Measurement of Mixing and (*) the CPV Phase φ_s in the B_s Systemat LHCb

Gerhard Raven on behalf of the LHCb collaboration

 ϕ ²

(*) see talk (previous session) by Julian Wishahi: "Measurement of Δm_d, Δm_s, and sin2β from LHCb"

 $B_s \rightarrow J/\psi K^{*0}(K\pi)$ LHCb-PAPER-2012-014

 $B_s \rightarrow$ J/ $\psi \varphi(KK)$

 $B_s \rightarrow$ $J/\psi \pi \pi$

LHCb-CONF-2012-002

LHCb-PAPER-2011-028

LHCb-PAPER-2012-005 LHCb-PAPER-2012-006

CP violation in $\overline{B}_s \rightarrow$ J/ψφ

Interference between decay with/without mixing gives rise to CP-violating phase difference:

 $\phi_s = \arg(\lambda) = \phi_M - 2\phi_{c\bar{c}s}$

CP violation in $\overline{B}_s \rightarrow$ J/ψφ CP violation in $\mathsf{B}_\mathsf{s} \to \mathsf{I}/\mathsf{U}\mathsf{C}$ between decays with an and with an and with an and with an and with α

Interference between decay with/without mixing
• Interference between the phase difference: gives rise to CP-violating phase difference:

$$
\phi_s = \arg(\lambda) = \phi_M - 2\phi_{c\overline{c}s}
$$

CP violation in $\overline{B}_s \rightarrow$ J/ψφ CP violation in $\mathsf{B}_\mathsf{s} \to \mathsf{I}/\mathsf{U}\mathsf{C}$ between decays with an and with an and with an and with an and with α *•* **CP violation in** $\overline{B_s} \rightarrow \frac{1}{\Psi}$ between decays with and without mixing

Interference between decay with/without mixing
 • ives rise to CB vialating abose difference: gives rise to CP-violating phase difference:

$$
\phi_s = \arg(\lambda) = \phi_M - 2\phi_{c\overline{c}s}
$$

s

s

u, c, t

2

CP violation in $\overline{B}_s \rightarrow$ J/ψφ CP violation in $\mathsf{B}_\mathsf{s} \to \mathsf{I}/\mathsf{U}\mathsf{C}$ between decays with an and with an and with an and with an and with α *•* **CP violation in** $\overline{B_s} \rightarrow \frac{1}{\Psi}$ between decays with and without mixing

Interference between decay with/without mixing
 • ives rise to CB vialating abose difference: gives rise to CP-violating phase difference:

$$
\phi_s = \arg(\lambda) = \phi_M - 2\phi_{c\overline{c}s}
$$

$$
= -2\beta_s + \Delta\phi^{NP}
$$

LHCb Integrated Luminosity in 2011 and 2012

3

CP violation in $B_s \rightarrow$ J/ψφ: ingredients

• For CP eigenstate f with eigenvalue η_f , define

$$
A_{\rm CP} \equiv \frac{\Gamma\left(\overline{B}_s^0 \to f\right) - \Gamma\left(B_s^0 \to f\right)}{\Gamma\left(\overline{B}_s^0 \to f\right) + \Gamma\left(B_s^0 \to f\right)} = \eta_f \sin \phi_s \sin(\Delta m_s t)
$$

- \bullet Δm_s is the B_s-B_s mixing frequency
	- ➡ see talk Julian Wishahi (previous session)

CP violation in $B_s \rightarrow J/\psi \phi$: ingredients

• For CP eigenstate f with eigenvalue η_f , define

$$
A_{\rm CP} \equiv \frac{\Gamma\left(\overline{B}_s^0 \to f\right) - \Gamma\left(B_s^0 \to f\right)}{\Gamma\left(\overline{B}_s^0 \to f\right) + \Gamma\left(B_s^0 \to f\right)} = \eta_f \sin \phi_s \sin(\Delta m_s t)
$$

• Δm_s is the B_s-B_s mixing frequency

➡ see talk Julian Wishahi (previous session)

- Bs→J/ψφ: admixture of CP even/odd→ angular analysis to disentangle
- Need flavour tagging -- which has a non-zero mistag probability w
- Decay time measurement has finite resolution σ_t

$$
A_{\rm CP} \approx (1-2w)e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \eta_f \sin \phi_s \sin(\Delta m_s t)
$$

CP violation in Bs [→] J/ψφ: ingredients **Description of BsJ/**-

- $PS \rightarrow VV$: 3 polarization amplitudes
	- Describe in transversity basis
		- $L=0,2: A_0, A_{\parallel}$ (CP even)
		- $L=1 : A_{\perp}$ (CP odd)
- K^+K^- S-wave (CP odd)

 4 Amplitudes \rightarrow 10 combinations:

$$
\frac{d^4\Gamma(B_s^0 \to J/\psi K^+ K^-)}{dt d\Omega} \propto \sum_{k=1}^{10} f_k(\Omega) h_k(t)
$$

θ , θ and θ and θ and θ and θ in the second in the CP violation in $B_s \rightarrow$ $J/\psi \phi$: ingredients $\mathcal{A} \times \mathcal{A}$ (1) by its magnitude. In the fit we parameterize each \mathcal{A} $hat{B} \rightarrow \infty$ ind uon in D_S and background components of I/C which include detector resolution and acceptance e \mathcal{L}_{max} cients *N^k* and *ak,...,d^k* can be expressed in terms of *^s* and four complex transversity amplitudes *Aⁱ* at *t* = 0. ψ , iiik<u>, cuidits</u> *{* wave amplitudes and S for the S-wave amplitudes and S ω

 $14\pi/D0$

since dt and dt

 $d^4\Gamma(B_s^0 \to J/\psi K^+ K^-)$

 \overline{a} \rightarrow \overline{a} $\frac{d^4\Gamma(B_s^0\to J/\psi K^+K^-)}{\sim} \propto \sum_{i=0}^{10} f_i(\Omega) h_i(\theta)$ ϵ ², α α β β β des \rightarrow To components $dtd\Omega$ $\propto \sum_{i,j} J_k(S_i/n_k(t))$ • 4 Amplitudes \rightarrow 10 components $\frac{d^2 \Gamma (E)}{d}$ TV components $\frac{1}{\sqrt{2\pi}}$

tudes
$$
\rightarrow
$$
 10 components
$$
\frac{d^4\Gamma(B_s^{\circ} \rightarrow J/\psi K^+ K^-)}{dt d\Omega} \propto \sum_{k=1} f_k(\Omega) h_k(t)
$$

$$
h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{1}{2}\Delta \Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta \Gamma_s t\right) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t)\right]
$$

10

 $f(t) = kT + \gamma$ is α $\left(\frac{p}{A} \cdot \frac{p}{A} \right)$ and $\sum f(\Omega) h(f)$ $\overline{} \quad \overline{} \quad \propto \quad \overline{}$ $f_k(\Omega)h_k(t)$ flavour eigenstate the coecients in Eq. 2 and the angu-

 $f_k(\Omega)h_k(t)$

$$
\bullet \stackrel{d^4\Gamma(\overline{B}_s^0 \to J/\psi K^+ K^-)}{dtd\Omega} : \phi_s, A_\perp, A_s \to -\phi_s, -A_\perp, -A_s \text{ which results in } c_k, d_k \to -c_k, -d_k
$$

$$
S = \frac{-2\Im(\lambda)}{1+|\lambda|^2} \qquad D = \frac{-2\Re(\lambda)}{1+|\lambda|^2} \qquad C = \frac{1-|\lambda|^2}{1+|\lambda|^2}
$$

 $\overline{}$ Messume that the value of $\overline{}$ and $\overline{}$ final state polarization $\overline{}$ for $\overline{}$ Assumptions:

In amplitudes have the same λ ⁷⁵ changing the sign of *s*, *A*?(0) and *A*S(0), or, equivalently, the sign of *c^k* and *d^k* in the $f(x) = \lambda$ I) all four amplitudes have the same λ $\frac{1}{2}$

θ , θ and θ and θ and θ and θ in the second in the CP violation in $B_s \rightarrow$ $J/\psi \phi$: ingredients $\mathcal{A} \times \mathcal{A}$ (1) by its magnitude. In the fit we parameterize each \mathcal{A} $hat{B} \rightarrow \infty$ ind uon in D_S and background components of I/C which include detector resolution and acceptance e \mathcal{L}_{max} cients *N^k* and *ak,...,d^k* can be expressed in terms of *^s* and four complex transversity amplitudes *Aⁱ* at *t* = 0. ψ , iiik<u>, cuidits</u> *{* wave amplitudes and S for the S-wave amplitudes and S ω

 $14\pi/D0$

 $d^4\Gamma(B_s^0 \to J/\psi K^+ K^-)$

 \overline{a} \rightarrow \overline{a} $\frac{d^4\Gamma(B_s^0\to J/\psi K^+K^-)}{\sim} \propto \sum_{i=0}^{10} f_i(\Omega) h_i(\theta)$ ϵ ², α α β β β • 4 Amplitudes \rightarrow 10 components $\frac{d^2 \Gamma (E)}{d}$ TV components $\frac{1}{\sqrt{2\pi}}$

tudes
$$
\rightarrow
$$
 10 components
$$
\frac{d^4\Gamma(B_s^{\circ} \rightarrow J/\psi K^+ K^-)}{dt d\Omega} \propto \sum_{k=1} f_k(\Omega) h_k(t)
$$

$$
h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{1}{2}\Delta \Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta \Gamma_s t\right) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t)\right]
$$

10

 $f(t) = kT + \gamma$ is α $\left(\frac{p}{A} \cdot \frac{p}{A} \right)$ and $\sum f(\Omega) h(f)$ $\overline{} \quad \overline{} \quad \propto \quad \overline{}$ $f_k(\Omega)h_k(t)$

 $f_k(\Omega)h_k(t)$

$$
\bullet \stackrel{d^4\Gamma(\overline{B}_s^0 \to J/\psi K^+ K^-)}{dtd\Omega} : \phi_s, A_\perp, A_s \to -\phi_s, -A_\perp, -A_s \text{ which results in } c_k, d_k \to -c_k, -d_k
$$

$$
S = \frac{-2\Im(\lambda)}{1+|\lambda|^2} \approx -\sin\phi_s \qquad D = \frac{-2\Re(\lambda)}{1+|\lambda|^2} \approx -\cos\phi_s \qquad C = \frac{1-|\lambda|^2}{1+|\lambda|^2} \approx 0
$$

 $\overline{}$ Messume that the value of $\overline{}$ and $\overline{}$ final state polarization $\overline{}$ for $\overline{}$ Assumptions:

In amplitudes have the same λ ⁷⁵ changing the sign of *s*, *A*?(0) and *A*S(0), or, equivalently, the sign of *c^k* and *d^k* in the $f(x) = \lambda$ I) all four amplitudes have the same λ $\frac{1}{2}$ 2) $|\lambda| = 1$

θ , θ and θ and θ and θ and θ in the second in the CP violation in $B_s \rightarrow$ $J/\psi \phi$: ingredients $\mathcal{A} \times \mathcal{A}$ (1) by its magnitude. In the fit we parameterize each \mathcal{A} $hat{B} \rightarrow \infty$ ind uon in D_S and background components of I/C which include detector resolution and acceptance e \mathcal{L}_{max} cients *N^k* and *ak,...,d^k* can be expressed in terms of *^s* and four complex transversity amplitudes *Aⁱ* at *t* = 0. ψ , iiik<u>, cuidits</u> *{* wave amplitudes and S for the S-wave amplitudes and S ω

 $14\pi/D0$

since dt and dt

 $d^4\Gamma(B_s^0 \to J/\psi K^+ K^-)$

 \overline{a} \rightarrow \overline{a} $\frac{d^4\Gamma(B_s^0\to J/\psi K^+K^-)}{\sim} \propto \sum_{i=0}^{10} f_i(\Omega) h_i(\theta)$ ϵ ², α α β β β des \rightarrow To components $dtd\Omega$ $\propto \sum_{i,j} J_k(S_i/n_k(t))$ • 4 Amplitudes \rightarrow 10 components $\frac{d^2 \Gamma (E)}{d}$ TV components $\frac{1}{\sqrt{2\pi}}$

tudes
$$
\rightarrow
$$
 10 components
$$
\frac{d^4\Gamma(B_s^{\circ} \rightarrow J/\psi K^+ K^-)}{dt d\Omega} \propto \sum_{k=1} f_k(\Omega) h_k(t)
$$

$$
h_k(t) = N_k e^{-\Gamma_s t} \left[a_k \cosh\left(\frac{1}{2}\Delta \Gamma_s t\right) + b_k \sinh\left(\frac{1}{2}\Delta \Gamma_s t\right) + c_k \cos(\Delta m_s t) + d_k \sin(\Delta m_s t)\right]
$$

10

 $f(t) = kT + \gamma$ is α $\left(\frac{p}{A} \cdot \frac{p}{A} \right)$ and $\sum f(\Omega) h(f)$ $\overline{} \quad \overline{} \quad \propto \quad \overline{}$ $f_k(\Omega)h_k(t)$ flavour eigenstate the coecients in Eq. 2 and the angu-

 $f_k(\Omega)h_k(t)$

$$
\bullet \stackrel{d^4\Gamma(\overline{B}_s^0 \to J/\psi K^+ K^-)}{dtd\Omega} : \phi_s, A_\perp, A_s \to -\phi_s, -A_\perp, -A_s \text{ which results in } c_k, d_k \to -c_k, -d_k
$$

$$
S = \frac{-2\Im(\lambda)}{1+|\lambda|^2} \approx -\sin\phi_s \qquad D = \frac{-2\Re(\lambda)}{1+|\lambda|^2} \approx -\cos\phi_s \qquad C = \frac{1-|\lambda|^2}{1+|\lambda|^2} \approx 0
$$

 $\overline{}$ Messume that the value of $\overline{}$ and $\overline{}$ final state polarization $\overline{}$ for $\overline{}$ Assumptions:

In amplitudes have the same λ ⁷⁵ changing the sign of *s*, *A*?(0) and *A*S(0), or, equivalently, the sign of *c^k* and *d^k* in the $f(x) = \lambda$ I) all four amplitudes have the same λ $\frac{1}{2}$ $2)$ | λ |=1

n are: at this point, there exists a two-fold discrete ambiguity: The di↵erential decay rates for a *B*⁰ ⁷⁴ *^s* meson produced at time *t* = 0 are obtained by Note: at this point, there exists a two-fold discrete ambiguity:

 $(A \cap \overline{A} \cap \overline{A}, \overline{A}) \vee (\pi, A \cap \overline{A} \cap \overline{A}, \pi, \overline{A})$ $(\phi_s, \Delta \Gamma_s, \delta_\parallel, \delta_\perp) \leftrightarrow (\pi-\phi_s, -\Delta \Gamma_s, 2\pi-\delta_\parallel, \pi-\delta_\perp)$

CP violation in $B_s \rightarrow$ J/ψφ: ingredients

• Signal PDF: flavour tagged, time dependent, angular dependent:

$$
S(t, \vec{\Omega}; \vec{\lambda}) = \epsilon(t, \vec{\Omega}) \times \left(\frac{1+qD}{2} s(t, \vec{\Omega}; \vec{\lambda}) + \frac{1-qD}{2} \overline{s}(t, \vec{\Omega}; \vec{\lambda})\right) \otimes R_t
$$

\ntime & angular
\naceptance
\nflavour tagging
\ntime resolution

$$
\vec{\lambda} = (\Gamma_s, \Delta\Gamma_s, \Delta m_s, \phi_s, |A_0|^2, |A_\perp|^2, \delta_\parallel, \delta_\perp, F_S, \delta_S)
$$

$$
|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2 = 1
$$

$$
F_S = \frac{|A_S|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2 + |A_S|^2} = \frac{|A_S|^2}{1 + |A_S|^2}
$$

LHC*b*: Bs→J/ψφ - Angular Acceptance Maximal)deviation) 5%

- Determine from MC simulation
- Max deviation from uniform: 5%
- Due to
	- 1. acceptance of detector: $10 < θ < 400$ mrad
	- 2. implicit momentum cuts in reconstruction
- Verified using momentum distributions of final state particles Angular acceptance determined)
MCles
	- re-weight MC to match data to estimate $\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ systematic uncertainty hatic uncertainty
- Implemented using
	- 1. 'Moments' of the angular functions
	- 2. 3D parameterization using orthogonal polynomials
	- 3. 3D histogram

LHC*b*: Bs→J/ψφ - Decay Time Resolution

- (*) M. Pivk and F. Le Diberder, "sPlot: a statistical tool to unfold data distributions", NIM
A555 (2005) 356-369. $A555 (2005) 356-369.$
- r. Moser and A. Red.
1. Instrum. Meth. (**) H. G. Moser and A. Roussarie, "Mathematical methods for B0 anti-B0 oscillation analyses," Nucl. Instrum. Meth. A **384** (1997) 491.

\rightarrow Ultro - Flowour Tagging LHC*b*: B_s→J/ψφ - Flavour Tagging

- Opposite side only for now
- estimated wrong tag probability η_c: • Combine 4 observables into an
	- $1.$ high- p_t muons
	- 2. high- p_t electrons
	- 3. high- p_t kaons
	- 4. opposite side vertex charge

$LHCb: B_s\rightarrow J/\psi\phi$

- Opposite side only for now
- Combine 4 observables into an estimated wrong tag probability η_c:
	- $1.$ high- p_t muons
	- 2. high- p_t electrons
	- 3. high-pt kaons
	- 4. opposite side vertex charge
- Calibrate on $B^{\pm} \rightarrow$ J/ ψK^{\pm} data
- Tagging power $\epsilon D^2 = (2.29 \pm 0.27)\%$

Bs→J/ψφ: fit projections

11

What about the discrete ambiguity?

 $(\phi_s, \Delta\Gamma_s, \delta_{\parallel}, \delta_{\perp}) \leftrightarrow (\pi - \phi_s, -\Delta\Gamma_s, 2\pi - \delta_{\parallel}, \pi - \delta_{\perp})$

Use known P-wave BW phase evolution across φ(1020) to decide which δ_{\perp} solution is correct

as in BaBar's cos(2β) paper [**Phys. Rev. D 71, 032005 (2005)**]

 $\rightarrow \Delta \Gamma > 0$, Φ s ~ 0

- f₀ is a scalar with an ss component *^s* ⌅ *J/*⌅*f*0(980) or *J/*⌅⇤ decays.
- $\frac{a}{b}$ Decays predominantly into $\pi^+\pi^-$
- The region 775 MeV $<$ m($\pi\pi$) $<$ 1550 MeV is dominated by f₀(980), with some f₂(1270), *f*₀(1370) and NR $\frac{1}{9}$ \bullet The region 775 MeV \leq m($\pi\pi$) \leq 1550

- f₀ is a scalar with an ss component *^s* ⌅ *J/*⌅*f*0(980) or *J/*⌅⇤ decays.
- $\frac{a}{b}$ Decays predominantly into $\pi^+\pi^-$
- The region 775 MeV $<$ m($\pi\pi$) $<$ 1550 MeV is dominated by $f_0(980)$, with some $f_2(1270)$, $\frac{1}{9}$ \bullet The region 775 MeV \leq m($\pi\pi$) \leq 1550 *R^f*⁰

- f₀ is a scalar with an ss component *^s* ⌅ *J/*⌅*f*0(980) or *J/*⌅⇤ decays.
- $\frac{a}{b}$ Decays predominantly into $\pi^+\pi^-$
- The region 775 MeV $<$ m($\pi\pi$) $<$ 1550 MeV is dominated by f₀(980), with some f₂(1270), *f*₀(1370) and NR $\frac{1}{9}$ \bullet The region 775 MeV \leq m($\pi\pi$) \leq 1550
- CP-odd fraction >0.977 @ 95%CL \Rightarrow No angular analysis needed!

$$
\phi_s^{J/\psi\pi\pi} = -0.019^{+0.173+0.004}_{-0.174-0.003} \text{ rad}
$$

LHCb-PAPER-2012-006

- f₀ is a scalar with an ss component *^s* ⌅ *J/*⌅*f*0(980) or *J/*⌅⇤ decays.
- $\frac{a}{b}$ Decays predominantly into $\pi^+\pi^-$
- The region 775 MeV $<$ m($\pi\pi$) $<$ 1550 MeV is dominated by f₀(980), with some f₂(1270), *f*₀(1370) and NR $\frac{1}{9}$ \bullet The region 775 MeV \leq m($\pi\pi$) \leq 1550
- CP-odd fraction >0.977 @ 95%CL \Rightarrow No angular analysis needed!

LHCb-PAPER-2012-006

 $A_{B_s\to J/\psi\phi}=V_{cb}V_{cs}^*T$

GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250. \cdot *µ* ֞֘֡ \mathbf{b} $A_{B_s\to J/\psi \phi}=V_{cb}V_{cs}^*T+V_{ub}V_{us}^*P_u+V_{cb}V_{cs}^*P_c+V_{tb}V_{ts}^*P_t$

$$
\overbrace{B_s}^{b} \overbrace{\leftarrow \atop s}^{w \overbrace{}^{w \overbrace{}^{w}} \overbrace{}^{s} \varphi}^{s} \overbrace{\overbrace{B_s}^{b} \overbrace{^{w}}^{w \overbrace{}^{w}}_{\overline{s}} \overbrace{^{w}}^{s} \varphi}
$$
\n
$$
A_{B_s \to J/\psi \phi} = V_{cb} V_{cs}^* (T + P_c - P_t) + V_{ub} V_{us}^* (P_u - P_t)
$$
\n
$$
\overbrace{^{w}}^{w} (\overbrace{^{w}}^{s} \varphi
$$
\n
$$
\overbrace{^{w}}^{w} (\overbrace{^{w}}^{s} \varphi)
$$

$$
\overbrace{B_s}^{b} \overbrace{\left(\begin{array}{c}\overbrace{}^{W^-} \\ \overbrace{}^{d} \\ \overbrace{}^{K^{*0}} \end{array}\right)}^{\overbrace{B_s}^{W^-}} \overbrace{B_s}^{b} \overbrace{}^{K^{*0}} \overbrace{}^{B} \overbrace{}^{K^{*0}} \overbrace{}^{d} K^{*0}
$$
\n
$$
\overbrace{}^{A} \overbrace{B_s \rightarrow J/\psi}^{A} \overbrace{}^{W^-} \overbrace{}^{d} K^{*0}
$$
\n
$$
\overbrace{}^{O(\lambda^2)} \overbrace{}^{O(\lambda^4)}
$$
\n
$$
\overbrace{}^{B_s \rightarrow J/\psi} \overbrace{K^{*0}}^{W^-} = \overbrace{V_{cb}V_{cd}^*(T + P_c - P_t)}^{K^{*0}} + \overbrace{V_{ub}V_{ud}^*(P_u - P_t)}^{K^{*0}} \overbrace{}^{O(\lambda^3)}
$$

$$
A_{B_s \to J/\psi \phi} = V_{cb} V_{cs}^* (T + P_c - P_t) + V_{ub} V_{us}^* (P_u - P_t)
$$

$$
\mathcal{O}(\lambda^2)
$$

$$
A_{B_s \to J/\psi \overline{K}^{*0}} = V_{cb} V_{cd}^* (T + P_c - P_t) + V_{ub} V_{ud}^* (P_u - P_t)
$$

$$
\mathcal{O}(\lambda^3)
$$

Summary

- Using 1 fb⁻¹, i.e. 21.2k $B_s \rightarrow J/\psi$ phi(KK),
	- ϕ_s = -0.001 ± 0.101(stat) ± 0.027 (sys) rad
	- $\Delta\Gamma_s = 0.116 \pm 0.018$ (stat) \pm 0.006 (sys) ps⁻¹ LHCb-CONF-2012-002
	- Γ_s = 0.658 ± 0.005 (stat) ± 0.007 (sys) ps⁻¹
- With 0.37 fb⁻¹, using $B_s \rightarrow I/\psi KK$ the two-fold ambiguity is resolved
	- The 'proper' solution is the one with $\Delta\Gamma_s$ > 0 and $\Phi_s \sim 0$
- With I fb⁻¹, the resonant structure of $B_s \rightarrow J/\psi \pi \pi$ has been studied
	- 775 MeV $\leq m(\pi\pi)$ \leq 1550 MeV found to be CP-odd
- And this range is subsequently used to measure:
	- $\phi_s = -0.019^{+0.173}$ -0.174^{+0.004}-0.003 rad
- Using 0.37 fb⁻¹, measure Br and polarization of $B_s \rightarrow J/\psi \overline{K^*}(K\pi)$:

Br(B_s \rightarrow J/ ψ K^{*}(892)) = (4.4^{+0.5} -0.4 ± 0.8) 10⁻⁵ f_{L} = 0.50 \pm 0.08 \pm 0.02 $f_{\frac{\pi}{2}}$ = 0.19 ^{+0.10}_{-0.08} ± 0.02 $|A_S|² = 0.07^{+0.15}$ -0.07 within 40 MeV/c² of K^{*0}(892)

LHCb-PAPER-2012-014

LHCb-PAPER-2012-005

LHCb-PAPER-2011-028

LHCb-PAPER-2012-006

On schedule to collect about 2.2 fb⁻¹ at 8 TeV in 2012!

Bs → J/ψφ: Numerical Results... **Table 2: Results for the physics parameters and systematic parameters and systematic uncer-** $\frac{1}{\sqrt{1-\frac{1$

just above) is almost above) \mathcal{N} which means that it is almost degenerate with the ambiguous solu-

Bs → J/ψφ: internal Δms $B_s \rightarrow$ $\vert/\psi\omega$; internal Δm_s include the place square corresponds to the theoretical predicted Standard Modelling

ε φ

Figure 8: Likelihood profile scan for Δm_s .

B_s \rightarrow J/ψ π⁺π p5 *A*2 *^P*⁰ + 2*A^S*0*A^D*⁰ cos *^D*⁰ +

Table 5: Fit fractions (%) of contributing components for the preferred model. For Pand D-waves λ represents the final state helicity. Here ρ refers to the $\rho(770)$ meson. be 5: Fit fractions (%) of contributing components for the preferred model. For P-
D-waves λ represents the final state helicity. Here a refers to the $q(770)$ meson

			μ and μ was a represented the main state henergy. Here ρ relate to the ρ (++0) mesons	
Components	$3R + NR$	$3R+NR+\rho$	$3R+NR+f_0(1500)$	$3R + NR + f_0(600)$
$f_0(980)$	107.1 ± 3.5	104.8 ± 3.9	73.0 ± 5.8	115.2 ± 5.3
$f_0(1370)$	32.6 ± 4.1	32.3 ± 3.7	114 ± 14	34.5 ± 4.0
$f_0(1500)$			15.0 ± 5.1	
$f_0(600)$				4.7 ± 2.5
NR	12.84 ± 2.32	12.2 ± 2.2	10.7 ± 2.1	23.7 ± 3.6
$f_2(1270), \lambda = 0$	0.76 ± 0.25	0.77 ± 0.25	1.07 ± 0.37	0.90 ± 0.31
$f_2(1270), \lambda =1$	0.33 ± 1.00	0.26 ± 1.12	1.02 ± 0.83	0.61 ± 0.87
$\rho, \lambda = 0$		0.66 ± 0.53		
$\rho, \lambda =1$		0.11 ± 0.78		
Sum	153.6 ± 6.0	151.1 ± 6.0	214.4 ± 15.7	179.6 ± 8.0
$-\mathrm{ln}\mathcal{L}$	58945	58944	58943	58935
χ^2/ndf	1415/1343	1418/1341	1416/1341	1409/1341
Probability($\%$)	8.41	7.05	7.57	9.61

6.1 *CP* content

 ± 1 yield is $(0.21 \pm 0.65)\%$. As this represents a mixed *CP* state, the upper limit on the CP -even fraction due to this state is $\langle 1.3\% \text{ at } 95\% \text{ confidence level (CL)}$. Adding the $f(x) = f(x)$ $f(770)$ amplitude and repeating the fit shows that only an insignificant amount of $f(770)$ can be tolerated; in fact, the isospin violating $J/\psi \rho(770)$ final state is limited to $\lt 1.5\%$ at 95% CL. The sum of $f_2(1270)$ helicity ± 1 and $\rho(770)$ is limited to $\lt 2.3\%$ at 95% CL. In the $\pi^{+}\pi^{-}$ mass region within ± 90 MeV of 980 MeV, this limit improves to $\lt 0.6\%$ at *f*2(1270), *||* =1 0*.*24 *±* 1*.*11 0*.*19 *±* 1*.*38 0*.*63 *±* 0*.*84 0*.*48 *±* 0*.*89 ⇢, =0 - 0*.*43 *±* 0*.*55 - - The main result in this paper is that CP -odd final states dominate. The $f_2(1270)$ helicity 95% CL.

LHCb: $B_s \rightarrow$ J/ ψ K*⁰

Table 1: Summary of the measured $B_s^0 \to J/\psi \overline{K}^{*0}$ angular properties and their statistical and systematic uncertainties.

Parameter name	$ A_{\rm S} ^2$	fг	
Value and statistical error	$0.07^{+0.15}_{-0.07}$	0.50 ± 0.08	$0.19^{+0.10}_{-0.08}$
Angular acceptance	0.044	0.011	0.016
Background angular model	0.038	0.017	0.013
Assumption $\delta_{\rm S}(M_{K_{\pi}})$ = constant	0.026	0.005	0.002
B^0 contamination	0.036	0.004	0.007
Fit bias			0.005
Total systematic error	0.073	0.021	0.022

Table 2: Angular parameters of $B^0 \to J/\psi K^{*0}$ needed to compute $\mathcal{B}(B_s^0 \to J/\psi \overline{K}^{*0})$. The systematic uncertainties from background modelling and the mass PDF are found to be negligible in this case.

Table 3: Parameter values and errors for $\frac{\mathcal{B}(B_s^0 \rightarrow J/\psi \bar{K}^{*0})}{\mathcal{B}(B^0 \rightarrow J/\psi K^{*0})}$. errors for *'* rameters, together with their statistical and systematic uncertainties. The correlation

Parameter	Name	Value	
Hadronization fractions	f_d/f_s	3.75 ± 0.29	
Efficiency ratio	$\langle \varepsilon_{B^0}^{\rm tot}/\varepsilon_{B^0}^{\rm tot} \rangle$	0.97 ± 0.01	
Angular corrections	$\lambda_{B^0}/\lambda_{B^0_s}$	1.01 ± 0.04	
Ratio of K^{*0} fractions	$f_{K^{*0}}^{(s)}/f_{K^{*0}}^{(d)}$	1.09 ± 0.08	
B signal yields	$N_{B^0_s}/N_{B^0_s}$	$(8.5^{+0.9}_{-0.8} \pm 0.8) \times 10^{-3}$	