for $\frac{\mathcal{B}(B_s^0 \to J/\psi \overline{K}^{*0})}{\mathcal{B}(B^0 \to J/\psi K^{*0})}$.

Parameter	Name	Value
Hadronization fractions	f_d/f_s	3.75 ± 0.29
Efficiency ratio	$arepsilon_{B^0}^{ m tot}/arepsilon_{B^0_s}^{ m tot}$	0.97 ± 0.01
Angular corrections	$\lambda_{B^0}/\lambda_{B^0_s}$	1.01 ± 0.04
Ratio of K^{*0} fractions	$f_{K^{*0}}^{(s)}/f_{K^{*0}}^{(d)}$	1.09 ± 0.08
B signal yields	$N_{B_s^0}/N_{B^0}$	$(8.5^{+0.9}_{-0.8} \pm 0.8) \times 10^{-3}$